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Modeling innovation 
in the cryptocurrency ecosystem
Giordano De Marzo1,2,3,4*, Francesco Pandolfelli2 & Vito D. P. Servedio4

Blockchains are among the most relevant emerging technologies of recent times and, according 
to many, they will have a central role in shaping the future of our society. Since the introduction of 
Bitcoin in 2009, the first notorious blockchain system bound to a cryptocurrency, the blockchain 
ecosystem has experienced a huge growth, driven by innovations both in conceptual and algorithmic 
terms, and in the creation of a large number of new cryptocoins. New blockchains and their associated 
cryptocoins, emerge mostly as the result of forking already existing projects. Here, we show that the 
appearance of new cryptocoins can be well described by a sub-linear power-law (Heaps’ law) of the 
total crypto-market capitalization. At the same time, we propose a model that well reproduces the 
evolution of the cryptocurrency ecosystem. Our model suggests that each cryptocurrency triggers, on 
average, the creation of ca. 1.58 novel cryptocoins, a result confirmed by the analysis of the Bitcoin 
historical forking tree. Moreover, we deduce that the largest cryptocurrency, nowadays Bitcoin, will 
comprise around the 50% of the whole crypto-market and that this fraction is going to stabilize in 
the near future, provided that the present fundamental macro-economic conditions do not change 
radically.

In the last decade, the blockchain emerged as a breakthrough technology which, according to many, will have 
a huge impact on our  society1–3. A blockchain consists of a public decentralized ledger mostly know for being 
used to record transactions of cryptocurrencies (or cryptos), digital assets that operate as medium of exchange 
without the need of a central  authority4. Bitcoin is the first and by no doubt the most famous cryptocurrency. It 
was introduced by Satoshi Nakamoto (Satoshi Nakamoto is a pseudonym and it is neither clear if it is a single 
person or a group of people) in  20084, it reached 1000 billion euros of market capitalization (market cap, in short) 
during April 2021 and is currently surfing above 500 billion euros. After the innovative idea of Satoshi Nakamoto 
not only the financial value of Bitcoin has enormously increased, but many other cryptocurrencies have appeared. 
Indeed, there are nowadays more than 10,000 cryptos, all based on the original Bitcoin blockchain or on some 
variants of it, and this number is continuing to increase. Moreover, the blockchain technology is being used for 
a number of different  applications5, the most relevant being the Decentralized Finance (or DeFi). It is worth 
pointing out that despite the potential of this new kind of currency, many financial institutions consider cryptos 
as a worthless transient and according to some, neither Bitcoin nor the blockchain have succeeded in solving 
any societal  problem6. Critics address, for instance, the high price volatility, the huge energy consumption or 
the long relative time needed for validating transactions and generating liquidity.

Despite it is still not clear whether cryptos would succeed in revolutionize society, their role is already central 
in finance and their potential is huge. At present days, the total market cap of cryptocurrencies is approximately 
1,500 billions of US dollars and a study carried on in  20197 found out there are about 43 million active crypto 
traders. It is then not surprising that many studies have tried to analyze cryptocurrencies from a scientific per-
spective, using tools of complex systems and network science. For instance, several works focused on Bitcoin, 
with particular attention to its  network8–12 and its price dynamics or  prediction13–17, while only few analyses 
considered the cryptocurrency market in its entirety and tried to model its complex  dynamics18–20.

Here, we present an analysis that originates from two stylized facts often considered as the footprint of 
Complexity: Zipf ’s  law21 and Heaps’  law22. These laws have been observed in a variety of complex systems such 
as cities, language, citations of scientific articles, Wikipedia pages and even superclusters of  galaxies23–27. In the 
context of cryptocurrencies, Zipf ’s law relates the market cap of the kth largest coin S(k) to the capitalization of 
the first coin S(1) as S(k) = S(1) · k−γ , where γ is called Zipf ’s exponent and k is the rank. Heaps’ law, instead, 
connects the total market capitalization n to the number of different cryptos N as N = nβ . Here β is called Heaps’ 
exponent. Remarkably, the observation of Zipf ’s law allows us to assess the existence of two possible regimes the 
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cryptocurrency market can be in, and to determine the asymptotic dominance of the first coin by market cap, 
currently Bitcoin, which is expected to contribute to approximately 50% of the total crypto market cap in the 
future. This answers a very relevant question previously considered in  literature19, i.e. how is Bitcoin dominance 
evolving and if its decrease is indicative of a future crash, that is still missing a convincing and mathematically 
grounded  answer20. Indeed, even if the decrease of dominance has been previously explained as the natural result 
of an evolutionary  model19, no conclusions about its asymptotic value have been proposed yet.

While the adherence of cryptos to Zipf ’s law has previously been  highlighted19,20, to the best of our knowledge 
this is the first time that also Heaps’ law is considered. Heaps’ law is intrinsically connected to  innovations23,28, 
which are very likely to occur in the world of cryptocurrencies thanks to their open source, reusable and modular 
 nature29–31. For instance, a new blockchain with its cryptocurrency can be created by modifying the (public) code 
of an already existing blockchain (source code forking) or when a hard fork occurs, therefore making very simple 
for someone with programming skills to develop their own crypto. The crypto market is thus in constant evolu-
tion and very far from being stationary, since new cryptos are introduced every day to solve various aspects as 
security issues, improving the computational and energetic efficiency of blockchains and offer new decentralized 
services. In order to mimic such an innovation process, which is one of the key features of the crypto ecosystem, 
we propose a simple toy model based on Kauffman’s concept of adjacent  possible32, which, despite its simplicity, 
is capable of reproducing both Heaps’ and Zipf ’s law. We prove this both by means of numerical simulations and 
analytical computations and we show that the model presents two different regimes depending on the size of 
the adjacent possible. This allows us to estimate that, on average, each cryptocurrency triggers the birth of less 
than two, i.e., 1.58 novel criptocurrencies, a result confirmed by the analysis of the historical Bitcoin forking tree.

Results
Zipf’s law and the different regimes of the cryptocurrency market. Let us consider a set of N 
cryptocurrencies each characterized by a market cap S(k) for k = 1 · · ·N . The market cap S(k) of the kth largest 
cryptocurrency is defined as the number of existing coins times the value of a single coin in a fiat currency (e.g., 
US dollar or Euro). For instance, at the time of writing this manuscript, a Bitcoin is worth 38, 715 euros and the 
number of existing Bitcoins is 18, 782, 062, as a result the Bitcoin market cap is approximately 727 billion euros. 
We say that market cap follows a strict Zipf ’s law if it holds

where γ is called Zipf ’s exponent and k is the rank, i.e., the position of a cryptocurrency in the list of all crypto-
currencies inversely ordered according to their capitalization. The rank-size plot defined in this way is a straight 
line in double logarithmic scale whenever the system obeys Zipf ’s law. In reality, Zipf ’s law does not manifest 
itself as clean as defined by Eq. (1), rather, both fluctuations and discrepancies on the tail of the distribution can 
be observed, with a power-law behavior holding over three decades in the rank (see Fig. 1a).

(1)S(k) =
S(1)

kγ

Figure 1.  (a) Rank-size plots. Evolution of the rank-size plot of the cryptocurrency market over time. The black 
dashed line represents the expected trend corresponding to the average Zipf ’s power law distribution exponent 
γ ≈ 1.71 . (b) Dominance of Bitcoin. The Bitcoin dominance is displayed as function of time with the red dashed 
line showing the asymptotic dominance derived from Zipf ’s exponent. Note how the dominance fluctuates 
around its theoretical estimated value. The inset shows a comparison between the empirical dominance of the 
first M = 1, 2, 4, 8, 16, 32, 64 coins and the theoretical values; the red dashed line is the bisector of the quadrant. 
By considering a larger number of cryptocurrencies, the noise is attenuated and the adherence between theory 
and empirical data improves. Figures created with Matlab R2021a https:// it. mathw orks. com/ produ cts/ matlab. 
html.

https://it.mathworks.com/products/matlab.html
https://it.mathworks.com/products/matlab.html
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The adherence of cryptocurrencies market caps to Zipf ’s law and the presence of an inherent power law dis-
tribution have already been investigated in Refs.19,20. Here, we extend these analyses by considering a wider time 
period spanning from 2013 to 2021 and follow the procedure described in Ref.33 to determine Zipf ’s exponent γ . 
We measured an average value γ = 1.71 over the period we considered. Figure 1a shows the evolution of the rank-
size plot from 2013 to 2021, with the black dashed line denoting the scaling S(k) ∼ k−1.71 corresponding to the 
average Zipf ’s exponent. As it is possible to see, such a scaling describes the most recent empirical data fairly well.

When considering the cryptocurrency market as a whole, one of the most relevant quantity to be taken into 
account is the Bitcoin dominance D, defined as the fraction of the total market cap held by  Bitcoin19,20,34. This 
quantity is often considered a useful indicator to understand the dynamics of the cryptocurrency market and 
to suggest whether it is better to invest in Bitcoin rather than in other  cryptocurrencies35,36. At present day, Bit-
coin contributes to approximately the 40% of the total market cap of cryptocurrencies, meaning that its current 
dominance is D = 0.40 . A central question still lacking a definite answer is whether or not Bitcoin will keep its 
dominant position also in the  future34,37 or if its dominance will decrease. A diffuse opinion today is that the 
decrease of dominance observed in the last years could be a sign of  decline38, while some others believe that 
Bitcoin dominant role is not in danger at  all39. Trying to answer this key question,  in19 it was found out that 
Bitcoin dominance decreased linearly in time from 2013 to 2017 with the prediction that the dominance would 
have reached 50% by year 2025. While this value has already been reached some years ago, it is not clear whether 
this linear decrease would keep going till zero or if Bitcoin will asymptotically tend to a non null fraction of the 
total market cap.

In our framework the dominance of the largest cryptocoin, currently Bitcoin, is given by

where, as above, S(1) is the largest market cap and n the total market cap. We can obtain n by summing over all 
the capitalization of the N cryptocurrencies, that is

where we used Zipf ’s law Eq. (1) to recast S(k). The dominance as function of N is thus

and taking the limit N → ∞ we get its asymptotic value

where ζ(γ ) is the Riemann zeta function evaluated in γ . Remarkably, Eq. (3) shows that depending on Zipf ’s 
exponent γ there are two different possible regimes as both n and N grow

• If γ ≤ 1 the zeta function is diverging and this implies that the asymptotic dominance is null 

 In other words, in the limit of an infinite system the largest cryptocurrency holds only an infinitesimal frac-
tion of the total market cap.

• If γ > 1 the zeta function is a finite number meaning that the asymptotic dominance is strictly larger than 
zero 

 In other words, in the limit of an infinite system the largest cryptocurrency holds a non null fraction of the 
total market cap.

In the system we are considering γ ≈ 1.71 > 1 , so that we are in the second regime and we expect Bitcoin to 
hold a finite fraction of the total capitalization even in the asymptotic limit. More precisely, using Eq. (3), we get

Figure 1b shows a comparison between the observed dominance of Bitcoin as function of N and this theoreti-
cal prediction. We note that we have already reached the asymptotic value and Bitcoin dominance is oscillating 
around it. It is important to remark that the result we derived applies to the top cryptocurrency and not specifi-
cally to Bitcoin. Indeed, there is a finite probability of  turnover19, meaning that in the future Bitcoin could lose 
its position in favor of another coin, even if it has been shown that top cryptos tend to be more stable and less 
prone to  turnovers19. Also, we note that the estimate of the asymptotic dominance depends on the the power 
law exponent, which has been evolving in the time period considered (see Fig. 6 in the Methods section) and 
appears to be stable since 2018. As a consequence, this estimate can be considered reliable only provided that the 
present fundamental macro-economic conditions and the exponent do not change radically. In order to asses the 
stability of the asymptotic dominance, we computed it only considering data up to the end of 2018. In this way 
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we obtained D1 ≈ 0.55 , a value 10% higher than the previous estimate. This should give an idea of how much the 
asymptotic dominance can vary in approximately 2 years as the result of the fluctuations of the Zipf ’s exponent.

We can compute the dominance of the first M cryptocurrencies as well, as

and for N → ∞ we get

where H(γ )
M

 is the generalized harmonic number of order γ of M. As in the case of D1 , also here all the DM are 
null for γ ≤ 1 , while they are larger than zero if γ > 1 . The inset of Fig. 1b shows a comparison between the 
empirical asymptotic values of DM for M = 1, 2, 4, 8, 16, 32, 64 and Eq. (4). We observe that by increasing M, 
the noise is averaged out and so the adherence to theory gets better and better. The key message of this analysis 
is that the decrease of Bitcoin dominance observed since 2009 can be fully explained by the inherent power law 
distribution and the increase of the total market cap. The decrease of D is thus not surprising and could not be 
related to a sign of Bitcoin decline.

Heaps’ law: innovation in the cryptocurrency ecosystem. Heaps’ law is another scaling law that is 
often found in complex systems. Initially observed in linguistics, this law states that the number of distinct words 
N in a text grows as function of the total number of words n as

Here β is called Heaps’ exponent which, when also Zipf ’s law is observed, is related to Zipf ’s exponent by the 
relation

It is worth pointing out that deviations from this relation arise for finite N and in presence of an upper cutoff in 
the power law  scaling24,25. Heaps’ law is intrinsically connected to innovation processes and novelties occurring in 
the  system23. Indeed, the rate of innovation ρ , that is the rate at which new elements enter the system, is obtained 
deriving N with respect to n, which can be seen as a playing the role of a temporal variable

This implies that when a sublinear Heaps’ law is observed the innovation rate decreases as the system evolves.
Moving from words in a text to cryptocurrencies, we have that N coincides with the number of different 

cryptos, while n is equivalent to the total market cap. Note that this last quantity can in principle also decrease 
in time, but, neglecting fluctuations, it has been increasing on average since the birth of the first cryptocurrency. 
In order to determine whether or not the growth of this system can be described by Heaps’ law as well, we con-
sidered the the cryptocurrencies ecosystem in the period 2013–2021. Figure 2a shows the evolution of n(t) and 
N(t) over this period, while the parametric plot of N(t) vs n(t) is shown in Fig. 2b. As it is possible to see, the 
cryptocurrency ecosystem is well described by Heaps’ law and, as a consequence, the number of cryptocurren-
cies N and the total market cap n do not evolve independently. In fact, as the total market cap grows, the number 
of cryptocurrencies has to grow in response according to the law N(t) = n(t)β . Note that while the rank-size 
plot and Zipf ’s law provide a snapshot of the system at a given moment, Heaps’ law describes its dynamics as it 
evolves. The solid line in the main figure and in the inset represents Heaps’ scaling with exponent β given by the 
reciprocal of Zipf ’s exponent that we computed previously

Since Heaps’ exponent is smaller than one, the cryptocurrency ecosystem is characterized by an innovation rate 
which decreases as the total market cap increases. Finally, it should be noticed that in order for Eq. (6) to hold 
exactly, the lower cutoff of the probability distribution, that is the smallest market cap, must be constant on 
 average24. This is approximately true for the system under consideration and we also checked that by introducing 
a cutoff by hand, that is by considering all coins above a fixed threshold xmin , results do not change. In particular 
we considered xmin = 102 , 103 and 104 and we obtained only negligible differences with respect to Fig. 2b.

Modeling innovation in the cryptocurrency ecosystem. As we mentioned in the introduction, inno-
vation is one of the driving forces of the cryptocurrency ecosystem mainly due to the open source nature of 
blockchains. Since all the source code related to a cryptocurrency is typically publicly available, a new blockchain 
with its own crypto can be created by modifying or combining such source codes. For instance Litecoin was cre-
ated in 2011 starting from Bitcoin source code by modifying the block generation time, the maximum number 
of coins and the hashing algorithm, but most of its structure is equal to that of Bitcoin. Analogously, the source 
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code of Litecoin was then used as a starting point for the making of Dogecoin, Auroracoin and many other cryp-
tocurrencies. Such processes are usually called software forks, but a new cryptocurrency can be created also by a 
so called hard fork or blockchain fork. A hard fork occurs whenever some nodes participating to the blockchain 
decide not to uniform to an update of the rules governing the blockchain or to adopt new rules. This makes the 
blockchain split and leads to the birth of a new cryptocurrency. Examples are Ethereum Classic, which resulted 
from an hard fork of Ethereum blockchain in 2016, or Bitcoin Cash, originated from Bitcoin blockchain in 2017. 
Finally, new cryptocurrencies can be created by copying parts of the source code of already existing coins, a 
practice that has been particularly common in recent  years30,31. In the following, we shall make no distinction 
between the processes we just described, since their result is substantially the same, i.e., the creation of a new 
cryptocurrency by exploiting the resources available from previous projects. Once a new cryptocurrency comes 
to life, it can undergo further forks and become, on its turn, the starting point for the creation other cryptos, as 
schematized in Fig. 3.

This innovation process we just described, very much resembles to the concept of adjacent possible intro-
duced by  Kaufman32 to describe biological evolution. In Kaufman’s theory, the adjacent possible is the set of all 
those things (real or abstract), in our case cryptocurrencies, which have not yet been created, but that are close 
to become reality. As soon as something moves from the adjacent possible to real life, other objects get closer to 
be realized and thus enter the adjacent possible that consequently expands. As a consequence, innovation can 
be seen as the process of exploring the adjacent possible. The cryptocurrency ecosystem grows in the very same 
way, since, as we described above, when a technological improvement is achieved and a novel crypto is created, 
other developers can use its source code as a starting point for new cryptocurrencies.

Our model is thus based on one side on the concept of adjacent possible for describing how innovation takes 
place, and on the other on the preferential attachment mechanism to schematize how existing cryptocurrencies 
 grow20. The steps of the model are the following

• initially there is only one cryptocurrency with unitary market cap;
• at each time step a cryptocurrency is randomly selected with a probability proportional to its market cap and 

a unit of money is added to it. This process schematize a person investing in a given cryptocurrency;
• when a cryptocurrency receives its first investment the creation of �N novel cryptocurrencies with a unitary 

capitalization is triggered. This mimics the adjacent possible in the innovation process of the cryptocurrency 
ecosystem.

Figure 4 is a schematic representation of this model, one can see the two different update events: the first row (a) 
shows an investment in a cryptocurrency that previously received other investments, while the second row (b) 
corresponds to an investment in a novel cryptocurrency followed by the creation of �N new cryptos. Despite its 
simplicity, the model here presented shows both Zipf ’s and Heaps’ law and the corresponding exponents depend 
on the value of �N , more precisely it holds

Figure 2.  (a) Evolution of the number of different coins N and market cap n over time. Growth of the number 
of coins N (red line) and of the total market cap n (blue line) as function of time. Both quantities have increased 
at an exponential rate in time since 2013. Dashed lines are guides for the eyes. (b) Heaps’ law. Parametric plot of 
N versus n; the yellow points have been obtained performing an average with exponentially increasing window. 
The number of coins grows as a sublinear power-law of the total market cap, indicating the presence of Heaps’ 
law in the market cap. Red line shows the theoretical Heaps’ law computed from Zipf ’s exponent. We also 
reported in the inset the raw empirical data without averaging. Figures created with Matlab R2021a https:// it. 
mathw orks. com/ produ cts/ matlab. html.

https://it.mathworks.com/products/matlab.html
https://it.mathworks.com/products/matlab.html
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and, consistently with Eq. (6) Heaps’ exponent satisfies

The interested reader can find a derivation of these relations and a proof that the model presented here is 
asymptotically equivalent to the model proposed by Ref.23 in the Methods section. Figure 5 shows a comparison 
between the theoretically predicted Heaps’ and Zipf ’s scalings and those obtained by numerical simulations of 
the model. Equations (8) and (9) are in good agreement with the simulations. It is worth remarking that the 
model we introduced has some similarities with the evolutionary model proposed in Ref.19. In both cases the 
growth of existing cryptocurrencies is driven by a rich-get-richer mechanism, but the two models differs on how 
new coins enter the system. Indeed, in the evolutionary model there is a fixed mutation parameter governing 
the creation of new currencies and thus the birth of a cryptocoin is a completely random event. This is a major 
difference with respect to our model, where the creation of a novel crypto is triggered by another coin getting 
its first investment, mimicking an adjacent possible mechanism. Moreover, the evolutionary model always gives 
rise to a Zipf ’s law with exponent 1.5 independently of the mutation parameter, while in our model the size of 
the adjacent possible determines Zipf ’s exponent and the two different possible regimes accordingly. In essence, 

(8)γmod =
1

�N − 1

(9)βmod =

{

�N − 1 if�N < 2
1 if�N > 2

Figure 3.  Forks of Bitcoin. Schematic representation of Bitcoin forking tree. Each time a new cryptocurrency 
is created, its code (software fork) or its blockchain (hard fork) can be used as a starting point for the creation of 
new coins and blockchains. For instance Litecoin has been created by minor modifications of Bitcoin code and 
in its turn Litecoin source code has been used to develop many other coins such as the well known Dogecoin. 
The creation of new cryptocurrencies can be described in terms of an adjacent possible process. Figure created 
with www. diagr ams. net.

Figure 4.  Schematic representation of the model. At each time step a unit of money is invested in a 
cryptocurrency selected with a probability proportional to its market cap, which is then increased by a unit. If 
such a cryptocurrency previously received other investments we move to the next time step (case a), while if 
it is the first time the cryptocurrency is selected we also introduce in the system �N novel coins with unitary 
capitalization (case b). This last process mimics the adjacent possible mechanism behind the creation of new 
cryptocurrencies. Figure created with www. diagr ams. net.

http://www.diagrams.net
http://www.diagrams.net


7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12942  | https://doi.org/10.1038/s41598-022-16924-7

www.nature.com/scientificreports/

both models are conceptually similar, with the adjacent possible framework that was originally proposed to 
explain biological evolution. We think these similarities strongly indicate that the cryptocurency market can be 
successfully described as an evolving ecosystem, even if the specific mechanisms can vary from model to model.

Equations (8) and (9) show that in the model we just described, �N determines in which of the two regimes 
the system is. Since we know that the cryptocurrency market is characterized by a Zipf exponent larger than 
one, the model thus predicts an adjacent possible �N less than two. In other words, according to our model, the 
creation of a new cryptocurrency should trigger, on average, the birth of less than two novel cryptocurrencies. 
In order to measure if this is actually the case in reality, we considered the forking tree of Bitcoin created by 
www. mapof coins. com and available on  GitHub40. This dataset, which covers the period 2009–2015, contains 661 
different cryptocurrencies, each linked to the cryptocurrency from which it has been forked. Note that many of 
these cryptocurrencies are not listed on coinmarketcap.com and this means that they never succeed in getting 
relevant investments. In order to measure the size of the adjacent possible of this forking tree, in analogy with 
our model, we selected among the 661 available cryptos all those listed on coinmarketcap.com, for a total of 241 
different cryptocurrencies, and then we defined the adjacent possible as the average number of forks produced 
by such coins. Note that in computing the average adjacent possible dimension we include all coins, and only 
those coins that have been traded at least once contribute to it.

In other words we compute the average adjacent possible as

where N0 = 241 is the number of cryptocurrencies that appears in the forking tree and have also been traded, 
while �Ni is the number of forks produced by the i-th coin. This eventually results in

This number is remarkably close to what one would expect from real data, since Eqs.  (7) and (9) give 
�Nteo = 1.58 . It is important to remark that the forks dataset we used is quite limited, since many of the cryp-
tocoins that nowadays rank first have been created after its release. Moreover, the capitalization dataset we used 
starts in 2013, so the overlap between the two datasets is only partial, and the number of coins it contains is much 
larger. However, even if we limit Zipf ’s and Heaps’ analysis to the coins contained in the forking tree of Bitcoin 
and we only consider data up to 2015, we still obtain a Zipf ’s exponent larger than one (2.44) and so also in this 
case the model successfully predict the correct regime, even if in this case �Nteo = 1.44 which is 10% smaller 
than the empirical value. These results suggest that the simple model we introduced, captures the mechanism 
behind the innovation process in the cryptocurrency ecosystem.

Discussion
Since the birth of Bitcoin in 2009, the cryptocurrency market has experienced a huge growth both in terms of 
the total market cap and in the number of different cryptocurrencies. One of the driving forces of such an expan-
sion has been innovation, since all the source code of cryptos and blockchains is typically public and can thus 
be reused and composed to create novel cryptocoins. During this process the cryptocurrency market has been 

�Nexp =
1

N0

N0
∑

i=1

�Ni ,

(10)�Nexp = 1.59.

Figure 5.  (a) Rank-size plots. Rank-size plots obtained from our model with �N = 1.58 . The model produces 
a Zipf ’s law with exponent given by 1/(�N − 1) ; the red dashed line is the theoretical prediction. (b) Heaps’ law. 
Growth of the number of coins in the model as function of the market cap. Yellow points have been obtained 
averaging over 5 different realizations (shown in the inset), while the red dashed lines is the theoretical Heaps’ 
law with exponent �N − 1 . Figures created with Matlab R2021a https:// it. mathw orks. com/ produ cts/ matlab. 
html.

http://www.mapofcoins.com
https://it.mathworks.com/products/matlab.html
https://it.mathworks.com/products/matlab.html
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characterized by some stable statistical regularities, one of them being Zipf ’s law. Starting from this, we showed 
that depending on the value of Zipf ’s exponent there are two possible regimes in which the cryptocurrency mar-
ket can be. If Zipf ’s exponent is smaller than one, than the dominance (or market share) of the largest cryptocoin 
asymptotically goes to zero, while if Zipf ’s exponent is larger than one, as observed in real data, the dominance 
is asymptotically larger than zero. This analysis also allowed us to compute the expected asymptotic dominance 
of Bitcoin, which we believe will keep oscillating around the value 0.5. Furthermore, we showed that the growth 
of the cryptocurrency ecosystem can be described in terms of Heaps’ law, a statistical law often encountered in 
open expanding systems characterized by novelties and innovation. In the case of cryptos, this law implies that 
the number of distinct cryptocurrencies grows as a sub-linear power of the total market cap, thus showing that 
these two quantities are intrinsically related. Finally, we proposed a model to describe the innovation process 
in the cryptocurrency ecosystem based on preferential attachment and on the concept of adjacent possible. The 
model reproduces both Heaps’ and Zipf ’s law and the presence of two different regimes depending on how many 
cryptocoins are triggered by the creation of a novel cryptocurrency, that is depending on the size of the adjacent 
possible. In particular, the regime in which the dominance of the largest crypto is larger than zero corresponds 
to an adjacent possible smaller than two. Being more precise, the model predicts this number to be equal to 1.58 
and analyzing the forking tree of Bitcoin we found out that in this case the average size of the adjacent possible is 
1.59. Despite this striking accordance, we stress that our model still has some limits. Indeed, while we assumed 
each crypto to trigger the same number of novel cryptocurrencies, in the forking tree of Bitcoin there are some 
coins, such as Litecoin and Bitcoin itself, which are responsible for a large fraction of the total number of coins. 
It would be thus interesting to consider a probability distribution for the size of the adjacent possible in order to 
mimic also this aspect. Moreover, the data we used to measure the adjacent possible are limited to the forking 
tree of Bitcoin and do not cover recent years, analyzing also other forking trees and/or more recent data would 
by no doubt give additional insight on the process of innovation in the cryptocurrency ecosystem.

Methods
Fitting procedure. In order to compute the average Zipf ’s exponent of the cryptocurrency market we 
started by computing the exponent of the underlying probability distribution P(S) ∼ S−α for all the days in the 
period 2013/04/28–2021/09/09. This has been done using the python powerlaw  package41 which implements 
the technique described  in33. In few words this method exploit the maximum-likelihood fitting technique and 
the Kolmogorov-Smirnov statistic to asses both the exponent of the power law probability distribution α with 
its standard error σ and the lower cutoff where the power-law behavior ceases to hold. Note that in principle 
one should take into account also the possible presence of an upper cutoff in the power law distribution, though 
the system under consideration does not present such a cutoff. This can be seen by noticing that the rank-size 
plots never shows a negative curvature at low  ranks27. In this way for each day t we obtained the exponent αt 
and its standard error σt . During the first years of our dataset only few cryptocurrencies were present and so 
the estimate of the power law exponent is less reliable and is affected by a high level of uncertainty, while the αt 
computed over more recent data are characterized by a much lower error. This is can be clearly seen in Fig. 6, 
where we plotted αt with its uncertainty. As a consequence, we computed the mean power law exponent 〈α〉 as 
an average weighted with the standard error

Figure 6.  Power law exponent. Exponent of the power law distribution of market caps as function of time (blue 
line) and of its standard error (shaded area), both computed with a maximum likelihood approach. As the time 
elapses the error decreases since the number of coins over which the fit is performed increases. The red dashed 
line shows the average exponent obtained as an average weighted by the standard error. Figure created with 
Matlab R2021a https:// it. mathw orks. com/ produ cts/ matlab. html.

https://it.mathworks.com/products/matlab.html
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and we obtained

Starting from the power law exponent, Zipf ’s exponent γ can be easily computed by the relation γ = 1/(α − 1) 
(see for  instance24 and references therein) and so we ended up with the value

Mathematical description of the model. Here we provide a mathematical description of the adjacent 
possible based model we introduced above. We recall that the model is defined as follows:

• at t = 0 the system contains a single cryptocurrency with unitary market cap;
• at each time step a cryptocurrency is selected with probability proportional to its market cap, which is then 

increased by a unit;
• when a crypto receives its first investment �N new cryptocurrencies with unitary market cap are added to 

the system.

We begin computing how the number of different cryptocurrencies evolves in time t. We denote by N0(t) the 
number of cryptos which have received at least an investment, in these terms the total number of cryptocur-
rencies in the system is

Note that the +1 derives from the fact that initially there is only one cryptocurrency in the system; we neglect 
this term since we are interested in the large N(t) behavior. The probability of increasing N0(t) of a unit is then

where the numerator gives the number of cryptocurrencies which never received an investment, while the 
denominator is the total market cap. Noting that

and using the expression for N0(t) we thus obtain

As a consequence the differential equation governing the growth of N0(t) is

We have two different possibilities

• if we assume t ≫ N0(t) we can approximate Eq. (11) as 

 whose solution is 

 This solution is compatible with the assumption t ≫ N0(t) provided that �N < 2.
• conversely if t ∼ N0(t) so that N0(t) = ct we have from Eq. (11) 

 which gives 

 This expression is meaningful provided that �N > 2.
Concluding, as stated in Eq. (9), we have two distinct regimes

�α� =

∑

t

αt
σt

∑

t

1
σt

�α� = 1.58.

γ = 1.71.

N(t) = 1+ N0(t) ·�N ≈ N0(t) ·�N .

P(N0(t) → N0(t + 1) = N0(t)+ 1) =
N(t)− N0(t)

n(t)
,

n(t) = t + N(t)

P(N0(t) → N0(t + 1) = N0(t)+ 1) =
(�N − 1)N0(t)

t +�N · N0(t)
.

(11)
dN0(t)

dt
=

(�N − 1)N0(t)

t +�N · N0(t)
.

dN0(t)

dt
=

(�N − 1)N0(t)

t

N0(t) = t
�N−1 → N(t) = �Nt

�N−1.

c =
(�N − 1)c

1+ c�N
→ c =

�N − 2

�N

N(t) = �Nct = (�N − 2)t
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this proving that the model shows Heaps’ law.
We can now turn to Zipf ’s law, first we write the expression governing the growth of a given crypto, let us say 

the kth. The evolution of its capitalization S(k, t) as function of t is given by

whose solution, using Eq. (12), is

Here, we denoted by tk the time at which the kth coin entered the market. Considering the first case �N < 2 we 
can then express the cumulative probability of S(k) starting from that of tk as

Analogously for �N > 2 we obtain

Since P(S(k) < S) ∼ S−�N−1 the rank-size relation of S(k) is of the form

This confirms Eq. (8).
Finally, we note that the model we studied is equivalent to a Polya urn: different cryptocurrencies correspond 

to balls of different colors, while the total market cap of a coin is equivalent to the number of balls of its color 
contained in the urn. At each time step a ball is extracted from the urn and then it is put back together with a 
copy of it. Moreover, if the ball is of a never seen color, also �N balls of novel colors are inserted in the urn. Such 
a model has been studied  in23, but while they focused on the sequence of extracted balls, here we consider the 
content of the urn. Denoting by n′ and N ′ the quantities obtained  in23, they can be related to those we computed, 
n and N, by the following relations

Since N(t) scales at most as n(t), these expressions imply that for large t it holds N(t) ∼ N ′(t) and n′(t) ∼ n(t) 
and so the two models show the same Heaps’ law. For what concerns Zipf ’s law, we have S′(k) = S(k)− 1 and 
so S′(k) ≈ S(k) provided that k is sufficiently large. As a consequence, the two models are characterized by the 
same statistical properties.

Data. All the data we used in the paper can be accessed on the web.

• Historical market cap data have been downloaded from https:// coinm arket cap. com/. The dataset we down-
loaded cover the period 2013-04-28 to 2021-09-09 and contains a total of 4588 cryptocurrencies (at the 
time of download). For each coin we only retained market capitalization data, but also other information 
are available. In particular we downloaded the market capitalization of each coin for each day in the period 
mentioned above, for a total of 3057 days.

• Forks data can be visualized at www. mapof coins. com and we downloaded the raw data from https:// github. 
com/ Ada- Alter native/ Mapof coins/ blob/ master/ coins- btc. json. The dataset covers the period 2009–2015 and 
contains 661 different cryptocurrencies, all originated, directly or indirectly, from Bitcoin. For each coin dif-
ferent information are available, such as the announce and genesis dates, the PoW or PoS algorithm used or 
the block time. Moreover, each crypto is also linked to the cryptocurrency it has been forked from and this 
allows to reconstruct the forking tree of Bitcoin up to 2015.
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