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Network analysis of preictal 
iEEG reveals changes in network 
structure preceding seizure onset
Stefan Sumsky1 & L. John Greenfield Jr.2*

Seizures likely result from aberrant network activity and synchronization. Changes in brain network 
connectivity may underlie seizure onset. We used a novel method of rapid network model estimation 
from intracranial electroencephalography (iEEG) data to characterize pre-ictal changes in network 
structure prior to seizure onset. We analyzed iEEG data from 20 patients from the iEEG.org database. 
Using 10 s epochs sliding by 1 s intervals, a multiple input, single output (MISO) state space model 
was estimated for each output channel and time point with all other channels as inputs, generating 
sequential directed network graphs of channel connectivity. These networks were assessed using 
degree and betweenness centrality. Both degree and betweenness increased at seizure onset zone 
(SOZ) channels 37.0 ± 2.8 s before seizure onset. Degree rose in all channels 8.2 ± 2.2 s prior to seizure 
onset, with increasing connections between the SOZ and surrounding channels. Interictal networks 
showed low and stable connectivity. A novel MISO model-based network estimation method 
identified changes in brain network structure just prior to seizure onset. Increased connectivity was 
initially isolated within the SOZ and spread to non-SOZ channels before electrographic seizure onset. 
Such models could help confirm localization of SOZ regions.

The need to accurately identify the seizure onset zone (SOZ) for epilepsy surgery has led to intense interest in 
characterizing the SOZ and mechanisms of seizure initiation and propagation. Mapping of the epileptic network 
shows promise as a powerful tool for understanding these processes1,2 and could help target tissues for resection 
to ensure a seizure-free outcome with the least damage to normal brain function.

Functional and effective epileptic networks represent time-dependent connections between neuronal 
populations that have been damaged, malformed, or functionally misconnected, rendering the brain vulner-
able to seizure generation or spread. Early studies characterized the structure of the seizure network as highly 
synchronous3–5, but more recent work provides evidence that more complex changes in the brain network 
structures may be critical to seizure generation6–11.

Most prior investigations of dynamic brain networks have used functional connectivity techniques such as 
correlation or cross-correlation, coherence, phase synchronization, phase-slope, or Granger causality. Of these 
approaches, only cross-correlation and Granger causality can provide directed connectivity, and all of them 
are dependent on shared signal properties in the time or frequency domains12,13. This contrasts with effective 
connectivity, which depends on state space models with connections that are not merely directed, but causal in 
nature14. Information about directed causal influence in brain networks may be critical to understanding how 
seizures arise and propagate15,16. Existing methods of estimating effective connectivity are often problematic for 
electrophysiological brain recordings. For example, dynamic causal modeling requires advanced Bayesian selec-
tion of a prior model17,18, while structural equation modeling is inherently unstable when applied to time series 
data19. Neither method is suitable for investigating the effective network properties at seizure onset.

In this study, we propose a novel methodology for effective network estimation that utilizes multiple-
input–single-output (MISO) state-space modeling of electrophysiological data from intracranial electroencepha-
lographic (iEEG) recordings. This modeling approach allows the capture of the dominant multi-region network 
dynamics underlying the observed iEEG activity by directed network identification from short (10 s) recording 
epochs, enabling study of the temporal evolution of the seizure network and the directed flow of information 
within that network. We measured changes in degree centrality (DC, the number of connections at a given 
node), and betweenness centrality (BC, the number of shortest paths through a given node)20. These measures 
quantify the level of interconnectivity in the network and the extent to which specific nodes are critical to signal 
spread and information flow, both of which have high relevance for understanding seizure dynamics and can 
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inform models of seizure mechanisms. In this instance, network nodes are the electrode contacts of intracranial 
electrodes, representing the loci of summed local field potentials at that site, and edges represent the anatomical 
and physiological interconnections with other neuronal regions (nodes). We examined the dependence of the 
signal at each node on the signal present at every other node, and how that dependence changes over time. Our 
results indicate a succession of directed network state changes just prior to the electrographic seizure onset, which 
suggest a pattern of underlying physiological changes associated with seizure initiation.

Results
Network analysis.  For each of the 143 seizures studied, 120 s of iEEG data immediately prior to seizure 
onset were divided into 120 ten-second epochs using a sliding 1-s window and used to estimate sequential 
directed preictal network structures. Similar networks were subsequently generated for the continuous interictal 
data (excluding the period two hours before and after each seizure) for all patients using the same process for 
comparison.

Preictal changes in degree and betweenness centrality.  The directed nature of the estimated net-
work structures was used to investigate changes in connectivity over the preictal time period. From 120 to about 
40 s prior to seizure onset, there was low overall degree centrality (DC, the number of connections made to each 
node, Fig. 1A). Subsequent analysis of the entire interictal period (excluding the 2 h before and after each sei-
zure) demonstrated no significant difference in DC compared to that seen during the − 120 to − 40 s time points 
(see below). At about − 40 s and after, SOZ contacts show progressively increasing DC, rising above the range of 
prior interictal SOZ connectivity, and also higher than the peri-seizure onset zone (PSZ) and non-seizure onset 
zone (NSZ) contacts for all time points from about − 40 s until seizure onset. During the final 10 s of the preictal 

Figure 1.   Preictal network centrality 2 min prior to seizure onset. Models were generated using a sliding 
10 s window at 1 s intervals. (A) Average degree centrality (DC) of preictal SOZ (mean = red dots and solid 
line, ± standard deviation (SD) in lighter red) PSZ (orange dots and solid line, SD in lighter orange) and NSZ 
(blue dots and solid line, SD in lighter blue). Symbols appear at the onset of the reported period. The period 
from − 50 s to seizure onset is shown at greater resolution in part (C). (B) Betweenness centrality (BC) for the 
same period and contact groups, shown at greater resolution in part (D). (E) Transition time between network 
connectivity states determined by shifting the 10 s epoch by 1 s intervals for each seizure to determine the epoch 
when degree centrality was 1 standard deviation above the previous state value. The increase in SOZ BC (SOZ 
∆) occurred at − 37.0 ± 2.8 s (mean ± SD, median − 37 s), and the change at NSZ nodes (PSZ/NSZ ∆) occurred 
at − 8.2 ± 2.2 s (median − 8 s). Boxes show 25th to 75th %ile around the median; whiskers are at 5% and 95%. 
Elevations in DC and BC were significant (Kruskal Wallis with post-hoc Dunn’s test, p < 0.05) for at most points 
for SOZ after the first transition and for PSZ and NSZ after the second transition, but are not shown for clarity.
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period, there is an additional change in network connectivity, as PSZ and NSZ contacts also increase DC signifi-
cantly above their interictal values (shown at greater time resolution in Fig. 1C).

Similarly, betweenness centrality (BC, the number of shortest paths through each node, Fig. 1B), is signifi-
cantly higher in SOZ nodes at the time points from about − 40 to about − 10 s relative to SOZ during the interictal 
state, and higher than all PSZ and NSZ nodes during the same approximate − 40 to − 10 s time period, suggest-
ing a distinct network state. There are then increases in BC for the other contacts: BC values at PSZ and NSZ 
contacts become significantly higher than interictal about 10 s prior to seizure onset (Fig. 1D). This apparent 
spread of increased connectivity from SOZ to PSZ and NSZ nodes around 10 s prior to seizure onset suggested 
a second distinct preictal state that differed from interictal levels. Hence, preliminary network analysis of the 
2 min period prior to seizure onset revealed 3 time periods with differing connectivity properties consistent 
with distinct preictal network states:

(1)	 the period from − 120 to about − 40 s, unchanged from the interictal state,
(2)	 from − 40 to about − 10 s, when the SOZ network increases connectivity, while PSZ and NSZ contacts 

remain unchanged, and
(3)	 from about − 10 s until seizure onset, when PSZ and NSZ networks increase connectivity.

Timing and consistency of network state transitions.  To determine with greater specificity the tran-
sition time points when these changes occur, we determined for each seizure the epoch in which BC value was 1 
standard deviation (SD) above the previous state value, which was considered the state transition time, and then 
averaged these times across seizures to determine the transition mean and SD. Betweenness was used since the 
changes in this parameter appeared more robust and consistent than DC for early changes. The transition from 
connectivity levels prior to − 40 s to those seen in SOZ nodes after − 40 s occurred at − 37.0 ± 2.8 s (mean ± SD, 
median − 37  s), and the change in connectivity at PSZ and NSZ nodes after − 10  s occurred at − 8.2 ± 2.2  s 
(median − 8 s, Fig. 1E). These transition time points were used in all subsequent analyses. For convenience, we 
have labeled the − 120 to − 38 s epoch “Interictal,” since BC and DC did not differ from interictal values more 
distant from seizure onset (see below). We labeled the network state after the first state transition “SOZ ∆” and 
the state after the second state transition “PSZ/NSZ ∆”.

To assess the consistency of the changes in network interconnections within each putative time-dependent 
state, we determined the mean and range of DC (plotted as box and whiskers, Fig. 2A) and BC (Fig. 2B) for each 
of the three identified network states by averaging the network values at each 1 s time point within the putative 
states. For the interictal period, we included the entire interictal record modeled at 1 s intervals to ensure that 
there were no periods in which DC rose above the threshold seen in the immediate (− 120 to − 38 s) preictal 
period. There were only small differences in DC or BC connectivity between SOZ, PSZ or NSZ during the entire 
interictal period, and the range of DC and BC interictal values for all points at SOZ contacts did not overlap with 
the range during the SOZ ∆ period (in Fig. 2, the “whiskers” represent the entire range of values). In the SOZ ∆ 
epoch, both DC and BC were significantly elevated at SOZ electrodes (p < 0.001) relative to interictal SOZ and 
to PSZ and NSZ electrodes at the same time period. PSZ contacts had slightly but significantly (p < 0.05) higher 
DC than in the interictal period, though BC at PSZ contacts was unchanged. NSZ contacts had no change in 
either DC or BC relative to interictal values. In the PSZ/NSZ ∆ epoch, DC at the SOZ contacts was significantly 
(p < 0.001) higher than in the SOZ ∆ epoch (or the interictal period), and there were now significant increases 
in DC at the PSZ and NSZ contacts (both p < 0.001 relative to interictal). BC at SOZ contacts in the PSZ/NSZ ∆ 
epoch was also significantly elevated relative to interictal, but not significantly higher than in the SOZ ∆ epoch. 
BC was also elevated in the PSZ/NSZ ∆ epoch at PSZ (p < 0.001) and NSZ (p < 0.05) contacts relative to interictal. 
The consistency of network centrality characteristics within each of these defined periods, and their significant 
differences in DC and BC relative to the interictal period, confirm that they represent 3 distinct time-dependent 
preictal states.

The shifts in connectivity measured by BC or DC were also consistent at the individual seizure level. Dur-
ing the interictal period (both continuously modeled interictal data and the period from − 120 to − 38 s), there 
was no significant difference in DC between SOZ, PSZ, and NSZ contacts for any subject or seizure, nor any 
significant increase in SOZ, PSZ, or NSZ contacts during the entire interictal period associated with physiologi-
cal events (e.g. arousals from sleep). During SOZ ∆ phase, DC rose significantly at SOZ channels in 138 of 143 
(96.5%) seizure events (p < 0.05). In the PSZ/NSZ ∆ epoch, DC remained elevated or increased further in SOZ 
channels in 143 of 143 seizures (100%) and also increased significantly in both PSZ and NSZ channels in 136 of 
143 seizures (95.1%, p < 0.05).

Similarly, BC at SOZ contacts in the SOZ ∆ epoch increased significantly (p < 0.05) in 141 of 143 seizures 
(98.6%). In the PSZ/NSZ ∆ phase, BC in PSZ nodes increased significantly in 132 of 143 seizures (92.3%), and 
BC in NSZ nodes showed an overall qualitative increase, which was significant in 120 out of 143 seizure events 
(83.9%). As with DC, there was no similar increase in BC in SOZ, PSZ, or NSZ contacts at any interictal time 
period.

We also assessed the effect of surgical outcome (ILAE Class I vs Class > I) on the centrality values of the 
generated networks by separating them into two groups and repeating the prior characterization. There was no 
significant difference in average degree or betweenness centrality between the two groups, although SOZ cen-
trality values were qualitatively lower in Class > I cases in SOZ ∆ and PSZ/NSZ ∆ periods, resulting in changes 
in significance magnitude only.

Localization and direction of preictal increased connectivity.  To assess the possible functional role 
of these network changes in seizure onset, we asked whether connecting edges were located within the assigned 
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node group (SOZ, PSZ or NSZ) or directed outward to nodes in one of the other groups. For each seizure, at 
every contact in the SOZ, PSZ, and NSZ groups, and at each of the 3 time periods, we labeled each connection 
as either intergroup or intragroup and determined the proportion of intergroup and intragroup connections 
for each node. During the interictal state, a significantly (p < 0.001) higher proportion of SOZ connections were 
within their group (77.8 ± 5.3% for SOZ compared to 62.2 ± 3.5% of PSZ and 68.4 ± 4.2% of NSZ contact con-
nections), suggesting relative isolation of SOZ from PSZ and NSZ brain regions (Fig. 3A). During the SOZ ∆ 
period, the increase in connectivity among SOZ nodes is almost completely within SOZ, with intragroup con-
nections significantly (p < 0.001) increased to 91.0 ± 5.2% of SOZ connections, while PSZ (69.7 ± 4.2%) and NSZ 
(72.6 ± 5.3%) remained relatively stable. This suggests increased isolation of SOZ from PSZ and NSZ nodes as 
connectivity in the SOZ increased. In the PSZ/NSZ ∆ period, the proportion of intragroup connections dropped 
dramatically, as SOZ and PSZ/NSZ electrodes became more broadly interconnected, with 51.3 ± 4.2% of SOZ, 
36.6 ± 4.2% of PSZ, and 40.4 ± 5.0% of NSZ connections occurring within their group. Note that this increase in 
interconnection of SOZ and NSZ nodes occurred before the onset of electrographic seizure, not due to recruit-
ment of PSZ/NSZ contacts during the seizure or resulting from electrographic seizure activity.

To identify the direction of influence or driving behavior within the network, we examined how the propor-
tion of incoming vs outgoing directed connections at each node changed as a seizure approached. Incoming and 
outgoing connections are largely balanced in all three node location groups during the interictal state (Fig. 3B). 
During the SOZ ∆ phase, the proportion of outgoing connections in SOZ increases significantly (from 61.5 ± 3.2% 
to 80.5 ± 5.9%, p < 0.001), as a result of slightly decreased inputs from the surrounding PSZ and NSZ nodes as 
well as a decrease in their percent contribution relative to total SOZ connectivity, indicating increasing isolation 
of SOZ. Upon entering the PSZ/NSZ ∆ phase, there is a further significant increase in outgoing connections 
in SOZ nodes (to 85.5 ± 4.9%, p < 0.001), while significant increases in incoming connections occur in the PSZ 
(from 46.8 ± 5.5 to 70.3 ± 6.5%, p < 0.001) and NSZ (from 43.0 ± 5.0% to 58.5 ± 7.8%, p < 0.001) nodes. Together 
with the changes in intragroup-directed connectivity seen in Fig. 3A, this suggests that changes in incoming vs 

Figure 2.   Network centrality measures during preictal states. (A) Average degree centrality (DC) of SOZ, 
PSZ, and NSZ channels during the interictal state, the state from − 37 to − 9 s (after SOZ ∆ and prior to PSZ/
NSZ ∆, labeled SOZ ∆), and the state from − 8 s until − 1 s before seizure onset (after PSZ/NSZ ∆). (B) Average 
betweenness centrality (BC) for the same channel groups during the same periods before seizure. The interictal 
data for both plots include the entire interictal period (excluding the 2 h before and after a seizure), and 
were unchanged from the − 120 to − 39 s period. Boxes represent 25th to 75th percentile; whiskers represent 
minimum and maximum values. Asterisks denote significant difference by Kruskal Wallis test with post-hoc 
Dunn’s test (***p < 0.001, **p < 0.01, *p < 0.05).
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outgoing node connections during the PSZ/NSZ ∆ phase are driven by increased outgoing connectivity from 
or through hub nodes in SOZ.

A reduced connectivity model (using only the strongest 1% of connections rather than the 5% cut-off used 
in our analytical models) enables visualization of these network connections superimposed on the labeled grid 
for a single sample patient in each of the 3 putative network states (Fig. 4). During the interictal period (Fig. 4A) 
there is sparse overall connectivity with no particular relationship between SOZ, PSZ or NSZ. In the SOZ ∆ phase 
(Fig. 4B), interconnectivity within the SOZ intensifies, without affecting PSZ or NSZ regions. In the PSZ/NSZ 
∆ phase (Fig. 4C), the intensified connectivity “breaks out” from the SOZ and spreads to PSZ and NSZ nodes, 
in the final 8 s prior to seizure onset.

EEG frequency differences associated with preictal network state changes.  To determine 
whether these network structural changes were associated with specific EEG frequency characteristics, we also 
examined the frequency components of SOZ, PSZ, and NSZ electrode activity, measuring power in the canoni-
cal (8–13  Hz alpha, 13–25  Hz beta, 4–7  Hz theta, < 4  Hz delta) frequency bands during each network state. 
Significant differences in power between node location groups or interictal and preictal periods were only seen 
in the delta and gamma frequency bands. As shown in Fig. 5A, SOZ contacts had significantly higher delta band 
power than both PSZ and NSZ contacts in the SOZ ∆ and PSZ/NSZ ∆ periods (p < 0.05), with PSZ delta power 
significantly increased over prior levels in the PSZ/NSZ ∆ period (p < 0.05, Fig. 5A). Gamma band power was 
significantly elevated at SOZ contacts in the PSZ/NSZ ∆ period (p < 0.05), with smaller but significant gamma 
power increases at PSZ and NSZ contacts (p < 0.05, Fig. 5B) during this period.

Figure 3.   (A) Average percentage of intragroup network connections for each seizure over time in SOZ, 
PSZ and NSZ nodes during interictal, SOZ ∆, and PSZ/NSZ ∆ periods before seizure. Average percentage is 
reported as mean (solid bars) ± standard deviation (SD). Asterisks denote significant difference determined with 
Kruskal Wallis (p < 0.05) with post-hoc Dunn’s test. (B) Percentage of incoming vs outgoing directed network 
connections over time for SOZ, PSZ and NSZ channels during interictal, SOZ ∆, and PSZ/NSZ ∆ periods 
prior to seizure. Percent of incoming and outgoing connections is reported as mean, with hashed bars showing 
outgoing connections. Asterisks denote significant difference by Kruskal Wallis (p < 0.05) with post-hoc Dunn’s 
test.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12526  | https://doi.org/10.1038/s41598-022-16877-x

www.nature.com/scientificreports/

Discussion
In this study, we analyzed dynamic network changes in the epileptic human brain over the 2 min period just prior 
to seizure onset in drug-resistant patients undergoing intracranial EEG monitoring. We hypothesized that the 
degree of network connectivity within the clinically defined SOZ and its connection to the surrounding tissue 
would vary significantly during the transition to a preictal state just prior to seizure onset. We implemented a 
novel application of multiple input, single output (MISO) state space modelling to identify meaningful predic-
tive connections between brain regions with short duration epochs of iEEG recording, allowing a fine resolution 

Figure 4.   Directed graph visualization of network changes during the 3 preictal phases within 2 min of seizure 
onset for a single patient, mapped onto the patient’s grid placement diagram. Model shows only the top 1% 
strongest connections for clarity. SOZ electrodes are highlighted in red, PSZ in orange, and all others (NSZ) 
left uncolored. Red arrows represent directed connections. (A) Interictal connectivity graph shows low baseline 
connectivity and isolated connection clusters. (B) During the SOZ ∆ phase (− 37 to − 9 s) there is increased 
connectivity among SOZ contacts with sparse connections to outlying clusters. (C) During the PSZ/NSZ ∆ 
phase (− 8 s prior to seizure onset), greatly increased connectivity spreads to involve non-SOZ contacts.
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estimation of network structure evolution over time. Network structure changes were assessed using graph 
theoretical tools measuring degree of interconnectedness and the extent to which information flow in the brain 
is dependent on specific nodes of the network. We found that the brain network transitions through 3 distinct 
states as a seizure approaches, and that the characteristics of those states are internally consistent until transi-
tion to the next state occurs (see diagram in Fig. 6). For interictal periods, both more than 2 h before and after a 
seizure and up to 1 min prior to seizure onset, gross network structure remained consistent with low and stable 
DC and BC connectivity, hence we classified both temporally removed epochs and the period up to about 40 s 
prior to seizure onset as the Interictal state. From 40 s prior to seizure onset until electrographic seizure detection, 
we observed two distinct network-state changes. First, a “transitional state” occurs with significantly increased 
degree and betweenness connectivity within SOZ, paired with a reduction in the proportion of connections 
from PSZ and NSZ to SOZ nodes and an increase in outgoing connections from SOZ. This suggests an internally 
generated increase in connectivity in the SOZ, relatively isolated from PSZ and NSZ influence, which begins to 
be directed outward but initially does not affect connectivity levels in these regions. At the same time, between-
ness centrality in SOZ increased significantly and stably, suggesting that within SOZ itself certain “superhub” 
nodes are becoming more critical. Due to the increase in internal connectivity and relative isolation of SOZ, we 
now refer to this period as the “Isolated SOZ Hyperconnectivity” state (Fig. 6). Ictal activity was not detected 
at the macroscopic level at this time point, but asynchronous microseizures might explain the increased con-
nectivity within smaller neuronal assemblies. The network changes within this state represent alterations in the 
effective network properties that are associated with, and hence may predispose toward, seizure onset, though 
the specific physiological events that cause them are uncertain. These changes persist until about 8 s before the 
clinically determined electrographic seizure onset, at which time there is a second state change. At this time, in 
all patients and most seizures, degree connectivity significantly increased for all recording nodes, and the pro-
portion of connections between SOZ and surrounding regions increased significantly, with the majority of these 
new connections being directed connections from SOZ to PSZ and NSZ. We will now refer to this period as the 
“Pre-ictal Recruitment” state (Fig. 6). When the development of increased network connectivity projects out of 

Figure 5.   Regional canonical power band changes over time. (A) Average log (delta power) of SOZ, PSZ and 
NSZ channels during Interictal, SOZ ∆ and PSZ/NSZ ∆ periods before seizure. (B) Average log (gamma power) 
of SOZ, PSZ and NSZ channels during the same periods before seizure. Average is reported as mean (solid 
bars) ± SD (vertical bars). Asterisks denote significant difference relative to the interictal period for the same 
electrode region. Significant difference determined with ANOVA (p < 0.05).
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SOZ and induces hyperconnectivity in PSZ and NSZ nodes, this appears to provide the necessary conditions for 
seizure onset and the subsequent appearance of electrographic seizure activity on clinical EEG.

Additionally, these changes in network structure are associated with changes in the power of specific EEG 
frequency bands, with SOZ delta power increasing in the Isolated SOZ Hyperconnectivity period and both delta 
and gamma power in the Preictal Recruitment period. Increased delta power in SOZ could indicate increasing 
synchrony of neuronal “up” and “down” states21 (as seen in slow wave sleep) and related to the synchronous 
GABAergic potentials that have been observed prior to seizure onset22. The transition from Isolated SOZ Hyper-
connectivity to Preictal Recruitment might thus correlate with the failure of “inhibitory restraint” of epileptiform 
activity that occurs at seizure onset23. The increase in gamma band power in SOZ has previously been observed 
just prior to seizure onset24–28, and may have particular significance due to its potential to alter synaptic strength 
via short- or long-term potentiation29–32, which might explain the spread of connectivity from SOZ to PSZ and 
NSZ nodes.

Surprisingly, the changes in network structure that extend to PSZ and NSZ electrodes occur before the onset 
of the electrographic seizure, not during the seizure event as might be assumed based on the clinical EEG. This 
may seem contradictory to evidence at both macroscopic33–35 and microscopic23,36 levels as well as mathematical 
models37 demonstrating recruitment of epileptiform activity associated with seizure spread early in the course 
of a focal seizure. However, connectivity changes may reflect the creation of network connections sufficiently 
strong to allow the propagation of seizure activity, prior to the onset of actual epileptiform activity. This putative 
mechanism is remarkably consistent with the model proposed by Wenzel et al.38 in which seizures originate as 
hyperactive local neuronal ensembles within the initiation site (SOZ) which then engage larger areas in a saltatory 
fashion until the activity breaks into neighboring cortex, where it can be detected electrophysiologically as a local 
field potential. They proposed a two-step model for the progression of focal seizures in which neuronal ensembles 
first generate microseizures, followed by widespread neural activation in a traveling wave through neighboring 
cortex during “macro” (EEG electrographic) seizures. The “traveling wave” of seizure activity observed in both 
microscopic36 and macroscopic23 iEEG recordings may thus be propagated within the medium of increased 
connectivity established before the seizure begins. Since only macroscopic iEEG was available for the patients 
reported, we cannot address this hypothesis directly, but application of MISO models to microelectrode grid 
data might provide additional insight into seizure onset mechanisms.

An important contribution of this study is the network state transition explanation for seizure onset. Patho-
logical activity begins in the SOZ, triggering a state change to a transitional state in which SOZ local activity 
becomes increasingly dependent on the activity of adjacent nodes and isolated from the rest of the brain. In 
this isolated state, local SOZ dependence intensifies, producing high interconnectivity and, ultimately, localized 
hyper-synchronization. This state builds in intensity, suggesting an underlying intrinsic driving process within 
SOZ. When this process reaches a critical point, a second state transition occurs, which we have termed the pre-
ictal recruitment state. It then spreads outward, overwriting normal activity and manifesting as an electrographic 
seizure. Notably, this spread of dependence is detectable before clinically identifiable electrographic evidence, 
suggesting a network and pattern driven process, rather than a simple electrical “overwrite” or “recruitment” 
of independent rhythmic activity into the evolving rhythm of the seizure. This result contrasts with approaches 
that have focused on specific frequencies39–43, voltages44–48, or pathological49–51 causes, though the differences in 
delta and gamma power between SOZ and PSZ/NSZ contacts do suggest the possibility that certain frequency 
components may be involved. Because the patient pool for this study contains multiple different pathologies and 

Figure 6.   Diagram of preictal network state changes and the characteristics associated with each state. In this 
figure and the “Discussion”, we refer to the SOZ ∆ state as the “Isolated SOZ Hyperconnectivity” phase, and the 
PSZ/NSZ ∆ state as the “Preictal Recruitment” phase.
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etiologies, yet produces consistent results across all subjects, it is reasonable to suggest that while there may be a 
diverse array of dysfunctions that lead to the initial isolation of SOZ and generation of pathological activity, the 
process of focal seizure initiation and propagation may have consistent network-driven characteristics in many 
patients with focal epilepsy. In most cases, SOZ is also a region that generates interictal spike discharges52–54, 
associated with localized hyperexcitability due to recurrent excitation or loss of recurrent inhibition55–58, pro-
cesses that could drive increased localized network connectivity59. However, the mechanisms underlying the 
observed network state transitions remain unclear.

From a clinical perspective, the high betweenness centrality (BC) of particular nodes within the SOZ indi-
cates that a given node is critical to the information flow within the network. In the case of the isolated network 
identified in SOZ, our results suggest that BC within SOZ may be linked to hyperexcitable cortex necessary for 
seizure initiation and could potentially be used to target “seizure critical” or “superhub” nodes60 to maximize 
successful surgical outcomes with a smaller resected volume, or for stimulation using deep brain or responsive 
neurostimulation. Additionally, the dramatic changes in SOZ networks prior to seizure onset suggest an inde-
pendent strategy for identification of SOZ nodes, which might be useful in surgical planning. This finding also 
implies that isolation of a local cortical network from surrounding networks may play a role in epileptogenesis. 
Further work is necessary to address these possibilities.

Several limitations of this study should be noted. The inclusion of patients who experienced both successful 
and unsuccessful surgeries as subjects raises potential issues regarding channel identification, since unsuccess-
ful surgery suggests the possibility that channels may have been misidentified as non-SOZ resulting in lack of a 
surgical cure. Inclusion of “actual” SOZ channels in the PSZ or NSZ group could result in the “contamination” 
of the PSZ groups with channels better described as SOZ, or vice versa, despite the apparent lack of a significant 
overlap in results from SOZ and PSZ. However, given the robust findings of our analysis, the effect of such 
contamination appears to have been minimal. Moreover, a seizure free outcome does not guarantee that all of 
SOZ was resected; surgery may simply have eliminated critical nodes necessary for seizure initiation. Future 
investigations of pre-ictal network changes should evaluate a broader variety of patients and seizure localizations, 
including separate analysis of patients with unsuccessful surgeries. We did not stratify interictal EEG samples by 
patient state (wake vs. sleep) when the degree of network synchronization may differ, which might have altered 
network constructs, though our analysis of extended interictal EEG failed to identify any other physiologic events 
associated with similar increases in connectivity. Additionally, this analysis cannot be extended to generalized 
epilepsies, for which the underlying mechanisms may be quite different.

In summary, we find that two distinct network connectivity state changes occur in the final minute prior to 
the onset of focal seizures. This evidence suggests that seizure onset is associated not only with hyperexcitability 
and hypersynchrony, but also a third “H,” hyperconnectivity.

Methods
Dataset.  All methods were carried out in accordance with relevant guidelines and regulations. The Univer-
sity of Connecticut Institutional Review Board considers retrospective research performed on data from fully 
de-identified patients as “Exempt Research,” which does not require IRB evaluation or approval. Twenty de-
identified patients with drug-resistant epilepsy from the National Institutes of Neurological Disease and Stroke 
iEEG Portal (https://​www.​ieeg.​org/)61 were included in this study. Information about the patients’ epilepsy etiol-
ogy, iEEG recording setup, and surgical outcome are reported in Supplementary Table 1. Patients were selected 
based on three criteria, (i) a clinical report available on the iEEG Portal with information about the epilepsy 
etiology, type of seizure, and the clinically determined SOZ62,63; (ii) minimum duration of two continuous days 
of multichannel iEEG recording; and (iii) consistent sampling rate to enable homogenous analysis. All iEEG 
recordings were sampled at 512 Hz and patients were monitored for 2–7 consecutive days. The clinically deter-
mined SOZ channels were as marked by the original board-certified epileptologist who managed the patients, 
and were used as the standard for channel classification, irrespective of surgical outcome. Electrode contacts on 
the same grid, depth or strip electrode that were adjacent to SOZ electrodes were analyzed as peri-SOZ (PSZ), to 
assess changes in sampled brain regions neighboring the SOZ. All other electrode contacts were considered non-
SOZ (NSZ). When more than one intracranial investigation was performed, only the final electrode placement 
and associated seizures were analyzed. A small number of seizures were excluded as too brief (< 15 s) for analysis.

Patient reports on the iEEG Portal describe a variety of seizure localizations and etiologies. Four patients 
had seizure onset within the temporal lobe, 5 in temporal lobe plus other neocortical regions, and 11 had extra-
temporal epilepsy (10 frontal, 1 parietal). Eleven of 20 were left-hemisphere. Seven had a known etiology (3 
meningitis, 3 traumatic brain injury, 1 dysplasia) and 13 had cryptogenic epilepsy. A total of 3382 h of continuous 
iEEG recordings were analyzed, an average of 169.1 ± 100.4 h (mean ± SD) per patient (min: 48 h; max: 314 h). 
Depth, strip and grid electrodes were placed according to the clinical hypothesis, with an average of 79.9 ± 17.2 
electrode contacts per patient (range 52–104, see Supplementary Table S1 and Fig. S1). Assignments of electrodes 
to SOZ, PSZ and NSZ categories are listed in Supplementary Table S2. A total of 143 seizures were analyzed, 
an average of 7.2 ± 6.2 per patient (range 1–26 events). The clinically determined SOZ spanned an average of 
8.15 ± 3.56 electrode contacts per patient (median = 7), which correspond to an average of 10.2 ± 3.9% of the 
number of electrode contacts per patient. An average of 12.75 ± 5.24 electrodes per patient were designated as 
Peri-SOZ (PSZ, 15.69 ± 5.78%). Twelve patients underwent epilepsy surgery, of whom 8 became seizure-free 
(Engel or ILAE Class 1 outcomes), 3 had significant improvement (ILAE Class 4) and one had no improvement 
(ILAE Class 5).

EEG analysis.  Preprocessing and network estimation.  Individual iEEG time series were processed by 60 Hz 
notch filtering, band-pass filtering between 0.5 and 256 Hz with a 10th order Butterworth filter, and common 
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average mode montage correction. For each seizure event, as identified from clinical notes, the two minutes prior 
to seizure was divided into a series of 120 ten-second epochs advanced with a sliding 1 s window for analysis. To 
ensure that other physiological events (e.g. arousals from sleep) did not also alter network structures, the entire 
interictal record for all patients (excluding the periods from 2 h before to 2 h after each seizure) was analyzed us-
ing the same method, a total of 163,082 distinct models covering 453 h or 18.9 days of recording. For each epoch, 
a directed network graph was estimated using multi-input, single-output state space models.

Temporal evolution of EEG series.  To estimate the epileptogenic effective network and quantify changes 
in the network connectivity over time, we envisioned the iEEG time series yk(t) at any contact k, with k = 1, 2, 3, 
…, N, as the output of a dynamical system driven by the activity at all iEEG contacts. We modeled each contact 
as a linear time-invariant multi-input, single-output system:

where xk(t) is a m-dimensional column that captures the internal state of the brain region sampled by the iEEG 
contact k at time t, Y(t) is the 1 × N row vector of iEEG samples at time t (one sample per contact), ek is measure-
ment noise (assumed to be a Gaussian process with zero-mean), and matrices Ak (size: m × m), Bk (size: m × N), 
and Ck (size: 1 × m) are parameters to be estimated.

The estimation of parameters (Ak, Bk, Ck,) was conducted separately for every iEEG contact k during each 
epoch using a least-squares method with QR factorization for multiple values of m using a cross-validation 
method, i.e., for each epoch and iEEG contact, parameters were estimated on the first 80% (8 s) of the iEEG time 
series of interest and the goodness-of-fit of the resultant model was measured on the remaining 20% (last 2 s 
of the 10 s window). A model was accepted and estimated parameters were used if the residuals yk(t) – Ckxk(t) 
estimated for the test data passed the test for whiteness and independence at 95% confidence (p < 0.05). Since 
the size m of the internal state xk(t) determines the complexity of model (1), and high values of m may result 
in data overfitting, we finally chose m by minimizing the average Akaike Information Criterion (AIC)64 index 
estimated across all iEEG contacts, epochs, and conditions. Models of identical size were used for every contact, 
epoch, or condition, facilitating comparison while preventing overfitting.

Evaluation of B matrices to determine network connectivity.  Parameters for the MISO SS model 
are found by iterative minimization of next-step prediction error, resulting in a model that accurately represents 
the electrographic behavior of the system based on its internal state matrix Ak, previous timepoint activity xk(t), 
and the weighted Bk influence of the activity at all other electrodes Y(t). We then can interrogate relationships in 
the system by examining the parameter matrices. In particular, the input matrix Bk represents a set of weighting 
factors that describes the extent to which next-step k + 1 activity at the given electrode is dependent on the activ-
ity of corresponding entries in the input vector Y(t). It follows that high magnitude values in the input matrix 
Bk are associated with specific input vectors (activity at other electrodes) that have a high degree of influence 
on the electrographic output at the given channel. From this, we can infer that these channels have a significant 
causal/driving connection to the given output channel. This relationship can be expressed as a simple network 
of directed connections to that channel. We then repeat the MISO SS model estimation for each iEEG channel 
independently, resulting in a set of simple, single sink networks capturing the causal connections to that sink, 
the output channel of interest. By combining each output channel network into a unified network that includes 
all of the sampled channels, we can fully capture the directed causal connections in the recorded area, producing 
an effective connectivity network for a given time point. By iterating this process over time, we generate a time-
varying effective network, which can be quantified at each time point by graph theoretical analysis.

For every condition, matrices Bk, k = 1, 2, 3,…, N in (1) were used to define the connectivity between contacts 
and retrieve the current effective network. Specifically, the Euclidean norm bkj � ‖bk,j‖2 of column vector bk,j 
measured the magnitude of the influence of contact j on the activity (or the internal state driving the activity) at 
contact k and was used as a measure of the effective connectivity from j to k ( j → k ). Similarly, bjk was used as 
a measure of the effective connectivity from contact k to contact j ( k → j ) and resulted in bjk  = bkj . The N × N 
matrix B̂ = {bij}1≤i,j≤N was non-symmetric and defined the oriented graph that characterizes the brain network 
captured by the magnitude of directed influence bkj. Sequential 10-s windows sliding at 1 s intervals were used 
to estimate B̂ matrices for the two minute periods prior to each seizure event (120 separate models per seizure) 
and additional models were estimated at 1 s intervals for the entire interictal period excluding the two hours 
before and after each seizure. Matrices B̂ were pruned of nonsignificant elements by computing the sample prob-
ability distribution function of values bkj across all matrices B̂ for all patients and retaining those values above 
the 95th percentile, while the remaining values were set to zero. After pruning, matrices B̂ were generally sparse 
and retained strong links between nodes, with a clear indication of the nodes that drove the network evolution 
in each condition. Larger values of bkj indicate a larger influence of the corresponding node. Relative changes 
in connection strength between nodes were not assessed, since only strong connections were included in final 
connectivity graphs.

Network analysis.  The topology of the oriented networks was used to assess the effects of the approach-
ing seizure on network structure. The topology was quantified using two metrics: degree centrality (DC) and 
betweenness centrality (BC). DC and BC measure the average density of connections to a node (DC) and the 
number of hubs in the network (BC), respectively. Accordingly, higher values of DC or BC indicate networks 
whose nodes are more densely connected (DC) or networks whose nodes are largely connected through a hand-

(1)
ẋk = Akxk(t)+ BkY(t)

yk(t) = Ckxk(t)+ ek(t)
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ful of nodes (i.e., hubs) that receive many connections and project onto many nodes (BC), respectively. Using 
the directed nature of the connections estimated with our method, we calculated the proportion of connections 
that were incoming vs outgoing from each node, separated by channel group, to identify changes in whether a 
group was driving or being driven by the activity of other nodes. Additionally, to determine whether observed 
state changes were associated with overt changes in the EEG frequencies recorded at SOZ or other electrodes, 
we used Fast Fourier Transform (FFT) to analyze power of canonical frequency bands at SOZ nodes vs PSZ and 
NSZ nodes during three preictal time periods found to have distinct network characteristics suggesting differing 
network states, as reported.

Statistical analysis.  Statistical differences for DC and BC were determined using the nonparametric 
Kruskal–Wallis test with Dunn’s multiple comparisons post-hoc testing and rejected at the 95% confidence level 
(p < 0.05), where the preceding epoch/control epoch and contact type (SOZ or NSZ) were the variables. Pre-
processing routines, model estimation, network, and classification analysis were computed in MATLAB, ver. 
2021b (Mathworks, Natick, MA), implemented using locally developed programming, with additional statistical 
analysis and figures produced using Prizm 5.0 (Graphpad Software, San Diego, CA).

Data availability
All data analyzed for this paper is publicly available on the iEEG Portal (https://​www.​ieeg.​org/). This site requires 
the user to create an account and state the purpose of their interest in the data. There are no restrictions to access 
after a login account has been created. The patient identification numbers are unchanged from those used on 
the iEEG portal website.
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