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Predicting habitat suitability 
and niche dynamics of Dactylorhiza 
hatagirea and Rheum webbianum 
in the Himalaya under projected 
climate change
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In the era of anthropocene, global warming tends to alter the distribution range of the plant species. 
Highly fragile to such changes are the species that are endemic, inhabit higher elevations and show 
narrow distribution ranges. Predicting and plotting the appropriate suitable habitats and keeping 
knowledge of how climate change will affect future distribution become imperative for designing 
effective conservation strategies. In the current study we have used BIOMOD ensemble forecasting 
to study the current and predict the future potential distribution of Dactylorhiza hatagirea and Rheum 
webbianum and describe their niche dynamics in Himalayan biodiversity hotspots under climate 
change scenarios using ecospat R package. Results reveal sufficient internal evaluation metrics with 
area under curve (AUC) and true skill statistic (TSS) values greater than 0.8 i.e. 0.93 and 0.98 and 
0.82 and 0.90 for D. hatageria and R. webbianum respectively, which signifies robustness of the 
model. Among different bioclimatic variables, bio_1, bio_3, bio_8, bio_14 and bio_15 were the most 
influential, showing greater impact on the potential distribution of these plant species. Range change 
analysis showed that both the studied species will show significant contraction of their suitable 
habitats under future climatic scenarios. Representative Concentration Pathway (RCP) 8.5 for the 
year 2070, indicate that the suitable habitats could be reduced by about 51.41% and 70.57% for D. 
hatagirea and R. webbianum respectively. The results of the niche comparisons between the current 
and future climatic scenarios showed moderate level of niche overlap for all the pairs with D. hatageria 
showing 61% overlap for current vs. RCP4.5 2050 and R. webbianum reflects 68% overlap for current 
vs. RCP4.5 2050. Furthermore, the PCA analysis revealed that climatic conditions for both the species 
vary significantly between current and future scenarios. The similarity and equivalence test showed 
that the niche between present and future climate change scenarios is comparable but not identical. 
From the current study we concluded that the influence of climate change on the habitat distribution 
of these plant species in the Himalayan biodiversity hotspots can be considered very severe. Drastic 
reduction in overall habitat suitability poses a high risk of species extinction and thereby threatens 
to alter the functions and services of these fragile ecosystems. Present results can be used by 
conservationists for mitigating the biodiversity decline and exploring undocumented populations 
on one hand and by policymakers in implementing the policy of conservation of species by launching 
species recovery programmes in future on the other. The outcomes of this study can contribute 
substantially to understand the consequences of climate change in the Himalayan biodiversity 
hotspots.
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The Himalaya are the highest and the youngest mountainous landscapes of the world and are recognized as 
the global biodiversity  hotspots1. They represent a rich repository of biodiversity due to varied ecological, bio-
geographical and evolutionary factors that favour high endemic  biodiversity2. Greater diversity of altitude, rainfall 
and soil conditions generates a variety of eco-regions, harbouring about 10,000 plant species among which 3160 
are  endemic3. Climate change effects are experienced by all types of ecosystems and species, but the Himalayan 
ecosystems are highly vulnerable to natural hazards, that leads to raising concerns about climate change impacts 
on the biodiversity of these  regions4–6. According to many model-based estimates of climate change impacts on 
plant diversity, mountain ecosystems may be among the most susceptible of all terrestrial ecosystems because 
their floristic composition is generally limited by low  temperatures7–9. Besides climate change is expected to 
shift the plant species towards increasing dominance of warm-adapted species and loss of cold adapted species 
(thermophilization)10. The climate induced warming in the Himalaya is experiencing faster rates (0.06 °C/year) 
than predicted for the other regions of the  world11–13, raising the likelihood of species extinction in these vulner-
able regions. Analyses of temperature trends have shown that temperature increases are greater at the higher 
altitudes than in the  lowlands14. Studies suggest that a 0.3 °C rise in global mean temperature per decade will 
result in potential rise of the global mean surface temperature of about 1–3.5 °C by  210015. Each 1 °C of tempera-
ture change moves ecological zones on Earth by about 160 km, i.e., if the climate warms by 4 °C over the next 
century, plant species have to migrate some 500 m higher in altitude to find a suitable habitat with appropriate 
climatic  conditions16. Evidence of the sensitivity of alpine habitats is provided by shifts in the altitudinal-range 
margins of plant species and bioclimatic zones in the past 50 years, with upward displacement of 120–340 m for 
tree and woody shrub  species17 and upward migration of alpine and nival plant species at a rate of 8–10 m per 
 decade18,19. Plant species within alpine habitats are at greater risk than lower altitudes for habitat loss. Reports 
reveal that 36–55% of alpine species, 31–51% of subalpine species, and 19–46% of alpine species will lose more 
than 80% of their suitable habitat by 2070–2100 due to climate  change20. On account of global warming and 
changes in precipitation pattern, appropriate habitats for several high-altitude plant species could be severely 
altered or vanished by the end of twenty-first  century21–23. As a result, it has been proposed that the application 
of distribution models to determine the extent of species occurrence should be the central concept of different 
biodiversity assessment and conservation  schemes24,25.

Data analysis and statistical tools, such as species distribution models (SDMs) are significant tools that inte-
grate presence and pseudo-absence data with abiotic  data26,27. To achieve ecological and biological management 
of different species, SDMs hold a prime repute in predicting their geographic  distribution5. Differences among 
various SDM algorithms make it challenging to choose the best  model26–28. To overcome this issue, the ensemble 
modelling (ENM) approach using BIOMOD serves as a suitable platform to examine the distribution range of 
species and how it could alter as a result of climate  change29,30. BIOMOD combines together various statistical 
and machine learning methods to improve habitat suitability  estimation31–33. Statistical methods, such as mul-
tivariate adaptive regression spline (MARS), the flexible discriminant analysis (FDA), the generalized linear 
model (GLM) and machine-learning methods, such as classification tree analysis (CTA), maximum entropy 
(MaxEnt), the generalized boost model (GBM), artificial neural network (ANN), random forest (RF), examines 
the different linear associations between environmental layers and species distributions. Detailed description of 
the algorithms is provided in Table 1. In order to evaluate the impact of climate change on species distribution, 
Representative Concentration Pathways (RCPs) which determine the probable emission of greenhouse gases 
and air pollutants in the atmosphere must be considered for different time scenarios (RCP 4.5 and 8.5 for 2050 
and 2070) to provide trajectories for climate  change34–39. The main aim of developing the RCPs is to generate the 
information related to possible development of trajectories for the main forcing agents that are the primer drivers 
of climate change, in consistent with current scenario. This allows subsequent analysis by both Integrated Assess-
ment Models (IAMs) and Climate models (CMs). The time series of RCPs that represent future concentrations 
and emissions of greenhouse gases and air pollutants and land-use change will be used by climate modellers to 
undergo new experiments related to climate change and produce new climate  scenarios40.

In the current study, we have tried to map the present and future distribution of two threatened medicinal 
plants (D. hatagirea and R. webbianum) across the entire range of Himalayan biodiversity hotspots by utilising 

Table 1.  Overview of the algorithms of BIOMOD modelling technique used for determining the habitat 
suitability.

Models Descriptions Category References

Generalized Additive Model (GAM) It is based on the relation between random and systematic component Statistical regression 41

Multivariate Adaptive Regression Spline (MARS) It generates a number of linear regression models spanning a wide range of predictor 
values Statistical regression 42

Flexible Discriminant Analysis (FDA) It is a classification approach that uses a combination of linear regression models Statistical regression 32

Generalized Boosting Model (GBM) It is built using a combination of decision tree algorithms and boosting techniques Machine learning 43,44

Maximum Entropy (MAXENT) It is used to make prediction from incomplete knowledge Machine learning 45,46

Random Forest (RF) It forms a set of decision trees using bootstrap aggregation Machine learning 47,48

Classification of Tree Analysis (CTA) It is a supervised non-parametric statistical classification approach that is based on binary 
recursive partitioning techniques Machine learning 44,49

Artificial Neural Network (ANN) It is based on non-linear mapping structures inspired on the biological system of the brain Machine learning 50,51

Surface Range Envelope (SRE) It is a technique that is based on environmental conditions of occurrence points Profile 52,53
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the BIOMOD Ensemble modelling approach. Their niche dynamics was performed using Ecospat package in 
R  software54. Our target species are the typical alpine to sub-alpine species which are endemic to Himalayan 
mountains. Until now, distribution modelling approaches for D. hatagirea have been performed at local scale 
which is focused on the current distribution pattern and is based on single algorithms i.e.,  MaxEnt55–57. For 
Rheum webbianum no such studies have been conducted so far. In particular, the aim of this study is to assess the 
potential habitat distribution of these species under current and future climatic conditions. This study will also 
help us to delineate the range contraction or expansion of suitable habitats and to assess the impact of potential 
climatic change on their niche overlap between current and future climatic scenarios. Keeping in view the threat 
status of these plant species (Table 2), current study could be more appropriate as far as conservation plans for 
these Himalayan endemic species are concerned. These studies will not only facilitate the researchers to explore 
their new locations but will also be helpful to different stakeholders, NGOs and conservation biologists to restore 
their degraded habitats.

Results
Habitat suitability. Model evaluation. The final ensemble models produced had an AUC value equal to 
0.93 and 0.98 and TSS values equal to 0.82 and 0.90 for Dactylorhiza hatageria and Rheum webbianum, respec-
tively (Table 3). Both of these scores suggest that the final models were robust in predicting the distribution of 
the studied species.

When compared at the individual algorithm level, the predictive accuracy was excellent, but varied with 
Generalised Boosted Models (GBM), Random Forest (RF), Generalised Linear Model (GLM) performing fairly 
well, followed by Maxent Phillips (MaxEnt), Flexible Discriminant Analysis (FDA) and Artifical Neural Network 
(ANN), while as the algorithms such as Generalized Additive Model (GAM), Classification of Tree Analysis 
(CTA) and Surface Range Envelope (SRE) showed lowest accuracy when compared to rest of the algorithms used 
for Dactylorhiza hatageria (Fig. 1A). Similarly, in case of Rheum webbianum, the algorithms GBM, RF, GLM 
and MaxEnt achieved the highest accuracy, followed by FDA, while as CTA, SRE, ANN and GAM performed 
relatively lowest when compared to rest of the algorithms (Fig. 1B).

Variable importance. The importance of selected predictor variables showed greater variation across differ-
ent algorithms. More specifically in case of Dactylorhiza hatageria the most influential variables were bio_08 
(Mean Temperature of Wettest Quarter) with importance scores ranging from 0.26 and 0.84 followed by bio_01 
(Annual Mean Temperature) with importance scores ranging from 0.16 to 0.59 and bio_03 (Isothermality) with 
importance scores ranging from 0.12 to 0.60. The remaining variables varied in their responses across differ-
ent algorithms and thus their contribution in governing the species potential distribution varied to a greater 
extent. For Rheum webbianum, bio_15 (Precipitation Seasonality) was the most important contributing variable 
in determining the species distribution with importance scores ranging from 0.01 to 0.85 followed by bio_14 
(Precipitation of Driest Month) and bio_12 (Annual Mean Precipitation) with importance scores ranging from 
0.02 to 0.8 and 0.04–0.73, respectively (Table 4).

Current distribution. The Himalayan range extends over to seven Asian countries including India. In 
India, it is spread over to 11 states and 2 UTs (J&K and Ladakh) occupying an area of (approx.) 2500  km2 (Fig. 2). 
The ensemble model run for the Himalaya showed that under current climatic conditions North-western parts 
of Jammu and Kashmir and Ladakh UT’s (Ganderbal, Srinagar, Pulwama, Anantnag, Baderwah, Dras, Kargil 
and Leh), Himachal Pradesh (Hamirpur, Kangra, Bilaspur, Mandi and Solan) and Uttarakhand (Gharwal, Deh-
radun, Pauri, Haridwar, Bageshwar, Pitthogarh and Almora), northern part of Pakistan bordering Afghanistan 
(Gilgit, Chitral, Skardu and Muzzafarabad) and north western parts of Nepal (Simikot, Jumla, Mustang, Pokhra, 
Nawakot, Gurkha, Ramechapp, Kodari, Rasua and Garhi districts) possess highly suitable and optimal climatic 
conditions for the growth of Dactylorhiza hatageria. On the other hand, central part of Nepal (Dharan, Ilam, 

Table 2.  Threat status of the plant species under study.

Plant species Vernacular same Threat status References

Dactylorhiza hatagirea Himalayan Marsh Orchid Critically endangered 58,59

Rheum webbianum Himalayan Rhubarb Endangered 60

Table 3.  Final AUC (ROC) values of Dactylorhiza hatagirea and Rheum webbianum. 

Species

Final Ensemble values

Testing data Cut off Sensitivity Specificity

D. hatagirea
AUC 0.93 663.7 91.1 90.9

TSS 0.82 682.6 91.6 90.2

R. webbianum
AUC 0.98 482.2 89.9 88.43

TSS 0.90 471.1 89.7 87.7
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Amlekghani, Janakpur and Tulsipur) are moderately suitable, while as the central and southern parts of Bhutan 
(Damphu, Sarpang and Samtse) and Sikkim (Phyaktok, Yathang, Kishong, Chungthan), central and north east-
ern parts of Arunachal Pradesh (Tezu, Lohit, Namsai, Changlang, Roing and Psighat) show low suitability for 
Dactylorhiza hatageria (Fig. 3A).

For Rheum webbianum, western part of Himalayan biodiversity hotspot, covering the north-west areas of 
India such as Himachal Pradesh (Shimla, Kullu, Kinnaur), Jammu and Kashmir (Rajouri, Poonch, Kishtwar, 
Ganderbal, Budgam, Baderwah, and Bandipora), central Uttarakhand (Pauri, Chamoli, Tehri, Bagheshwar and 
Nanital), north Pakistan (Shandur top, Naltar valley, Tarashing, Rupal, Gilgit-Balochistan, Skardu and Astore 
valley) and north western and central parts of Nepal (Salyan, Silgarhi, Baitad, Gurkha, Baglung and Pyuthan) 
are highly suitable and optimal climatic conditions for its growth under current climatic conditions, while as 
northern parts of Uttarakhand and Nepal possess moderate suitability and southern parts of Jammu and Kashmir 
(Pulwama, Shopian, Anantnag), Himachal Pradesh (Sirmuar and Solan), Uttarakhand (Udham Singh Nagar, 
Champawat and Nanital) and eastern part of Nepal (Biratnagar and Dhankuta), northern parts of Bhutan (Bum-
tang and Gasa) and Sikkim (Thangu Valley, Yumthang and Lachung) and southern part of Myanmar (Dawei and 
Mawlamyine) show low suitability for its growth (Fig. 3B).

Figure 1.  Mean model evaluation scores by algorithms according to two different evaluation metrics, Receivers 
Operating Characteristic Curve (ROC) and True Skill Statistics (TSS) for (A) Dactylorhiza hatageria (B) Rheum 
webbianum. 

Table 4.  Overall and algorithm wise importance scores of the selected bioclimatic variables for Dactylorhiza 
hatagirea and Rheum webbianum. 

Plant species Variable GLM GBM GAM CTA ANN SRE FDA RF MP

Dactylorhiza hatagirea

bio_01 0.34 0.19 0.60 0.16 0.59 0.35 0.29 0.18 0.49

bio_02 0.14 0.08 0.49 0.03 0.26 0.27 0.06 0.06 0.12

bio_03 0.12 0.09 0.60 0.45 0.14 0.06 0.45 0.13 0.19

bio_08 0.30 0.26 0.70 0.36 0.84 0.30 0.66 0.13 0.36

bio_12 0.10 0.03 0.45 0.08 0.49 0.18 0.16 0.06 0.14

bio_14 0.17 0.11 0.42 0.33 0.40 0.15 0.06 0.28 0.36

Rheum webbianum

bio_01 0.09 0.03 0.56 0.00 0.34 0.34 0.37 0.03 0.18

bio_03 0.31 0.11 0.66 0.08 0.15 0.49 0.48 0.18 0.29

bio_07 0.09 0.04 0.51 0.00 0.25 0.37 0.07 0.04 0.27

bio_08 0.16 0.07 0.58 0.05 0.38 0.40 0.71 0.06 0.34

bio_12 0.44 0.18 0.73 0.04 0.40 0.39 0.04 0.06 0.35

bio_14 0.26 0.10 0.80 0.02 0.19 0.35 0.04 0.10 0.39

bio_15 0.30 0.35 0.57 0.85 0.43 0.57 0.01 0.10 0.34
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Figure 2.  Map of the Himalaya showing the regions of different countries (shape file of the Himalaya extracted 
in Arc GIS 10.2, Environmental System Research Institute, 2011 https:// www. arcgis. com).

Figure 3.  Plot showing the geographic projections of ensemble models for (A) Dactylorhiza hatageria and 
(B) Rheum webbianum under current climatic conditions. The habitat appropriateness class is represented by 
a scale ranging from 0 to 1000, with 0 denoting the absence of the species, 200–400 represent the habitats with 
least suitability, 400–600 denoting marginally suitable areas, 600–800 denoting moderately suitable areas, and 
800–1000 represent the areas with extremely high habitat suitability.

https://www.arcgis.com
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Future potential distribution. For Dactylorhiza hatageria, there will be a decrease in habitat suitability 
under all the future climate change scenarios. However, some of the currently suitable areas will consistently 
remain suitable under future climates also and include most of the western Himalaya (northern Pakistan and 
northwest regions of India—Jammu and Kashmir, Himachal Pradesh and Uttarakhand), north western, central 
and south eastern parts of Nepal, and southern parts of Bhutan, Sikkim, Arunachal Pradesh and Myanmar 
(Fig. 4A–D).

A decrease in the habitat suitability is predicted for Rheum webbianum under the future climatic conditions. 
However, some of the areas that will remain suitable under future climates include most of the western Himalaya 
(northern Pakistan and northwest regions of India—Jammu and Kashmir, Himachal Pradesh and Uttarakhand) 
and northern parts of Nepal (Fig. 5A–D).

Species range change. The results of the range change analysis showed that both the studied species will 
undergo significant range changes under future climatic conditions. This range change will be governed mostly 
by the loss suitable habitats in the future. More specifically, for Dactylorhiza hatageria, the suitable habitat could 
be reduced by about 28.07% (under RCP4.5 2050), 30.29% (RCP4.5 2070), 31.55% (RCP8.5 2050) and by about 
51.41% under RCP8.5 for the year 2070 (Table 5). The areas that are likely to become unsuitable in the future are 
mostly located towards southern part of Pakistan, central and southern parts of Jammu and Kashmir, Himachal 
Pradesh and Uttarakhand, northern, western and central parts of Nepal, southern parts of Bhutan and Myanmar 
(Fig. 6A–D). In contrast, some of the currently unsuitable areas become suitable under future climate with a 
range expansion of 0.08% (under RCP4.5 2050), 0.36% (RCP4.5 2070), 0.13% (RCP8.5 2050) and 0.07% (under 
RCP8.5 2070) (Table 5) and include mainly the central part of Nepal (Fig. 6A–D).

For Rheum webbianum, the suitable habitat could be reduced by about 44.39% (under RCP4.5 2050), 53.49% 
(RCP4.5 2070), 48.50% (RCP8.5 2050) and by about 70.57% under RCP8.5 for the year 2070 (Table 6). The areas 
which are likely to become unsuitable for this species in the future include major parts of northern Pakistan, 
Jammu and Kashmir, Himachal Pradesh and Uttarakhand (Fig. 7A–D). In contrast, some of the currently unsuit-
able areas will become suitable under future climate with a range expansion of Himalaya 0.004% (under RCP4.5 
2050), 0.02% (RCP4.5 2070), 0.006% (RCP8.5 2050) including mainly the western parts of Pakistan, Eastern 
Himalaya of India and central Nepal (Fig. 7A–D).

Niche overlap. The results of the niche comparisons between the current and future climatic scenarios of 
Dactylorhiza hatageria revealed that there was moderate level of niche overlap for all the pairs and ranged from 
39% (Schoener’s D = 0.39) for current vs. RCP8.5 2070 to 61% (Schoener’s D = 0.61) for current vs. RCP4.5 2050 

Figure 4.  (A–D) Plot of the predicted habitat suitability for Dactylorhiza hatageria under future climate change 
scenarios.
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(Fig. 8A–D; Table 7). The principal component analysis revealed that the variation retained by principal compo-
nent 1 (PC1) ranged from a minimum of 48.99% in case of current vs RCP 8.5-2050 comparison to a maximum 
of 49.63% for current vs RCP4.5 2070 comparison (Fig. 8A–D; Table 7). Similarly, for principal component 2 
(PC2), the variation retained ranged from a minimum of 33.66% for current vs RCP4.5 2070 comparison to a 
maximum of 34.80% for current vs RCP8.5 2050 (Fig. 8A–D; Table 7). Further, for each of the pair wise com-
parisons between the species climatic niche under current and future climatic scenarios, the null hypotheses for 
niche equivalency were not rejected in any of the pairwise comparison (P > 0.05). In contrast, the niche similarity 
test for the null hypothesis was rejected only in case of current vs RCP8.5 2070 comparison (Fig. 8A–D; Table 7).

For Rheum webbianum, the niche comparisons between the current and future climatic scenarios once again 
showed moderate degree of niche overlap for all the pairs and ranged from 52% (Schoener’s D = 0.52) for current 
vs. RCP8.5 2070 to 68% (Schoener’s D = 0.68) for current vs. RCP4.5 2050 (Fig. 9A–D; Table 8).The principal 
component analysis revealed that the variation retained by principal component 1 (PC1) ranged from a minimum 
of 45.54% in case of current vs RCP4.5 2070 comparison to a maximum of 46.19% for current vs RCP8.5 2050 
comparison (Fig. 9A–D; Table 8). Similarly, for principal component 2 (PC2), the variation retained ranged from 
a minimum of 31.61% for current vs RCP8.5 2070 comparison to a maximum of 31.89% for current vs RCP4.5 
2070 (Fig. 9A–D; Table 8). Once again, for each of the pair wise comparisons between the species climatic niche 
under current and future climatic scenarios, the null hypothesis for niche equivalency was not rejected in any 
of the pairwise comparison (P > 0.05). On the other side, the niche similarity test for the null hypothesis was 
rejected in all the cases (P < 0.05) (Fig. 9A–D; Table 8).

Figure 5.  (A–D) Plot of the predicted habitat suitability for Rheum webbianum under future climate change 
scenarios.

Table 5.  Summary of the range change statistics for Dactylorhiza hatagirea under climate change scenarios 
compared to current climatic conditions.

Scenario Loss Absent Stable Gain Loss (%) Gain (%) Range change (%)

RCP4.5 2050 41,048 794,652 105,204 125 28.07 0.08 − 27.98

RCP4.5 2070 44,294 794,255 101,958 522 30.29 0.36 − 29.93

RCP8.5 2050 46,147 794,588 100,105 189 31.55 0.13 − 31.42

RCP8.5 2070 75,190 794,676 71,062 101 51.41 0.07 − 51.34
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Discussion
Increased global earth temperature and significant alterations in the precipitation  pattern61 tend to modify 
the habitat and distribution range of plant species; thereby subjecting them towards greater risk for their 
 extinction62,63. Endemic species with narrow distribution range, greater anthropogenic intimidation, smaller 
population structure and greater habitat specificity could be highly vulnerable to alterations in their distribution 
range and to degradation or loss of their habitat in near  future64–67. Forecasting the current and future distribu-
tion range through Species distribution modelling (SDMs) is crucial to design different strategic management 
practices for habitat conservation and  management68,69. With increasing data availability due to technological 
advancements in SDMs, ensemble modelling can be a reliable  technique70. Combining and averaging models 
using the ensemble approach is thought to reduce model uncertainty and increase its robustness in modelling 
species distributions  accurately70. The current work is the upgraded modelling of D. hatagirea and R. webbianum 
for current and future distribution by using an ensemble model developed in the biomod2 package in R. Besides, 
predicting the extent and rate of potential range expansion/contraction and studying the niche dynamics of these 
species under current and future scenarios is the novelity of this work. The present study area is topographically 
diverse and thus to cover the heterogeneity of the region upto greater extent, the highest spatial resolution data 
at 1  km2 was used. In mountainous and other areas with steep climate gradients, data at a high (≤ 1  km2) spatial 

Figure 6.  (A–D) Plot of the predicted range changes for Dactylorhiza hatageria between current and future 
climatic conditions. (A) Current VS RCP 4.5 (2050) (B) Current VS RCP 8.5 (2050) (C) Current VS RCP 4.5 
(2070) (D) Current VS RCP 8.5 (2070). In scale, black color shows the areas where habitat suitability is predicted 
to be lost in the future, purple color shows the regions that maintain the habitat suitability in the future climatic 
scenarios, red color shows the regions where the species is absent while olive color in the scale represents the 
areas where newly suitable habitats are predicted to appear in the future climate scenarios.

Table 6.  Summary of the range change statistics for Rheum webbianum under climate change scenarios 
compared to current climatic conditions.

Scenario Loss Absent Stable Gain Loss (%) Gain (%) Range change (%)

RCP4.5 2050 35,893 860,172 44,961 3 44.39 0.004 − 44.39

RCP4.5 2070 43,249 860,157 37,605 18 53.49 0.022 − 53.47

RCP8.5 2050 39,213 860,170 41,641 5 48.5 0.006 − 48.49

RCP8.5 2070 57,059 860,175 23,795 0 70.57 0 − 70.57
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resolution are preferred for many applications to capture environmental variation that otherwise can be lost at 
lower spatial  resolutions71,72.

The actual niche of the species is generally smaller as compared to the area predicted through model-based 
predictions, because the climatic variables are not only the sole determinants of habitat  suitability73. Different 
biotic and edaphic factors act as limiting variables and provide a subtle role to govern the habitat distribution 
of a  species74. It is of utmost significance to point out that when niche modelling is performed for greater geo-
graphical areas, climate is usually regarded as the most significant driver of species  occurrence75,76. Our findings 
reveal that temperature-based variables (Annual mean temperature, Isothermality, Mean temperature of wettest 
quarter) gained higher values for predicating the distribution of D. hatagirea. Under future climatic scenarios, 
the plausible explanation for the habitat contraction is that the climate change is expected to replace cold adapted 
species with warm adapted ones (thermophilization)10. Being sub-alpine plant, D. hatagirea is highly suscep-
tible to warming and may show migration towards alpine regions as is revealed by slight increase of its habitat 
suitability in the future. Variable bio_8 (Mean temperature of wettest quarter) corresponds to the juvenile stage 
of D. hatagirea during which majority of the developmental processes occur within the underground perrenat-
ing  rhizome77,78. Under the impact of climate change, increased temperature and earlier melting of snow can 
lead to earlier, but not necessarily more plant growth due to enzymatic malfunctioning that put constrains in 
their developmental  pathway79. Temperature related changes in the phenology affect the dispersal ability of the 
plants and can thus decrease their habitat suitability in the  future80,81. Reports have shown that there has been 
a significant increase in the annual mean temperature and mean temperature of wettest quarter in the western 
and north western  Himalaya82–84.

Winter determines the length of the snow-free season as well as the state of soil and plants at the start of the 
growing  season85. Plant growth takes place in summer, yet snow cover is equally important in development and 
morphogenesis of plant communities in alpine and sub-alpine  ecosystems86. The impacts of warming are reported 
to be more substantial in winter as compared to other seasons in most parts of the  Himalayas87. Prediction based 
estimates reveal that most of the Himalayan glaciers are subjected to loss in volume and mass under the effect 
of rising  temperatures88. Consequently, several regions exhibited declining trends in snowfall and retreating 
glaciers during the recent decades while the higher elevations, experienced increased wintertime  precipitation89. 
Precipitation-based variables are predicted to be the most influential variables determining the distribution of R. 
webbianum. Climate change decrease the precipitation of the driest quarter and shows a significant alteration in 
Mean Annual Precipitation and Mean temperature of wettest  quarter11. A downward trend in the average annual 
rainfall in the north-western and western Indian Himalaya was reported by Bhutiyani et al.87 and Sontakke et al.88. 
Decrease in the winter precipitation and a rising trend in maximum number of consecutive dry days in winter 
across the western Indian Himalaya was noted by Dimri and  Dash78. Ample precipitation in the driest month is 
an important requirement for the development of R. webbianum as it grows in mountain clefts and areas which 

Figure 7.  (A–D) Plot of the predicted range changes for Rheum webbianum between current and future 
climatic conditions. (A) Current VS RCP 4.5 (2050) (B) Current VS RCP 8.5 (2050) (C) Current VS RCP 4.5 
(2070) (D) Current VS RCP 8.5 (2070).
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Figure 8.  (A–D) Current and future climatic niches of Dactylorhiza hatageria. The correlation circle 
represents contribution of bioclimatic variables to the first two components main of the PCA-env analyses 
and the percentage of variation explained by each axis. The blue and red shadings represent density of species 
occurrence under current and future climatic scenarios. The bar plots represent the results of niche equivalency 
and similarity tests. The red arrow represents the shift in the climatic niche between current and future climatic 
conditions.

Table 7.  Niche comparisons and first two principal components between current and future projected 
distribution of Dactylorhiza hatagirea.

Pair PC1 (%) PC2 (%) Overlap (D) Equivalency test (p value) Similarity test (p value)

Current vs RCP4.5 2050 49.16 34.57 0.61 0.47525 0.05941

Current vs RCP4.5 2070 49.63 33.66 0.56 0.53465 0.06931

Current vs RCP8.5 2050 48.99 34.8 0.55 0.41584 0.05941

Current vs RCP8.5 2070 49.02 34.34 0.39 0.47525 0.0396
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show less water retention  potential56. The habitat specificity indicates that R. webbianum largely relies on the 
precipitation-based variables. Non availability of time-to-time precipitation (especially during driest quarter) 
may put constrains on its habitat suitability.

The results of the current distribution through ensemble model showed that under current climatic conditions 
western and north western part of Himalayan biodiversity hotspot, possess highly suitable and optimal climatic 
conditions for the growth of these plant species. The restricted distribution of these plant species towards the 
western and north western Himalaya can be due to availability of alpine and subalpine regions in these regions 
with suitable habitats for their growth. These results are supported by the findings of other  workers89–93 who 
reported the similar kind of distribution pattern for Berberis aristata, Trillium govanianum, Picrorhiza kur-
roa, Lilium polyphyllum in the northwestern and western regions of the Himalaya. Additionally, the poor seed 

Figure 9.  (A–D) Current and future climatic niches of Rheum webbianum. The correlation circle represents 
contribution of bioclimatic variables to the first two components main of the PCA-env analyses and the 
percentage of variation explained by each axis. The blue and red shadings represent density of species 
occurrence under current and future climatic scenarios. The bar plots represent niche the results of niche 
equivalency and similarity tests. The red arrow represents the shift in the climatic niche between current and 
future climatic conditions.

Table 8.  Niche comparisons and first two principal components between current and future projected 
distribution of the studied species (Rheum webbianum).

Pair PC1 (%) PC2 (%) Overlap (D) Equivalency test (p value) Similarity test (p value)

Current vs RCP4.5 2050 46.15 31.83 0.68 0.58416 0.0297

Current vs RCP4.5 2070 45.54 31.89 0.62 0.59416 0.0198

Current vs RCP8.5 2050 46.19 31.86 0.65 0.51485 0.0396

Current vs RCP8.5 2070 45.06 31.61 0.52 0.47525 0.0198
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germination of these plant species outside their natural habitats affect their reproductive ability and consequently 
lead to their decreased habitat suitability outside their natural abode and restricts their distribution to certain 
patches  only94–96.

For the future climate change scenarios, our ensemble model indicated that there occurs a significant contrac-
tion in the habitat suitability of these two plant species reaching to its maximum (− 51.34% and − 70.57%) under 
RCP 8.5 for 2070. The large area from current suitable habitats will become less or not suitable in future and some 
regions with climatically less or not suitable areas will show higher climatic suitability in the future. The regions 
that form suitable habitats in future could be used as the conservation sites for rewilding and restoration. The 
possible reason for their significant niche contraction might be the increased warming in the western Himalaya 
where the warming occurs at faster rate than predicted for the rest of the  world10,11.

Under the future climatic projections, the likelihood of these plant species to move and inhabit the areas 
which lie at greater elevations may reflect the niche shift of the species due to projected increase in earth’s tem-
perature in the future. For RCP 4.5, the emission of the GHGs is low and is predicted to keep most of the regions 
as suitable habitats, however, under the RCP 8.5 climatic scenarios, more than 50% of the suitable habitats are 
predicted to be lost for both these species. However, regions of Jammu and Kashmir, Uttarakhand, Northern 
Pakistan and some regions of Nepal are predicted to remain suitable for D. hatagirea and R. webbianum. Fur-
thermore, under RCPs 4.5 and 8.5, eastern parts of Uttarakhand, central parts of Nepal and eastern Manipur 
show a limited range expansion for D. hatagirea. For R. webbianum, range expansion was predicted in western 
parts of Pakistan. These results can be related with the predictions for the habitat change of different Himalayan 
plant species under climate change  scenarios97–101. Model-based projections of various plant species predicted 
by different  researchers102–104 under RCP 8.5 for 2070 also reported significant contraction of potential suitable 
habitat in response to future climate change scenarios.

Current study is the first attempt to compare the niche dynamics of these species under current and future 
climatic scenarios. The dynamics of niche change under future climatic circumstances show that there is a loss in 
niche appropriateness of these plant species, and the suitable habitats will shift to new environmental conditions 
in the future. This niche dynamics data lend credence to the SDMs’ anticipated outcomes, indicating that the 
current highly appropriate habitat will be constricted in the future and expanding to other which are currently 
less suited. The evaluation of niche equivalence test clearly shown that the species’ environmental niche will 
not remain precisely the same under current and future climatic scenarios. Similarly, the niche similarity test 
indicated a considerable degree of overlap between the species under present and future environmental circum-
stances. Based on these findings, it is clear that species may face comparable but not identical environmental 
circumstances throughout current and future climate  forecasts105. There is no reason to reject the null hypothesis 
of Warren et al.106 and the results based on the similarity test allows us to conclude that climatic similarity pro-
posed by Broennimann et al.107 will be comparable for these plant species in current and future suitable habitats.

Implications in conservation. Dactylorhiza hatagirea and Rheum webbianum are the two prized medici-
nal herbs of the Himalaya. Incessant over-exploitation of these species has resulted in the progressive dwindling 
of their natural populations. The unsustained extraction of their underground parts compounded with grazing 
and trampling has resulted in the degradation of their populations as well as habitats. This loss is further accen-
tuated by the phenomenon of global warming; the impacts of which are believed to be prominent in the moun-
tainous regions. Under such circumstances, an integrated approach involving habitat restoration and identifying 
the suitable habitats for their reintroduction under climate change scenarios should be a priority. Restoration 
strategies should be facilitated through rewilding and mass multiplication of these species in and around their 
natural habitat. Distribution modelling is an efficient method that can provide an early warning system for 
locating habitats for species under various climatic change scenarios. It provides necessary information to local 
governments and conservation organisations to choose future suitable sites for the formation of natural habitat 
reserves. Minimizing the efforts in locating the unknown populations and increasing the accuracy of the field 
surveys arise to be major breakthrough of the SDM’S. Taking into consideration the threshold and the degree of 
floristic knowledge of the different regions of the study area, the survey for the new populations of D. hatagirea 
and R. webbianum should be prioritized in the North Western, Central and Western parts of different countries 
that share Himalayan Biodiversity hotspots.

The contraction of the suitable habitats in the future climatic scenarios acts as a signal towards the threat 
received by these biodiversity heritage relicts. Suitable areas for translocations and reintroduction coincide in 
many cases with areas that were used in the distribution modelling. We add many more populations to this 
account and sustainable conservation of these areas will surely arise as a guarantee factor for their persistence. 
However, the areas that can harbour these plants should be used to manage their populations by reintroduc-
tion or translocations. In majority of the cases, the species populations were unprotected and receive greater 
anthropogenic threat. Offering the protection to the existing natural populations would be an ideal prospective 
before reintroduction of these species.

Although, SDM cannot substitute fieldworks that are intended towards collection of distributional data, but 
it can be a valuable ecological tool for data exploration in identifying the potential knowledge gaps in these spe-
cies. Dactylorhiza hatagirea and Rheum webbianum show disjunct distribution pattern and application of SDM 
can direct towards appropriate and more reliable fieldwork design, establishing suitable areas for restoration and 
identifying potential regions for expansion of natural populations. Inorder to increase the predictive ability of 
the models in the future, regular update of the occurrence records of newly explored populations needs to be 
added to the database by the collaborative approach of different government and volunteer groups. In landscape 
ecology, there is a clear need for such initiatives. These methods will aid in bringing a model closer to authenticity 
and predicting appropriate locations for rare and endemic species with greater precision.
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Conclusions
In present study, we focused on a BIOMOD ensemble approach to predict the habitat suitability for Dactylorhiza 
hatagirea and Rheum webbianum. Suitable habitat distribution was modelled in current and future climate 
scenarios across their entire distribution range in Himalayan biodiversity hotspots. Temperature based envi-
ronmental variables show a significant influence on distribution of both these species. Overall, both the species 
have been documented to be in a state of losing their major part of suitable habitats by year 2050 and 2070 under 
RCP 8.5. This study provides base line and will be helpful in formulating and implementing the conservation 
strategies for these species and will enable the conservation biologists to mitigate the climate change effects and 
human disturbance on their distribution.

Limitations and future directions
The current predictive distribution modelling study was conducted with the finer resolution of climatic data cur-
rently available (i.e., 30 arc sec—approx. 1 km at the equator) considering the fact that the climatic conditions of 
the Himalaya, vary significantly with shortest distances because of the topographically diverse habitats. Secondly, 
the near-surface climate is as essential as the aerial climatic factors in determining a species’  range108,109. However, 
due to the non-availability of the former for future climatic scenarios, the current study relied heavily on aerial 
climatic data. The impact of the anthropogenic threats (habitat degradation, overexploitation, change in land 
use pattern and plant invasion) can all alter a species’ range, but these were not taken into consideration in this 
study. In such a context, the practical application of the current study’s findings for restoration initiatives may 
be limited, unless the intrusion of human driven activities is not managed in the natural habitats of these plant 
species. In the near future, different research activities should need to incorporate biotic and abiotic elements, 
as well as dispersion capacities, into SDM projections, resulting in a more robustic and enhanced perspective of 
species prospective ranges under changing climatic circumstances.

Materials and methods
Study area. The “Himalaya” which is considered as a unique repository of medicinal and aromatic plants 
constitute the study area of current research. Himalaya are distributed across the Asian countries including 
Afghanistan, Pakistan, India, Nepal, Bhutan and China. More than half of the global population depends directly 
or indirectly on the Himalaya for their sustenance. These ecosystems being fragile and highly vulnerable to 
increase in human population, over exploitation of natural resources and impact of climate change have resulted 
in degradation of these biodiversity hotspots and as such there are more endangered taxa in the Himalaya than 
anywhere else in the  world110.

Target species. Dactylorhiza hatagirea is a highly valued medicinal plant of family Orchidaceae. Com-
monly known as Himalayan Marsh Orchid, it is endemic to Himalaya and show narrow distribution range with 
specific habitat requirements. It is found inhabiting sub-alpine to alpine regions ranging between the eleva-
tions of 2500–5000 m.a.s.l. It is native to Asian countries including Afghanistan, Pakistan, India, Nepal, Bhutan 
and China. The extracts of the plant are used to cure various ailments and is highly valued in both traditional 
medicinal practices and pharmaceutical  sector96,97. Rheum webbianum is an important medicinal plant of family 
Polygonaceae. Commonly recognized as Himalayan Rhubarb, it is mainly confined to alpine regions ranging 
between the elevations of 2400–4300  m.a.s.l. The species is distributed to China, India, Pakistan and Nepal. 
Roots as well as leaves are medicinally important and find use in both traditional and modern-day systems of 
 medicine98.

Habitat suitability. Data collection and evaluation. The distribution data for the two studied species 
(Dactylorhiza hatageria and Rheum webbianum) was collected by the authors from intensive field surveys con-
ducted during 2012–2018 and was further supplemented data from the Global Biodiversity Information Facility 
(GBIF) (http:// www. gbif. org/; accessed 29 March 2021) using the gbif function available in dismo package (htt-
ps:// doi. org/ 10. 15468/ d1. xjd7s3 for D. hatagirea and https:// doi. org/ 10. 15468/ d1. mewynz for R. webbianum), 
Botanical Information and Ecology Network (BIEN) (accessed 29 March 2021) and India Biodiversity Portal 
(IBP) (https:// india biodi versi ty. org/; accessed 29 March 2021) databases. The BIEN database was accessed using 
the BIEN  package60 in R statistical software version 4.0.3 https:// www.r- proje ct. org/). 110 geo-referenced coor-
dinates were located for D. hatagirea form Ladakh and Uttarakhand regions while for R. webbianum, 80 presence 
points were recorded from Jammu and Kashmir and Ladakh regions of India with the help of GPS (Mallagien 
Mobile mapper).

A total of 213 and 198 geo-referenced occurrence records were obtained from the above-mentioned sources 
as well as filed surveys for Dactylorhiza hatagirea and Rheum webbianum respectively. These were reduced to 
80 and 47 occurrence points after clipping for the study area (i.e. the Himalaya). Each of the occurrence record 
was thoroughly checked for accuracy before usage, as such records are biased towards geographically suitable 
and easily accessible areas like cities or areas with higher population  density103. This results in sampling bias in 
geographical space. Therefore, in order to eliminate spatial auto-correlation and sample bias, we used spatial 
thinning, in which the study region was split into 1 × 1 km grid cells and from each cell a single point was chosen 
randomly. After spatial thinning, a total of 46 and 41 georeferenced points were retained for final dataset in order 
to model the distribution areas of Dactylorhiza hatagirea and Rheum webbianum respectively.

Environmental data. For modelling the current potential habitat distribution of the selected species across 
the study region, climatic data was downloaded from (http:// www. world clim. org) WorldClim database, version 

http://www.gbif.org/
https://doi.org/10.15468/d1.xjd7s3
https://doi.org/10.15468/d1.xjd7s3
https://doi.org/10.15468/d1.mewynz
https://indiabiodiversity.org/
https://www.r-project.org/
http://www.worldclim.org
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1.4111. These climatic variables represent maximum, minimum and average monthly, quarterly, and annual pre-
cipitation and temperature values measured for 50 years between 1950 and 2000. These environmental variables 
had a spatial resolution of 30 arc seconds (approx. ~ 1 km resolution at the equator). The bioclimatic variables 
show a greater degree of correlation among themselves that could affect the performance of model and provide 
incorrect  observations112. Therefore, inorder to remove any kind of biases, we performed Pearson’s correlation 
before modelling, and selected only one variable from each pair of highly correlated variables with correlation 
coefficient (i.e. r > 0.75). After correlation analysis, a total of six and seven variables were retained for modelling 
the distribution of Dactylorhiza hatagirea and Rheum webbianum respectively under current climate conditions 
(Table 9).

In order to predict the potential future distribution of the species under study, we used the information 
from the AR5 (fifth assessment report) of IPCC (Intergovernmental Panel for Change Change). Hadley Global 
Environment Model 2-Earth System (HADGEM2-ES) that represents the simulations for two representative 
concentration pathways (RCP4.5 and RCP8.5) for the two time periods (i.e. 2050 and 2070) were used. The set 
of different climatic variables that were used to model the current distribution were also used for predicting the 
future  distributions36.

Modelling technique. In the present study, we used biomod2  package22 within the R statistical software (v 4.0.3; 
R Development Core Team 2021) to perform the species distribution modelling. Nine different algorithms were 
used and implemented in biomod2 package, including: Generalised Linear Model (GLM)113, Generalised Addi-
tive Models (GAM)114, Generalised Boosted Models (GBM)115, Classification Tree Analysis (CTA)116, Flexible 
Discriminant Analysis (FDA)32, Artificial Neural Networks (ANN)117, Maximum Entropy (MAXENT)45, Ran-
dom Forest (RF)47, and Surface Response Envelope (SRE)118.

As these modelling algorithms require both presence and absence datasets, however it is difficult to obtain the 
actual absence data. Therefore, we randomly generated 500 pseudo-absences within the study area  following119,120. 
Since this process of pseudo-absence generation is a stochastic procedure caused by the random selection of 
the pseudo-absences, therefore, we repeated the procedure three times to address potential sample bias in the 
pseudo-absence  generation121.

Model calibration. We calibrated the models with 80% of data (training set) and evaluated on the remaining 
20% (validation set). This entire procedure was repeated four times. Thus, we obtained a total of 108 models (3 
replicate pseudo-absence datasets × 9 algorithms × 4 replicates) for each climatic scenario and time period com-
bination. We evaluated the model performance by repeated data-splitting procedure (cross validation) using two 
types of evaluation metrics; (1) area under the curve (AUC) of receiver operating characteristics (ROC) and (2) 
true skills statistics (TSS)67. AUC values range from 0 to 1. AUC value between 0.5 and 0.7 indicates poor model 
run, 0.7–0.9 indicates good and > 0.9 indicated high  performance68. For True Skill Statistics (TSS) value range 
from − 1 to + 1. Range below 0.40 indicates poor model run while the values between 0.40 and 0.75 indicates 
good model performance. The values greater than 0.75 specifies the best model  performance69,122–124.

Model validation. The final ensemble model was built from the individual modelling outputs, for each cli-
matic scenario and time period combination using both committee averaging and weighted-mean approach 
 separately123. We only kept models with a TSS score greater than or equal to 0.8 to build the final ensemble 
models. Thus, we obtained a total of five ensemble projections which correspond to current climatic suitability 
and four future predicated habitat suitabilities representing two representative concentration pathways (RCP 4.5 
and 8.5) for the two time periods (2050 and 2070).

Variable importance. For evaluating the relative importance of each climatic variable in governing the distribu-
tion of selected plant species, we used permutation  procedure125. In this procedure we made predictions from a 
given algorithm after varying only one target variable, while the rest of the variables are kept constant. The vari-
able significance estimate is calculated as 1-correalation score between the original prediction and the prediction 
made with a permuted variable. Greater values denote a greater importance of the predictor variable whereas a 
value of 0 means no importance of the variable on the model.

Table 9.  Bioclimatic variables selected for modelling the distribution of Dactylorhiza hatagirea and Rheum 
webbianum in the present study.

Dactylorhiza hatagirea Rheum webbianum

BIO-1 (Annual Mean Temperature) BIO-1 (Annual mean Temperature)

BIO-2 (Mean Diurnal Range) BIO-3 (Isothermality)

BIO-3 (Isothermality) BIO-7 (Temperature Annual range)

BIO-8 (Mean Temperature of Wettest Quarter) BIO-8 (Mean Temperature of Wettest Quarter)

BIO-12 (Annual Mean Precipitation) BIO-12 (Annual Mean Precipitation)

BIO-14 (Precipitation of Driest Month) BIO-14 (Precipitation of driest Month)

– BIO-15 (Precipitation Seasonality)
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Species range change. For each of the selected plant species, we used the BIOMOD (Range Size) function in bio-
mod2 package in order to quantify and represent the range change over future climatic scenarios. This function 
produces two outputs: a table containing summary statistics of species range change and a spatial map that sum-
marizes where species will gain or lose suitable conditions. More specifically, from both the output types, we can 
get information about for absolute metrics namely “Loss” which represents the number of pixels predicted to be 
lost by the studied species under climate change; “Absent” representing the number of pixels currently not occu-
pied by the studied species and also not predicted to be suitable under a particular climatic scenario; “Stable” 
denotes the number of pixels currently occupied by the studied species and also predicted to remain occupied 
into the future, “Gain” represents the number of pixels which are currently not occupied by the studied species 
but predicted to be occupied into the future. Finally, from these four metrics, three additional relative metrics 
were obtained that include “Percentage loss” which corresponds to the percentage of currently occupied sites to 
be lost and calculated as (Loss/(Loss + Stable); “Percentage gain” corresponding to the percentage of new sites 
considering the species’ current distribution size and calculated as (Gain/(Loss + Stable) and “Range change” 
which represents the overall projection outcome and is equal to percentage gain − percentage loss.

Niche overlap. For determining the niche overlap of the plant species under current and future climatic 
scenarios, modified principal component analysis (PCA-env) was  used126. Environmental variables are changed 
into two-dimensional space defined by two principal components. The two-dimensional environmental space 
is then projected onto a grid cells with a diameter of 100 × 100 and bounded by minimum and maximum PCA 
values in the background. Smooth key density function was used to overcome sampling bias due to lower num-
ber of occurrence data  points127. Schoener’s D metric was used to determine the extent of niche overlap. It varies 
from 0 representing no overlap to 1 which represents complete overlap. In order to understand the importance 
of niche overlap in the geographic area, niche equivalency and similarity tests were  performed126. Niche equiva-
lence test was performed by the comparison of niche overlap (D) values for current and future climatic scenarios 
and comparing it to the overlap of null distribution. If the overlap values are significantly lower than niche val-
ues, then the null hypothesis of niche equivalency is  rejected126. A niche similarity test, which assesses whether 
the niches of two entities being compared are more similar (or different) than would be expected by chance and 
takes into account the surrounding environmental conditions of the background space across the study region 
 also128. We performed the niche analysis using the “ecospat” package in R  software54.

Data availability
All data generated or analysed during this study are included in this published article.

Received: 10 October 2021; Accepted: 28 April 2022

References
 1. Mayewski, P. A., Perry, L. B., Matthews, T. & Birkel, S. D. Climate change in the Hindu Kush Himalaya: Basis and gaps. One 

Earth 3, 551 (2020).
 2. Conservation International: www. conse rvati on. org; www. cepf. net. Assessed 29 March 2021.
 3. Gadgil, M. Biodiversity profile of India. http:// www. biodi versi ty. org. ces. iisc. erenet. in/ hpg/ cesmg/ india bio. html. Accessed 10 

August 2008.
 4. Iannella, M., Cerasoli, F., D’Alessandro, P., Console, G. & Biondi, M. Coupling GIS spatial analysis and Ensemble Niche Mod-

elling to investigate climate change-related threats to the Sicilian pond turtle Emys trinacris, an endangered species from the 
Mediterranean. Peer J. 6, e4969 (2018).

 5. Ashraf, U. et al. Impacts of climate change on Capparis spinosa L. based on ecological niche modeling. Peer J. 6, e5792 (2018).
 6. Wei, S. C., Li, H. C., Shih, H. J. & Liu, K. F. Potential impact of climate change and extreme events on slope land hazard—A case 

study of Xindian watershed in Taiwan. Nat. Hazards Earth Syst. Sci. 18, 3283–3296 (2018).
 7. Halloy, S. R. & Mark, A. F. Climate-change effects on alpine plant biodiversity: A New Zealand perspective on quantifying the 

threat. Arc. Ant. Alp. Res. 35, 248–254 (2003).
 8. Thuiller, W., Lavorel, S. & Araujo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate 

change. Glob. Ecol. Biogeo. 14, 347–357 (2005).
 9. Shekhar, M. et al. Himalayan glaciers experienced significant mass loss during later phases of little ice age. Sci. Rep. 7, 10305 

(2017).
 10. Sobrino, E. et al. The expansion of thermophilic plants in Iberian peninsula as a sign of climate change. In Fingerprints of Climate 

Change. Adaptive Behaviour and Shifting Species Range (eds Walther, G. R. et al.) 163–184 (Kulwer Publishers, 2001).
 11. Hassan, T. et al. Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: Supplementing decadal field 

records with historical and experimental evidences. Sci. Total Environ. 795, 148811. https:// doi. org/ 10. 1016/j. scito tenv. 2021. 
148811 (2021).

 12. Rather, Z. A., Ahmad, R., Dar, T. U. H. & Khuroo, A. A. Ensemble modelling enables identification of suitable sites for habitat 
restoration of threatened biodiversity under climate change: A case study of Himalayan Trillium. Ecol. Eng. 176, 106534 (2022).

 13. Shrestha, A. B., Wake, C. P., Mayewski, P. A. & Dibb, J. E. Maximum temperature trends in the Himalaya and its vicinity: An 
analysis based on temperature records from Nepal for the period 1971–94. J. Clim. 12, 2775–2786 (1999).

 14. Uzun, P. & Uzun, A. Effects of Global Climate Change on Plant Diversity Seyran (Kahramanmaraş Sütçü İmam University, Faculty 
of Forestry, Department of Forest Botany, 2012).

 15. Kappelle, M., Van Vuuren, M. M. I. & Baas, P. Effects of climate change on biodiversity: A review and identification of key 
research issues. Biodivers. Conserv. 8, 1383–1397 (1999).

 16. Kullman, L. Warmer climate and tree-limit rise in the Swedish Scandes—Fauna och. Flora 95, 113–129 (2000).
 17. Grabherr, G., Gottfried, M. & Pauli, H. Climate effects on mountain plants. Nature 369, 448 (1994).
 18. Walther, G. R., Beissner, S. & Burga, C. A. Trends in the upward shift of alpine plants. J. Veg. Sci. 16, 541–548 (2005).
 19. Engler, R. & Guisan, A. MIGCLIM: Predicting plant distribution and dispersal in a changing climate. Divers. Distrib. 15, 590–601 

(2009).
 20. Van de Ven, C. M., Weiss, S. B. & Ernst, W. G. Plant species distributions under present conditions and forecasted for warmer 

climates in an arid mountain range. Earth Interact. 11, 1–33 (2007).

http://www.conservation.org
http://www.cepf.net
http://www.biodiversity.org.ces.iisc.erenet.in/hpg/cesmg/indiabio.html
https://doi.org/10.1016/j.scitotenv.2021.148811
https://doi.org/10.1016/j.scitotenv.2021.148811


16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13205  | https://doi.org/10.1038/s41598-022-16837-5

www.nature.com/scientificreports/

 21. Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 17, 2330–2341 
(2011).

 22. IUCN. Guidelines for the application of IUCN Red List categories and criteria. Version 9.0. Red List Standards and Petitions 
Subcommittee of the Species Survival Commission, IUCN: Gland (2011).

 23. Fordham, D. A. et al. Plant extinction risk under climate change: Are forecast range shifts alone a good indicator of species 
vulnerability to global warming?. Glob. Change Biol. 18, 1357–1371 (2012).

 24. Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. 
Ecol. Evol. Syst. 40, 677–697 (2009).

 25. Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. 
Ecography 32, 369–373 (2009).

 26. Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
 27. Renner, I. W. & Warton, D. I. Equivalence of MAXENT and poisson point process models for species distribution modeling in 

ecology. Biometrics 69, 274–281 (2013).
 28. Thuiller, W., Cade, B., Engler, R. & Araújo, M. B. BIOMOD a platform for ensemble forecasting of species distributions. Ecography 

32, 369–373 (2009).
 29. Cianfrani, C. et al. Adapting global conservation strategies at the European scale: The otter as flagship species. Biol. Conserv. 

144, 2068–2080 (2011).
 30. Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
 31. Leathwick, J. R., Elith, J. & Hastie, T. Comparative performance of generalized additive models and multivariate adaptive regres-

sion splines for statistical modelling of species distributions. Ecol. Model. 199, 188–196 (2006).
 32. Hastie, T., Tibshirani, R. & Buja, A. Flexible discriminant analysis by optimal scoring. J. Am. Stat. Assoc. 89, 1255–1270 (1994).
 33. Araujo, M. & Guisan, A. Five (or so) challenges for species distribution modeling. J. Biogeogr. 33, 1677–1688 (2006).
 34. Beaumont, L. J., Pitman, A. J., Poulsen, M. & Hughes, L. Where will species go? Incorporating new advances in climate model-

ling into projections of species distributions. Glob. Change Biol. 13, 1368–1385 (2007).
 35. Beaumont, L. J., Hughes, L. & Pitman, A. J. Why is the choice of future climate scenarios for species distribution modelling 

important?. Ecol. Lett. 11, 1135–1146 (2008).
 36. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. 

Ecol. Lett. 15, 365–377 (2012).
 37. Parmesan, C. Ecological and evolutionary responses to recent climate change. Ecol. Evol. 37, 637–669 (2006).
 38. Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
 39. Albuquerque, F., Benito, B., Macı´as-Rodrı´guez M. A. & Gray, C. Potential changes in the distribution of Carnegiea gigantea 

under future scenarios. Peer J. (2018).
 40. Moss, R. H. et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies (IPCC 

Expert Meeting Report, IPCC, Geneva, 2008).
 41. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. 

Evol. 1, 3–14 (2010).
 42. Friedman, J. H. Multivariate adaptive regression splines. Ann. Stat. 1–67 (1991).
 43. Thomaes, A., Kervyn, T. & Maes, D. Applying species distribution modelling for the conservation of the threatened saproxylic 

Stag Beetle (Lucanus cervus). Biol. Conserv. 141, 1400–1410 (2008).
 44. De’Ath, G. Boosted trees for ecological modeling and prediction. Ecol. Lett. 88, 243–251 (2007).
 45. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 

190, 231–259 (2006).
 46. Reiss, H., Cunze, H., König, K., Neumann, K. & Kroncke, I. Species distribution modelling of marine benthos: A North Sea case 

study. Mar. Ecol. Prog. Ser. 442, 71–86 (2011).
 47. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
 48. Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).
 49. Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification and Regression Trees (CRC Press, 1984).
 50. D’heygere, T., Goethals, P. L. & De Pauw, N. Genetic algorithms for optimisation of predictive ecosystems models based on 

decision trees and neural networks. Ecol. Model. 195, 20–29 (2006).
 51. Fukuda, S., De Baets, B., Waegeman, W., Verwaeren, J. & Mouton, A. M. Habitat prediction and knowledge extraction for 

spawning European grayling (Thymallus thymallus L.) using a broad range of species distribution models. Environ. Model. Soft. 
47, 1–6 (2013).

 52. Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 
30, 751–777 (2006).

 53. Thuiller, W., Lafourcade, B. & Araujo, M. Presentation manual for BIOMOD. Ecography 32, 369–373 (2010).
 54. Di Cola, V. et al. Ecospat: An R package to support spatial analyses and modelling of species niches and distributions. Ecography 

40, 774–787 (2017).
 55. Chandra, N., Singh, G., Lingwal, S., Jalal, J. S., Bisht, M. S., Pal, V., Bisht, M. P. S., Rawat, B. & Tiwari, L. M. Ecological niche 

modeling and status of threatened alpine medicinal plant Dactylorhiza hatagirea D. Don in Western Himalaya. J. Sust. For. (2021)
 56. Wani, I. A., Verma, S., Mushtaq, S., Alsahli, A. A., Alyemeni, M. N., Tariq, M. & Pant, S. Ecological analysis and environmental 

niche modelling of Dactylorhiza hatagirea (D. Don) Soo: A conservation approach for critically endangered medicinal orchid. 
Saudi J. Biol. Sci. 2109–2122 (2021).

 57. Kunwar, R. M., Rimal, B., Sharma, H. P., Poudel, R. C. & Pyakurel, D. Distribution and habitat modelling of Dactylorhiza hatagirea 
(D.Don) Soo, Paris polyphylla sm. and Taxus species in Nepal Himalaya. J. App. Res. Med. Arom. Plants. 1–35 (2020).

 58. Man, R. & Samant, S. S. Diversity, indigenous uses and conservation status of medicinal plants in Manali wildlife sanctuary, 
North West Himalaya, Indian. J. Tradit. Knowl. 3, 439–459 (2011).

 59. Kunwar, R. M., Nepal, B. K., Kshherti, H. B., Rai, S. K. & Bussmann, R. W. Ethnomedicine in Himalaya: A case study from Dolpa, 
Humla, Jumla and Mustang Districts of Nepal. J. Ethnobiol. Ethnomed. 2, 1–6 (2006).

 60. Baig, B. A., Ramamoorthy, D. & Wani, B. A. Population status and conservation prioritization of some threatened medicinal 
plants of Kashmir Himalaya. Int. J. Appl. Biol. Pharma. Technol. 5, 1–15 (2014).

 61. Camacho, A. E., Minteer, B. A., Doremus & McLachllan, J. S. Perspectives: Reassessing Conservation Goals in a Changing 
Climate. Issues in science and technology. University of Texas. Dallas, EE. UU. (2010).

 62. Leach, K., Kelly, R., Cameron, A., Montgomery, W. & Reid, N. Response to climate change is related to species traits in the 
Lagomorpha. (2014).

 63. Thuiller, W., Araujo, M. B. & Lavorel, S. Do we need land-cover data to model species distributions in Europe?. J. Biogeog. 31, 
353–361 (2004).

 64. Armenteras, D. & Mulligan, M. Modelling the potential distribution of tree species on a national scale in Colombia: Application 
to Palicourea angustifolia Kunth and Palicourea guianensis. Aubl. Caldasia 32, 355–380 (2010).

 65. Farias, V. Spatio temporal ecology and habitat selection of the critically endangered tropical jackrabbit (Lepus flavigularis) in 
Oaxaca, México. Tesis de doctorado. University of Massachusetts. Amherst, EE. UU. (2004).



17

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13205  | https://doi.org/10.1038/s41598-022-16837-5

www.nature.com/scientificreports/

 66. Warren, D. L., Wright, A. N., Seifert, S. N. & Shaffer, H. B. Incorporating model complexity and spatial sampling bias into eco-
logical niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 20, 334–343 
(2014).

 67. Santiz, E. C., Lorenzo, C., Carrillo-Reyes, A., Navarrete, D. A. & Islebe, G. Effect of climate change on the distribution of a criti-
cally threatened species Eugenia C. Therya 7, 147–159 (2016).

 68. Porfirio, L. L. et al. Improving the use of species distribution models in conservation planning and management under climate 
change. PLoS ONE 9(11), e113749 (2014).

 69. Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
 70. Araujo, M. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).
 71. Fick, S. E. & Hijmans, R. J. WorldClim2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 

https:// doi. org/ 10. 1002/ joc. 5086 (2017).
 72. Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous 

United States. Int. J. Climatol. 28, 2031–2064 (2008).
 73. Cramer, W. et al. Global response of terrestrial ecosystem structure and function to  CO2 and climate change: Results from six 

dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).
 74. Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope 

models useful?. Glob. Ecol. Biogeo. 12, 361–371 (2003).
 75. Chitale, V., Silwal, R. & Matin, M. Assessing the impacts of climate change on distribution of major non timber forest plants in 

Chitwan Annapurna Landscape. Nepal. Resources 7, 66 (2018).
 76. Rohde, A. & Bhalerao, R. P. Plant domrmancy in perrrinial context. Trends Plant Sci. 12, 218–224 (2007).
 77. Ramos, A. et al. Winter disruption of circadian clock in chestnut. Proc. Nat. Acad. Sci. USA 102, 7037–7042 (2005).
 78. Livensperger, C. et al. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. Ann. Bot. 8, 1–15 

(2016).
 79. Chuine, I. Why does phenology drive species distribution?. Phil. Trans. R. Soc. B. 365, 3149–3160 (2010).
 80. Chuine, I., Aitken, S. N. & Ying, C. C. Temperature thresholds of shoot elongation in provenances of Pinus contorta. Can. J. For. 

Res. 31, 1444–1455 (2001).
 81. Dash, S. K., Jenamani, R. K., Kalsi, S. R. & Panda, S. K. Some evidences of climate change in twentieth-century India. Clim. 

Change 85, 299–321 (2007).
 82. Dimri, A. P. & Dash, S. K. Wintertime climatic trends in the western Himalayas. Clim. Change 111(3), 775–800. https:// doi. org/ 

10. 1007/ s10584- 011- 0201-y (2012).
 83. Singh, P., Umesh, K. H. & Kumar, N. Modelling and estimation of different components of streamflow for Gangotri Glacier basin, 

Himalayas/Modélisation et estimation des différentes composantes de l ’écoulement fluviatile du bassin du Glacier Gangotri, 
Himalaya. Hydrol. Sci. J. 53, 309–313 (2008).

 84. Keller, F. et al. Sensitivity analysis of snow cover to climate changescenarios and their impact on plant habitats in alpine terrain. 
Clim. Change 72, 299–319 (2005).

 85. Jones, H. G. et al. Snow Ecology 1st edn, 378 (Cambridge Univ. Press, 2001).
 86. Bhutiyani, M. R., Kale, V. S. & Pawar, N. J. Climate change and the precipitation variations in the northwestern Himalaya: 

1866–2006. Int. J. Climatol. 30, 535–548 (2010).
 87. IPCC SR. IPCC SR ocean and cryosphere in a changing climate, Chap 2. In: Hock R et al (eds) High mountain areas (2019).
 88. Sabin, T. P. et al. High resolution simulation of the South Asian monsoon using a variable resolution global climate model. Clim. 

Dyn. 41, 173–194 (2013).
 89. Sontakke, N. A., Singh, H. N. & Singh, N. Monitoring physiographic rainfall variation for sustainable Management of Water 

Bodies in India. In Natural and Anthropogenic Disasters: Vulnerability, Preparedness and Mitigation (ed. Jha, M. K.) 293–331 
(Springer, 2009).

 90. Ray, R., Gururaj, K. V. & Ramachandra, T. V. Predictive distribution modeling for rare Himalayan medicinal plant Berberis 
aristata. J. Environ. Biol. 32, 725–730 (2011).

 91. Chauhan, H. K., Bhatt, I. D. & Bisht, A. K. Biology, uses and conservation of Trillium govanianum. in Socio-Economic and Eco-Bio-
logical Dimensions in Resource Use and Conservation, 235–247. (Springer, 2022). https:// doi. org/ 10. 1007/ 978-3- 030-32463-6_11.

 92. Chandra, N., Singh, G., Lingwal, S., Bisht, M. & Tiwari, L. M. Population assessment and habitat distribution modelling of the 
threatened medicinal plant Picrorhiza kurroa Royle ex Benth. In the Kuman Himalaya, India. J. Threat. Taxa. 13, 18868–18877 
(2021).

 93. Dhyani, A., Kadaverugu, R., Nautiyal, B. P. & Nautiyal, M. C. Predicting the potential distribution of a critically endangered 
medicinal plant Lilum polyphyllum in Indian western Himalayan region. Reg. Environ. Chan. 2, 30 (2021).

 94. Aggarwal, S. & Zettler, L. W. Reintroduction of an endangered terrestrial orchid, Dactylorhiza hatagirea (D. Don) Soo, assisted 
by symbiotic seed germination: First report from the Indian subcontinent. Nat. Sci. 8, 139–145 (2010).

 95. Giri, D. & Tamta, S. Propagation and conservation of Dactylorhiza hatagirea (D. Don) Soo, an endangered alpine orchid. Afr. J. 
Biotechnol. 11, 12586–12594 (2012).

 96. Tabin, S., Kamili, A. & Gupta, R. C. Micropropagation and conservation of Rheum webbianum collected from Zanskar valley 
via tissue culture. Ann. Plant. Sci. 7, 2187–2203 (2018).

 97. Song, M., Zhou, C. & Ouyang, H. Distributions of dominant tree species on the Tibetan Plateau under current and future climate 
scenarios. Mt. Res. Dev. 24, 166–173 (2004).

 98. Xiaodan, W., Genwei, C. & Xianghao, Z. Assessing potential impacts of climatic change on subalpine forests on the eastern 
Tibetan Plateau. Clim. Change 108, 225–241 (2011).

 99. Zhao, D., Wu, S., Yin, Y. & Yin, Z. Y. Vegetation distribution on Tibetan Plateau under climate change scenario. Reg. Environ. 
Change 11, 905–915 (2011).

 100. Rashid, I. et al. Projected climate change impacts on vegetation distribution over Kashmir Himalaya. Clim. Change 132, 601–613 
(2015).

 101. Manish, K., Telwala, Y., Nautiyal, D. C. & Pandit, M. K. Modelling the impacts of future climate change on plant communities 
in the Himalaya: A case study from Eastern Himalaya, India. Model Earth Syst. Environ. 2, 1–12 (2016).

 102. Bakkenes, M., Alkemade, J. R. M., Ihle, F., Leemans, R. & Latour, J. B. Assessing effects of forecasted climate change on the 
diversity and distribution of European higher plants for 2050. Glob. Chang Biol. 8, 390–407 (2002).

 103. Loarie, S. R. et al. Climate change and the future of California’s endemic flora. PLoS ONE 3, 2502 (2008).
 104. Barrett, M. A., Brown, J. L., Junge, R. E. & Yoder, A. D. Climate change, predictive modeling and lemur health: Assessing impacts 

of changing climate on health and conservation in Madagascar. Biol. Conserv. 157, 409–422 (2013).
 105. Hamid, M. et al. Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline 

species in Himalaya. Biodivers. Conserv. https:// doi. org/ 10. 1007/ s10531- 018- 1641-8 (2018).
 106. Warren, D. L. Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche 

evolution. Evolution. 2868–2883.
 107. Lembrechts, J. J. et al. Soil Temp: a global database of near-surface temperature. Glob. Change Biol. 26, 6616–6629 (2020).
 108. Lembrechts, J. J., Van den Hoogen, J., Aalto, J. et al. Global maps of soil temperature. https:// doi. org/ 10. 32942/ osf. io/ pksqw. 

(2021).

https://doi.org/10.1002/joc.5086
https://doi.org/10.1007/s10584-011-0201-y
https://doi.org/10.1007/s10584-011-0201-y
https://doi.org/10.1007/978-3-030
https://doi.org/10.1007/s10531-018-1641-8
https://doi.org/10.32942/osf.io/pksqw


18

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13205  | https://doi.org/10.1038/s41598-022-16837-5

www.nature.com/scientificreports/

 109. Broennimann, G. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).
 110. Roy, A. & Srivastava, V. K. Geospatial approach to identification of potential hotspots of land-cover change for biodiversity 

conservation in Western Ghats of Goa. Curr. Sci. 102, 1174–1180 (2012).
 111. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global 

land areas. Int. J. Climatol. 25, 1965–1978 (2005).
 112. Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. 

Ecography 36, 27–46 (2012).
 113. McCullagh, P. & Nelder, J. A. Generalized Linear Models (CRC Press, 1989).
 114. Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (CRC Press, 1990).
 115. Ridgeway, G. The state of boosting. Comput. Sci. Stat. 31, 172–181 (1999).
 116. Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and Regression Trees (Wadsworth International Group, 

1984).
 117. Ripley, B. D. Pattern Recognition and Neural Networks (Cambridge University Press, 1996).
 118. Busby, J. R. BIOCLIM—A bioclimate analysis and prediction system. Plant Prot. Q. 6, 8–9 (1991).
 119. Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where 

and how many?. Methods Ecol. Evol. 3, 327–338 (2012).
 120. Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R (Cambridge 

University Press, 2017).
 121. Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true 

skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
 122. Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species 

distribution modelling. Divers. Distrib. 15, 59–69 (2009).
 123. Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).
 124. Beaumont, L. J. et al. Which species distribution models are more (or less) likely to project broad-scale, climate induced shifts 

in species ranges?. Ecol. Model. 342, 135–146 (2016).
 125. Elith, J., Ferrier, S., Huettmann, F. & Leathwick, J. The evaluation strip: a new and robust method for plotting predicted responses 

from species distribution models. Ecol Model. 186, 280–289 (2005).
 126. Broennimann, O., Fitzpatrick, M. C. & Pearman, P. B. Measuring ecological niche overlap from occurrence and spatial environ-

mental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
 127. Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).
 128. Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche 

evolution. Evolution 62, 2868–2883 (2008).

Acknowledgements
The authors would like to extend their sincere appreciation to the Researchers Supporting Project Number (RSP-
2021/24), King Saud university, Riyadh, Saudi Arabia.

Author contributions
I.A.W.: writing-original draft preparation and methodology, S.V.: supervision, conceptualization, writing review-
ing and editing of the manuscript, S.K.: editing of the manuscript, F.A.A.-M.: revision and table formation, 
H.M.S.: revision and Figure compilation, H.A.E.-S.: funding acquisition and revision of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change
	Results
	Habitat suitability. 
	Model evaluation. 
	Variable importance. 

	Current distribution. 
	Future potential distribution. 
	Species range change. 
	Niche overlap. 

	Discussion
	Implications in conservation. 

	Conclusions
	Limitations and future directions
	Materials and methods
	Study area. 
	Target species. 
	Habitat suitability. 
	Data collection and evaluation. 
	Environmental data. 
	Modelling technique. 
	Model calibration. 
	Model validation. 
	Variable importance. 
	Species range change. 

	Niche overlap. 

	References
	Acknowledgements


