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Spatiotemporal variation 
evaluation of water quality 
in middle and lower Han River, 
China
Lele Deng1,2, Kebing Chen3, Zhangjun Liu1*, Boyang Wu4, Zekun Chen5 & Shaokun He5*

As the water source for the middle route of the South-to-North Water Transfer Project, the Han 
River in China plays a role of the world’s largest inter-basin water transfer project. However, this 
human-interfered area has suffered from over-standard pollution emission and water blooms in 
recent years, which necessitates urgent awareness at both national and provincial scales. To perform 
a comprehensive analysis of the water quality condition of this study area, we apply both the water 
quality index (WQI) and minimal WQI  (WQImin) methods to investigate the spatiotemporal variation 
characteristics of water quality. The results show that 8 parameters consisting of permanganate index 
(PI), chemical oxygen demand (COD), total phosphorus (TP), fluoride (F-), arsenic (As), plumbum 
(Pb), copper (Cu), and zinc (Zn) have significant discrepancy in spatial scales, and the study basin 
also has a seasonal variation pattern with the lowest WQI values in summer and autumn. Moreover, 
compared to the traditional WQI, the  WQImin model, with the assistance of stepwise linear regression 
analysis, could exhibit more accurate explanation with the coefficient of determination  (R2) and 
percentage error (PE) values being 0.895 and 5.515%, respectively. The proposed framework is of 
great importance to improve the spatiotemporal recognition of water quality patterns and further 
helps develop efficient water management strategies at a reduced cost.

High-quality water resources are of crucial importance to maintain ecological integrity and promote sustainable 
socio-economic  development1,2. However, water quality issues have been more intricate than ever before due 
to different ecosystem pressures from rapid urbanization and population explosion. Water deterioration has 
also become a public urgent concern worldwide and a serious threat to people’s  livelihoods3,4. Taking China for 
illustration, there were 874 records of local water contamination during 2006 ~ 2016, resulting in great troubles 
for domestic life and making millions of economic  loss5. Reasonable evaluation of water quality variation has 
been demonstrated as a practical tool for water quality warning and  protection6–8.

Indeed, lots of efforts have been made to investigate reliable information of water quality  variation9–11. 
The water quality assessment based on hydro-chemical monitoring methods and data sampling underlies 
the geological heterogeneity of water quality, the understanding of human activities and the control of water 
 contamination12,13. There have been considerable research for water quality evaluation in recent years, including 
the single-factor evaluation  method14, Namerow pollution  method15 and water quality index (WQI)  method16,17. 
Of them, the recent WQI method takes full advantage of water quality parameter information and converts all 
parameters into a clear normative status value of water quality. It has been a prevailing approach for water quality 
assessment in a wide range of studies. The calculation of WQI has also experienced modification and has been 
developed in different ways. For instance, the National Sanitation Foundation WQI (NSFWQI) that comprises 
9 parameters has been applied in different regions across the  world18. Bascaron  WQI19 and Canadian  WQI20 that 
resemble the NSFWQI also had wide applications in the various background.

However, the downside of inflexible water quality parameters limits the application of aforesaid different 
WQIs. Some studies are devoted to identifying the key water quality parameters and developing more efficient 
WQI methods at a low-cost level. The minimum WQI  (WQImin) model consisting of the key water quality 
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parameters that can deal with the information redundancy and high cost has been demonstrated effective. A 
highly linear correlation relationship between WQI and  WQImin has been  documented21,22, indicating that  WQImin 
has a strong potential to reflect the variation of water quality economically. However, the results of  WQImin models 
may show substantial differences using various parameters and assigned  weights17,23. The parameters selection 
for a  WQImin model requires a deliberate response in terms of the specific scientific issue. The stepwise linear 
regression analysis has been verified robust to identify critical parameters for reduction of data  redundancy14,24,25, 
here, it is employed in this study.

As the largest tributary of the Yangtze River in China, the Han River has been subject to water blooms on 
several occasions. Since the first diatom bloom of the Han River in 1992, there have been 9 water bloom episodes 
of varying degrees during the period 1998 ~ 2016, all of which concentratedly occurred between February and 
April. The influenced river reached about 500 km above the estuary in severe cases, and it usually lasted as long 
as 20  days26. Some literatures have reported that water blooms are closely associated with water  quality27,28. 
Meanwhile, the implementation of China’s Middle Route of South-to-North Water Transfer Project will enhance 
the water supply capacity in the north while reducing the downstream flow, which may further exacerbate the 
water quality deterioration of the downstream  environment29,30. The unqualified river flow has a direct crash 
on the drinking water safety in riverine cities such as Wuhan, which has received intensive attention from the 
local government. Most of the previous studies regarding the middle and lower reaches of the Han River basin 
typically focused on the optimization of cascade reservoirs  operation31 or water resources  allocation32, the water 
quality has come to stand out in recent years. These studies aimed at analyzing the correlation between water 
bloom and water quality within a short period, while the temporal and spatial variations in water quality in 
different times and river sections were less investigated. Furthermore, only a few studies targeting assessing the 
water quality status but the single factor evaluation method or the Nemerow’s pollution index was adopted as 
the evaluation  method33. The WQI method had not been applied to Han River, let alone the minimal  WQImin 
method. Consequently, we still lack a thorough and comprehensive understanding of the water quality in this 
high-profile area. The temporal and spatial variations in water quality, the application of WQI method and the 
development of the  WQImin model consisting of the key water quality parameters need further investigation.

To bridge these gaps, we examined 15 representative water quality parameters collected from 11 monitoring 
stations during 2015–2017 for investigation of the water quality level. The main goals of this study are (1) to 
analyze the spatiotemporal variation of each water quality parameter in the study area; (2) to comprehensively 
evaluate the water quality status as well as the spatial profiles and seasonal patterns using the water quality index 
method; and (3) to identify the critical parameters and develop a  WQImin model for more efficient and cost-
effective water quality evaluation.

Materials and methods
Study area. Located in the middle of the Yangtze River economical belt, Han River is the largest tributary of 
the Yangtze River, China. It is usually segmented into three divisions, i.e., upstream from its source to the Dan-
jiangkou Reservoir, middle stream from the Danjiangkou Reservoir to the Jingzhou City, and downstream from 
Jingzhou to the Wuhan City. The total length of middle and low streams is 676 km, with a drainage area of 64,000 
 km2. Characterized by the subtropical monsoon, the river basin has abundant annual average precipitation from 
700 to 1800 mm which concentrates in the summer and autumn seasons.

With huge water resources potential, the area plays a significant role in the provincial granary, industry and 
national “one belt, one road” construction. Eleven water quality stations are located along the mainstream to 
monitor the water quality changes. More detailed information is presented in Fig. 1 and further provided in the 
supplementary material (Table S1).

Sample measurement and data collection. All archived data in this study were provided by the Hubei 
Provincial Academy of Eco-environmental Sciences. Water samples were collected on both sunny and cloudy 
days to eliminate the effect of precipitation. They were sampled monthly from January 2015 to December 2017 
in 11 stations, spanning temporal and spatial variation. The Standard Methods for the Examination of Water and 
Wastewater34 were used for sample chemistry analyses. There were 15 water quality parameters in total, includ-
ing pH, dissolved oxygen (DO, mg/L), permanganate index (PI, mg/L), chemical oxygen demand (COD, mg/L), 
five-day biochemical oxygen demand  (BOD5, mg/L), ammonia nitrogen  (NH3

-N, mg/L), total phosphorus (TP, 
mg/L), fluoride  (F-, mg/L), selenium (Se, μg/L), arsenic (As, μg/L), sulfide (mg/L), plumbum (Pb, μg/L), cop-
per (Cu, μg/L), zinc(Zn, μg/L) and mercury (Hg, μg/L). The specific approach for collecting water samples can 
be found in the standard of the Guidance on Sampling Techniques35. All the samples were labeled with detailed 
information using waterproof markers on the bottles to prevent misdiagnosis. Additionally, procedure blank 
was also used at all the stations to control the accuracy of analyses. With respect to the measurement method, 
the Hydrolab Datasonde 5 Sensor (USA) was calibrated prior to sampling to measure pH and DO. Except that, 
titration assembly, UV spectrophotometer (UV 2450), Ion chromatograph system (ICS 2000) and other instru-
ments were also employed for different water quality parameters. More detailed information concerning the 
instrumental and chemical analysis method could be found on the website of the Ministry of Ecology and Envi-
ronment of China (http:// www. mee. gov. cn/ ywgz/ fgbz/ bz/).

Water quality index. We used a weighted sum of all fifteen water quality parameters to calculate the WQI, 
which can be expressed as follows.

http://www.mee.gov.cn/ywgz/fgbz/bz/
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where n is the total number of water quality parameters, Ci and Pi are the normalized value and assigned weight 
of ith parameter, respectively. All weights range between 1 (least impact) and 4 (highest impact on water quality), 
and the assigned weights listed in Table S2 for relevant water quality parameters have been suggested by previous 
 literature36–38. Note that we referred to The Environmental Quality for Surface Water39 to obtain a normalized 
value of Ci for more accurate evaluation, which was shown as follows:

where Ti is the measured concentration of ith parameter; Si,k and Si,k+n are the standard thresholds of the ith 
parameter at level k and level (k + n) , respectively; Ii,k is the standard normalization value of the parameter level, 
i.e., 20, 40, 60, 80 and 100; m is the number of identical values of the threshold, and m is equal to 1 if there is no 
same threshold. It is worth noting that pH is a special parameter because it has no specific standard threshold, 
then C value is set to 100 when 6 ≤ pH ≤ 9 , otherwise it is 0.

WQI value ranges from 0 to 100 and can be classified into five different types as follows: excellent (91–100), 
good (71–90), medium (51–70), and bad (26–50) and very bad (0–25)19. A larger WQI value indicates a better 
water quality condition. Particularly, the annual period in this study is divided into spring (March to May), 
summer (June to August), autumn (September to November), and winter seasons (December to the following 
February). However, the traditional WQI model involves too many parameters and has much  uncertainty17,40. An 
improved  WQImin model by identifying the key parameters is developed with the benchmark of WQI, and both 
weighted and non-weighted  WQImin models are considered for comparison. The weighted  WQImin  (WQImin-w) 
model can be calculated by Eq. (1), while the non-weighted  WQImin  (WQImin-nw) model is calculated by Eq. (3).

With reference to the data split procedure in previous studies in Nong et al.24, Wu et al.14 and Uddin et al.41, 
the WQImin models in this study were established using the following steps: The WQI and Ci for each station in 
2015 and 2016 were used as “training data” to calibrate the  WQImin model while a test period in 2017 was used 
to verify the model performance.

(1)WQI =

∑n
i=1 (CiPi)
∑n

i=1 Pi

(2)Ci =















100− [
(Ti − Si,k)

(Si,k+m − Si,k)
× 20m+ Ii,k], Ti ∈ [Si,k , Si,k+m)

100−
Ti

Si,k+m
× 20m, Ti ∈ [0, Si,k)

(3)WQImin−nw =

∑n
i=1 Pi

n

Figure 1.  Location of the water monitoring stations in the middle and lower Han River basin. (This figure is 
generated by ArcGIS10.2 software. URL link: http:// www. arcgi sonli ne. cn/).

http://www.arcgisonline.cn/
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Data analysis. The Mann–Kendall (M–K) test has been widely applied to analyze water quality trends in 
previous  studies24,42. The calculation processes of the M–K test were shown in detail in Güçlü (2020). The results 
of the M–K test have illustrated the trends of water quality parameters in this basin and are shown in Fig. S1. The 
one-way analysis of variance (ANOVA) was applied to verify the spatial differences of parameters. The WQImin 
models in this study were established using the following steps: (1) The WQI and Ci for each station in 2015 
and 2016 were used as “training data” to select the key parameters for the WQImin model; (2) The coefficient of 
determination (R2) was taken as the goodness-of-fit criterion and the Percentage Error (PE) was used to evaluate 
the forecasting precision of the WQImin models based on the “testing data” (i.e., the WQI and the Ci for each 
station in 2017)44. The data used in the stepwise multiple linear regression method were pre-processed by the log 
transformation (i.e., lg(x + 1)).

Transparency. The authors confirm that the manuscript is an honest, accurate, and transparent account of 
the study was reported; that no vital features of the study have been omitted; and that any discrepancy from the 
study as planned have been explained.

Results
Water quality characteristics. Table 1 presents the statistical summary of all water quality parameters in 
the middle and lower reaches of the Han River basin and Fig. 2 displays their station concentrations.

Biochemical and physicochemical parameters (pH, DO, PI, COD,  BOD5, and sulfide). The annual mean pH val-
ues were greater than 7.80, and both the maximum and minimum measured pH values occurred in 2016, which 
were 8.80 and 6.60, respectively. For the annual mean pH, the highest value occurred in BJW station (pH = 8.22), 
closely followed by LHZ (pH = 8.21). The ZD, HZ, SD and HNC stations obviously observed much lower values 
than other stations, particularly, the HNC occupied the lowest annual mean pH value of 7.48. The M–K test 
showed that ZD, HZ, SD and HNC stations with relatively lower pH values had significant upward trends.

The annual mean DO concentrations were higher than the Class I standard (7.5 mg/L). The highest DO 
concentration of 13.40 mg/L was observed in 2015, while the lowest was in 2016 with the value of 5.9 mg/L. The 
annual mean DO concentrations increased monotonically from 2015 to 2017. For all stations, LHZ ranked first 
in terms of the annual mean DO concentration with the value of 9.73 mg/L, while SD and HNC were at the bot-
tom. Surprisingly, XG and ZF observed relatively higher DO concentration compared with the upstream stations. 
This might be attributed to the influence of the water temperature. Lower river water temperature contributed 
to the higher DO concentration, vice versa. However, the one-way ANOVA (p < 0.01) indicated that there was 
no spatial difference of DO. The results of the M–K test showed there was only one station, i.e., LHZ, having a 
downward trend of DO while the remaining (about 91%) exhibited unchanged. Hence, the DO concentration 
kept relatively stable in all stations during the periods.

PI, COD, and  BOD5 are all the key parameters for measuring water pollution levels arising from organic 
compounds. The statistical summary showed the annual mean PI concentration of each year was greater than 
2 mg/L, which implied that PI observation couldn’t meet the standard of Class I. The years from 2015 to 2017 
observed the maximal PI concentration of 4.6 mg/L, 4.2 mg/L, and 4.4 mg/L, respectively. Figure 2c showed 
that SW had the lowest mean PI of 1.83 mg/L and the downstream stations had higher PI concentrations than 

Table 1.  Comparison of the variations of the water quality parameters in middle and lower reaches of 
Han River basin in China from 2015 to 2017 (Avg.: Average; S.D.: Standard deviation). *Data from the 
Environmental Quality Standards for Surface  Water39. h is the number of the water samples.

Parameters

Thresholds of the 2015 (h = 132) 2016 (h = 132) 2017 (h = 132)

Class I standards* Avg. ± S.D Max Min Avg. ± S.D Max Min Avg. ± S.D Max Min

pH N/A 7.86 ± 0.45 8.40 6.70 7.93 ± 0.40 8.80 6.60 8.06 ± 0.29 8.70 6.90

DO (mg/L)  ≥ 7.5 mg/L 8.68 ± 1.59 13.40 6.10 8.80 ± 1.75 12.90 5.90 8.91 ± 1.51 12.20 6.10

PI (mg/L)  ≤ 2.0 mg/L 2.29 ± 0.51 4.60 1.40 2.28 ± 0.56 4.20 1.30 2.36 ± 0.59 4.40 1.40

COD (mg/L)  ≤ 15.0 mg/L 8.97 ± 2.98 21.30 5.00 9.84 ± 3.11 18.00 5.00 10.26 ± 3.25 19.00 5.00

BOD5 (mg/L)  ≤ 3.0 mg/L 1.55 ± 0.66 2.90 0.50 1.66 ± 0.75 2.90 0.50 1.42 ± 0.67 2.80 0.50

NH3N (mg/L)  ≤ 0.15 mg/L 0.212 ± 0.107 0.460 0.020 0.206 ± 0.123 0.600 0.030 0.169 ± 0.077 0.380 0.030

TP (mg/L)  ≤ 0.02 mg/L 0.066 ± 0.028 0.150 0.020 0.065 ± 0.025 0.130 0.010 0.066 ± 0.030 0.180 0.010

F- (mg/L)  ≤ 1.0 mg/L 0.249 ± 0.056 0.450 0.160 0.263 ± 0.060 0.480 0.130 0.246 ± 0.077 0.570 0.000

Se (μg/L)  ≤ 10 μg/L 0.341 ± 0.330 1.000 0.010 0.458 ± 0.590 5.000 0.010 0.427 ± 0.247 2.000 0.020

As (μg/L)  ≤ 50 μg/L 2.32 ± 1.44 6.00 0.20 2.60 ± 2.53 17.00 0.02 1.82 ± 1.45 7.00 0.02

sulfide (mg/L)  ≤ 0.05 mg/L 0.006 ± 0.007 0.040 0.002 0.003 ± 0.007 0.030 0.000 0.003 ± 0.009 0.090 0

Pb (μg/L)  ≤ 10 μg/L 3.16 ± 1.91 5.00 0.50 2.19 ± 2.71 10.00 0.04 1.92 ± 3.91 25.00 0.04

Cu (μg/L)  ≤ 10 μg/L 5.82 ± 6.01 20.00 0.20 10.15 ± 12.75 50.00 0.08 8.08 ± 14.01 50.00 0.40

Zn (μg/L)  ≤ 50 μg/L 18.85 ± 6.55 60.00 1.00 25.31 ± 21.78 50.00 0.30 25.24 ± 22.74 60.00 0.40

Hg (μg/L)  ≤ 0.05 μg/L 0.023 ± 0.007 0.050 0.010 0.038 ± 0.011 0.050 0.010 0.035 ± 0.012 0.050 0.010
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Figure 2.  Average and standard deviation of concentration for 15 water quality parameters at each monitoring 
station during the year 2015 ~ 2017.
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the upstream in general. The last 4 stations all exhibited the mean PI concentration over 2.5 mg/L while the 
mean concentration of other stations was lower than that value. With respect to COD, the maximum COD of 
21.30 mg/L was in 2016 and the minimum was observed the same in each year. The annual mean COD concentra-
tion in each year was observed below 11.0 mg/L and less than Class I. Nine consecutive stations showed annual 

Figure 2.  (continued)
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mean COD concentration larger than 7.5 mg/L and the downstream concentration were generally higher than 
the upstream except ZK station. The M–K test indicated that there were significant upward trends for HNC, XG 
and ZG stations, which were to be controlled in the following years. In terms of  BOD5, all the monthly  BOD5 
in all stations were less than 3.0 mg/L and satisfied the threshold value of Class I. The maximum  BOD5 in each 
year were almost the same. On spatial scale, SD, HNC and ZK stations showed three highest annual mean  BOD5 
concentrations, respectively, while the lowest occurred in ZD, which implied that SD, HNC and ZK stations 
exhibited relatively higher organic pollution.

The annual mean sulfide concentrations were far below the threshold of Class I. They were only about 10% 
of the threshold value (0.05 mg/L). The maximum sulfide occurred in 2017 with a value of 0.09 mg/L. The area 
had significant spatial differences in sulfide. Four consecutive stations from LHZ to HNC had higher sulfide 
content than the remaining 7 stations. About 72.7% of stations were analyzed by the M–K test to have significant 
downward trends for sulfide.

Nutrients and soluble ions  (NH3‑N, TP,  F‑). The annual mean  NH3-N concentration in each year exceeded the 
threshold value of Class I-0.15 mg/L. The maximum content was observed in 2016 and the minimum was in 
2015, with the values of 0.60 mg/L and 0.02 mg/L, respectively. Figure 2f showed that the consecutive 9 stations 
exhibited the annual mean  NH3-N concentration over 0.15 mg/L and only 2 downstream stations met the water 
quality requirement of Class I. The one-way ANOVA test revealed that no spatial differences were shown from 
upstream to downstream. But the study area was exposed to heavy pollution caused by TP. The statistical results 
demonstrated that the TP content of each station was far over the Class I threshold. The maximum TP content 
was 0.18 mg/L in 2017, followed by 0.15 mg/L in 2015. Figure 2g showed that the area has spatial heterogeneity 
of TP (one-way ANOVA, P < 0.01) and the TP content increased gradually from upstream to downstream. The 
spatial distribution of TP might be closely correlated with the phosphate industry in Hubei Province and the 
accumulation of the domestic sewage discharge, the use of fertilizer and  pesticide45. Furthermore, the TP con-
centration was closely related to the algal blooms, which should receive much attention.

The soluble ion,  F-, showed a small variation ranging from 0.246 mg/L to 0.263 mg/L. Compared to TP, the 
water quality condition for  F- was much better. The maximum measured  F- concentration in each year from 2015 
to 2017 was 0.45 mg/L, 0.48 mg/L and 0.57 mg/L, respectively. Although there was spatial heterogeneity with 
an increasing trend, all the stations were excellent in terms of  F-. The M–K test (Fig. S1) indicated that BJW and 
HNC stations had a significant downward trend.

Heavy metal parameters (Se, As, Pb, Cu, Zn and Hg). The maximum annual mean concentration occurred in 
2016 for Se, As, Cu, Zn and Hg with the values of 0.458 μg/L, 2.602 μg/L, 2.096 μg/L, 10.154 μg/L, 25.308 μg/L 
and 0.038 μg/L, respectively. The remaining Pb parameter had its maximum in 2015. Among the 6 parameters, 
Se, As and Hg performed best, followed by Pb, Zn and Cu in order. Table 1 showed the maximum value of Pb 
in 2017, Zn in 2015 and 2016, and Cu in 2015, 2016 and 2017, which were all over the threshold of Class I. The 
mean concentrations of Se and Hg had some fluctuation yet no obvious spatial changes (one-way ANOVA, 
P < 0.01). The mean concentrations of As increased from upstream to downstream in general except for higher 
values of ZD and HZ. As for Zn, LHZ had the minimum annual mean concentration and its downstream had 
higher concentration than upstream. The M–K test showed that there were 6, 2, 2, 6, 5, and 8 stations showing 
upward trends for Se, As, Pb, Cu, Zn and Hg, respectively.

Water quality assessment using the WQI method. The seasonal and spatial patterns of the water 
quality variations were presented in Fig. 3. In general, the water quality in our study area can be classified into 
“good” or “excellent” status in most cases, with all average WQI values greater than 87. Figure 3a displayed the 
seasonal variation of WQI during the monitoring period. The 4 highest seasonal average WQIs occurred in the 
winter of 2014, the spring and summer of 2015, and the winter of 2017, with values of 90.33, 90.28, 90.13, and 
90.21, respectively. The lowest seasonal WQI was in the summer of 2016, indicating the worst water quality con-
dition compared to other seasons. However, it could still be categorized to be “good” water quality status. The 
seasonal variation of the WQI in 2016 behaved more dramatically than that in 2015 and 2017. In 2015 and 2017, 
both the seasonal WQI values decreased from spring to summer, followed by a drop to the bottom in autumn 
and then rose again. In 2016, the lowest WQI values occurred in the summer. The WQI values descended from 
spring to summer to reach the lowest and then rose to 88.33 in autumn and continued to rise in winter. The low-
est WQI in 2016 summer could be tightly associated with the flood during that  period46. The persistent heavy 
rain caused severe floods in Han River basin and masses of non-point pollutants entered the channel and con-
taminated the river. Therefore, a lower WQI occurred in that time.

The spatial profile was displayed in Fig. 3b. The maximum average WQI was in SW and the minimum was in 
SD and HNC. WQI had certain spatial differences and the upstream stations occupied higher WQI than down-
stream. It can be attributed to the contaminant accumulation from domesticity, production, and other sources. 
In addition, YJH owed the most stable water quality condition yet HZ and ZG experienced larger fluctuations.

The training and test performance of  WQImin models. The results of the stepwise multiple linear 
regression were shown in Table S3. It showed Zn contributed most to WQI according to the training perfor-
mance, i.e., Model 1,  R2 = 0.411, P < 0.001; PI,  NH3

-N, TP, DO were recognized in sequence and the  R2 values 
increased monotonically until up to 0.857. For models with more parameters, such as models 6–8,  R2 values 
further improved. To comprehensively evaluate the performance of the  WQImin models for assessing water qual-
ity, all the models in Table S3 were considered for further investigation.  R2 and PE were the two selected evalu-
ation criteria for the model performance evaluation. The results indicated that except model 3, other  R2 values 
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improved with the increasing number of parameters. Compared model 2 with model 3, an extra  NH3
-N would 

decrease  R2 values but increase PE. Table 2 also showed that the  WQImin-nw models had higher  R2 values and 
lower PE values than the  WQImin-w models, indicating that the former could better explain the WQI variations. 
Moreover, significant differences between WQI and  WQImin existed in the training period as shown in Fig. 4, 
indicating that the first models were not suitable for WQI simulation, while the remaining models exposed their 
potential. The average and median of  WQImin-nw7 model were close to that of the WQI model, which accounted 
for 90% of the WQI variation with the lowest PE of 2.64%. It was identified as the most suitable  WQImin model 
in this study.

Regarding the performance of  WQImin models in the test period (in Fig. 5), the  WQImin-nw7 model still behaved 
well. It had an  R2 value of 0.895 and a low PE of 5.515%.  WQImin-w5/WQImin-nw5 model performed poorly with 
lower  R2 yet higher PE;  WQImin-nw6 model behaved well than  WQImin-w6,  WQImin-w7 or  WQImin-nw7 models in terms 
of  R2 but had a similar PE situation with  WQImin-nw5;  WQImin-w8 and  WQImin-nw8 models showed slightly larger 
 R2 values than  WQImin-nw7 model whereas PE also increased a lot, nearly 46.84% (from 2.515% to 3.693%) and 
30.93% (From 2.515% to 3.293%), respectively. Overall, WQImin-nw7 model could explain nearly 90% of the 
variations of WQI. The result demonstrated that  WQImin-nw7 model had a powerful prediction ability, which was 
consistent with the training performance.

Figure 3.  Seasonal (a) and spatial (b) variations of the water quality index (WQI) in the middle and lower 
reaches of the Han River basin in China from 2015 to 2017.

Table 2.  The parameter selection results of the  WQImin models from the stepwise multiple linear regression 
based on the training dataset (n = 264).

Parameter selection

WQImin-w (weighted) WQImin-nw (non-weighted)

Models R2 PE(%) P Models R2 PE(%) P

Zn w1 0.408 9.909  < 0.001 nw1 0.408 9.909  < 0.001

Zn, PI w2 0.534 5.595  < 0.001 nw2 0.573 4.395  < 0.001

Zn, PI, NH3N w3 0.469 6.531  < 0.001 nw3 0.558 5.278  < 0.001

Zn, PI, NH3N, TP w4 0.597 10.759  < 0.001 nw4 0.664 8.472  < 0.001

Zn, PI, NH3N, TP, DO w5 0.780 6.699  < 0.001 nw5 0.815 5.681  < 0.001

Zn, PI, NH3N, TP, DO, Pb w6 0.827 3.725  < 0.001 nw6 0.849 3.439  < 0.001

Zn, PI, NH3N, TP, DO, Pb, Cu w7 0.915 3.146  < 0.001 nw7 0.926 2.642  < 0.001

Zn, PI, NH3N, TP, DO, Pb, Cu, COD w8 0.955 3.820  < 0.001 nw8 0.958 3.302  < 0.001
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Discussion
Key parameter selection for  WQImin model. According to the stepwise multiple linear regression, the 
 WQImin model in this study consists of seven main parameters: Zn, PI,  NH3

-N, TP, DO, Pb and Cu. The  WQImin 
explains the variations of WQI well, and is more efficient for water quality assessment. Zn was the first param-
eter chosen for the regression, and it contributed most to the WQI evaluation in the training dataset  (R2 > 0.40, 
P < 0.001). PI was the second significant sign for the variation of WQI, which represented the organic pollution 
of the water body.  NH3

-N and TP were the third and fourth parameters, respectively, on behalf of the nutritional 
parameters of water quality. Figure 2 also depicted that the Han River basin was threatened by a significant 
spatial variance of  NH3

-N and TP. In fact, previous literature has declared the impact of  NH3
-N and TP on water 

 quality25,47. DO was the fifth parameter that could substantially improve  R2. It is the main force of shaping the 
aquatic environment and biochemical process. It was also a crucial parameter appearing in the  WQImin model in 
other works. Pb and Cu were introduced into the model last, both reflected the heavy metals concentration and 
affected water quality. Heavy metals in the water body could also harm human health. More attention should be 
put on these two substances since they sometimes fail to reach the standard of Class I of water quality.

Except for the universal multiple linear regression, other methods can be employed and are found in some 
relevant studies. Hou et al.48 used principal component analysis (PCA) to identify the explanatory parameters 
for WQI variation. Additionally, a linear correlation analysis between parameters was also meaningful. It can be 
employed for reducing the number of parameters and selecting the key parameters for analysis. The Pearson’s 
linear correlation of physicochemical parameters was shown in Fig. 6. The colors signified the positive or nega-
tive correlations between parameters and the areas occupied by the clockwise rotation showed the strong or 
weak correlations. The results illustrated that pH had a strong correlation with many parameters except for Se, 
Cu, and Hg. DO is positively correlated with  NH3

-N but negatively with PI, Zn, and Hg. Positive correlations 
were identified between PI and COD,  BOD5, TP, F-, As, sulfide, Cu, Zn.  BOD5 exhibited positive correlations 
with sulfide, Cu and Zn but negative correlations with Se, and Hg. More elaborate results can be found in Fig. 6, 
which can make sense for the selection of key parameters.

Impact sources and variation of water quality. Water quality evaluation can provide insights for the 
water resources exploitation and contamination control. In this study, we mainly utilized the measured data to 
unclose the water quality condition and developed a new method for evaluating the water quality. However, 
human activities, such as agricultural non-point source discharge, industrial and domestic sewage discharge, 
and anthropogenic intervention, could have a direct impact on the WQI performance. Some previous studies 
have found and reported this phenomenon. For example, Liu et al.45 found that farmland and urbanization could 
deteriorate water quality in the Han River basin. Tian et al.49 demonstrated that Lihu Lake suffer from the worst 
pollution during 1997–2003 due to excessive TN and TP. Although these parameters have improved significantly 

Figure 4.  Comparison of WQI and  WQImin values based on the training dataset (the parameters for each 
 WQImin model are shown in Table 2).
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after artificial management, the last two years have witnessed a slight rebound. The overall evaluation revealed 
that the water quality could be taken as “good” or “excellent” levels in most cases and the upstream stations pre-
sented better water quality than downstream with some parameters like PI and  NH3-N exceeded the thresholds, 
which implied that more effort can be made for the downstream water quality protection and the crucial water 
parameters needs to be constrained in these years. Moreover, the South-to-North Water Transfer Project and 
Yangtze-to-Han Water Transfer Project in recent decades also altered the hydrodynamic condition of the Han 

Figure 5.  Comparison of the WQI and  WQImin values based on the testing dataset (the parameters for each 
 WQImin model are shown in Table 2).
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River to some extent and further affect water quality parameters. Han River has been confronted with emerging 
issues in these years and what exactly drives the change of the water quality might alter both in space and time 
still needs further investigation. For instance, how the operation of complex water transfer projects will impact 
the variation of the discharge and contamination concentration in middle and lower Han River is a hotspot 
 issue50. Building a coupled hydrodynamic and water quality simulation model could contribute to the predic-
tion of the contamination concentration and unveil the spatio-temporal variation. Furthermore, the simulation 
results that provide data sources under different hydrology or hydrodynamic condition can be coupled with the 
WQI and  WQImin model constructed in this study for achieving comprehensive water quality evaluation. The 
model coupled the physics-based hydrodynamic-water quality model and the statistical WQI model could shed 
light on the source of contamination and provide precise preventions and control measures in the changing 
environments. What exactly drives the change of the water quality in different sections and in different times 
still needs investigation. Due to data scarcity of wastewater discharge, urban expansion, and hydrodynamics, 
more results regarding impact factors remains explored to assist water quality management. The coupled model 
that can unveil the source and variation of the contamination and assess the comprehensive water quality under 
complex conditions is to be built in the further study.

Uncertainty in water quality evaluation. Water quality evaluation is disturbed by multiple uncertainty 
sources, such as water sampling, measurement variability, water quality standard and water quality parameters. 
For example, both the weather and sampling time determine the DO content, and DO in aquatic ecosystems 
occupied the highest weight in water quality  evaluation25. In this study, the water quality samplings were carried 
out on sunny or cloudy days in most cases to eliminate precipitation disturbance. Nevertheless, it was difficult to 
require all the samples following a strict schedule in such a huge study area. The inevitable laboratory measure-
ment uncertainty might influence the confidence in WQI evaluations. Furthermore, the uncertainty was also 
induced by the water quality  standards17,51. The classification standards vary in different districts and in different 
protection objectives and thus introduce some uncertainties in the assessment. In this study, the normalization 
values reconcile with the Surface Water Quality Standards GB3838‑200239, which conformed to the official guid-
ance in China However, this standard system might not work for other regions or other protection objectives. 
The WQI evaluation results could be altered with the change of the standards. Another source of uncertainty is 

Figure 6.  Correlation among water quality parameters during the period 2015 ~ 2017.
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the assigned weights of water quality  parameters17. In terms of the previous studies concerning the water quality 
evaluation, the weight allocated to each parameter showed large  variation52,53. In some WQI aggregations, it is 
impractical to use a unit weight for each parameter due to their different levels of impact on the water status. 
The high concentration of a parameter with high weight could translate to a low WQI value resulting in a mis-
understanding of the water quality condition. Therefore, a proper approach for assigning the weights is essential. 
The weights used in this study were adopted and revised from Pesce et al.19 and Sun et al.54, which has also been 
verified in other studies. Whereas the uncertainty of WQI weights has not been investigated in this study, which 
is out of the main scope of the research. To further consider the overall uncertainty in WQI evaluation in the 
next steps, the statistical uncertainties with respect to the water quality parameters can be investigated using 
Monte-Carlo  simulation17.

Conclusions
The water quality condition of the middle and lower Han River basin in China from 2015 to 2017 and the spatio-
temporal variation of 15 water quality parameters were investigated and analyzed in this study. The water quality 
from seasonal and spatial scales was comprehensively evaluated with the WQI method and the key parameters 
were selected to develop the  WQImin model. The main conclusions are as follows:

(1) Eight parameters, i.e., PI, COD, TP,  F-, As, Pb, Cu and Zn, performed obvious spatial discrepancy. The 
physicochemical and nutrient parameters, except for PI and  NH3

-N, satisfied the standard of Class I during 
the period 2015–2017. The heavy metal parameters in the middle and lower reaches of the Han River basin 
stayed at a low level, while Cu, Zn, and Pb exceeded the threshold.

(2) The water qualities of this study basin were evaluated as “good” and “excellent” in most cases, with the mean 
WQI values of stations and seasons varying from 87.07 to 92.33 and from 87.43 to 90.33, respectively. On 
a spatial scale, the upstream stations presented better water quality than downstream; on a temporal scale, 
the autumn season was found the appearance time of worst water quality in 2015 and 2017 and the summer 
season was replaced in 2016.

(3) The  WQImin model developed in this study consisted of seven key parameters, i.e., Zn, PI,  NH3
-N, TP, DO, 

Pb and Cu. It has more physical explanatory and better evaluation performance than WQI for water quality 
evaluation.

Given the study area to be the strategic water source of China and the core of the Han River ecological eco-
nomic belt, more efforts on linkage between water quality and United Nations-Water Sustainable Development 
Goal 6 are necessary and recommended in the future.

Data availability
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