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Behavioral and neurophysiological 
aspects of working memory 
impairment in children 
with dyslexia
Jie Wang1,5, Shuting Huo2,3,5, Ka Chun Wu2,4, Jianhong Mo2, Wai Leung Wong2 & 
Urs Maurer2,3*

The present study aimed to identify behavioral and neurophysiological correlates of dyslexia which 
could potentially predict reading difficulty. One hundred and three Chinese children with and without 
dyslexia (Grade 2 or 3, 7- to 11-year-old) completed both verbal and visual working memory (n-back) 
tasks with concurrent EEG recording. Data of 74 children with sufficient usable EEG data are reported 
here. Overall, the typically developing control group (N = 28) responded significantly faster and more 
accurately than the group with dyslexia (N = 46), in both types of tasks. Group differences were also 
found in EEG band power in the retention phase of the tasks. Moreover, forward stepwise logistic 
regression demonstrated that both behavioral and neurophysiological measures predicted reading 
difficulty uniquely. Dyslexia was associated with higher frontal midline theta activity and reduced 
upper-alpha power in the posterior region. This finding is discussed in relation to the neural efficiency 
hypothesis. Whether these behavioral and neurophysiological patterns can longitudinally predict later 
reading development among preliterate children requires further investigation.

Children with developmental dyslexia have normal intelligence and sufficient learning opportunities but experi-
ence unexpected difficulty in learning to read and write. Understanding the neurobiological basis of dyslexia 
might facilitate earlier and possibly more accurate identification of children who will develop dyslexia, which is 
critical for early and most effective intervention. So far the most commonly observed brain differences in people 
with dyslexia seem to be reduced activations in left temporal, parietal, and fusiform  regions1. These studies mostly 
compared brain activations of people with and without dyslexia during a variety of reading or reading-related 
tasks, such as fluent  reading2 and phonological awareness  tasks3. However, few studies have investigated brain 
activations of people with dyslexia in a working memory (WM) task, although WM measures have been found 
to predict reading  performance4.

WM is a system that temporarily stores and manipulates information we need in completing cognitive  tasks5. 
In this model, visual and verbal information is maintained by domain-specific slave systems called the visuos-
patial sketch pad and the phonological loop, while the central executive acts as an attentional-controlling com-
ponent and coordinates the manipulation of information from the slave systems. Backward digit or word span 
tasks are widely used to measure verbal WM, as this type of task requires participants to recall a sequence of 
digits or words in a reversed order from how they are presented (e.g., recalling “3–2–7” after hearing “7–2–3”). 
Here participants need to not only maintain the original sequence of verbal information but also manipulate it 
to generate a new sequence in the reversed order. Simultaneous storage and processing of information is a key 
characteristic of WM tasks, and essential for many cognitive skills. A review study has shown that there is a 
moderate correlation between WM and academic achievement including both reading and math  performance6. 
Below we briefly review previous studies linking reading development and WM.

Reading development and WM. WM is closely related to the concept of short-term memory, which 
refers to the capacity to store information for a short time interval. Verbal short-term memory is typically meas-

OPEN

1Department of Psychology, The Education University of Hong Kong, Hong Kong S.A.R., China. 2Department 
of Psychology, The Chinese University of Hong Kong, Hong Kong S.A.R., China. 3Brain and Mind Institute, The 
Chinese University of Hong Kong, Hong Kong S.A.R., China. 4Department of Educational Psychology, The Chinese 
University of Hong Kong, Hong Kong S.A.R., China. 5These authors contributed equally: Jie Wang and Shuting 
Huo. *email: umaurer@psy.cuhk.edu.hk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-16729-8&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12571  | https://doi.org/10.1038/s41598-022-16729-8

www.nature.com/scientificreports/

ured by forward span tasks that require participants to recall a sequence of digits or words in the same order as 
presented to them. Since there is no need to manipulate the information, short-term memory tasks are consid-
ered to tap into part of WM functions only. In a meta-analytic  review7, children with dyslexia performed sig-
nificantly worse than chronological age controls on verbal short-term memory tasks. However, when two other 
predictors (i.e., phonemic awareness and rime awareness) were controlled, verbal short-term memory did not 
contribute uniquely to children’s word reading performance.

Since WM measures reflect people’s ability to simultaneously maintain and process information, researchers 
have linked WM more frequently with reading comprehension, a more complex reading ability that involves inte-
grating information from earlier text, current input, and one’s long-term memory. A review study has reported 
a moderate correlation between WM and reading  comprehension4. Researchers have also investigated the asso-
ciation between WM and early reading development. For example, Chung and McBride-Chang8 found that 
WM and inhibitory control together contributed uniquely to word reading performance of Hong Kong Chinese 
children at both the second and third years of kindergarten, after controlling for age, vocabulary knowledge, and 
metalinguistic skills (see also the study of Welsh and  colleagues9). These findings are consistent with a prevalent 
observation that individuals with dyslexia tend to show deficits in  WM10–12.

Most reading studies have emphasized the role of verbal rather than visual working (or short-term) memory 
in predicting reading development. This is because the majority of reading studies have been conducted among 
readers of alphabetic scripts, in which grapheme-phoneme correspondences allow the readers to decode the 
sound of a spelling in a relatively easy  manner13. However, the role of visual WM may be important in learning 
to read other types of scripts with a lack of grapheme-phoneme correspondences, e.g., Chinese. Since Chinese 
adopts a logographic writing system, children typically need to rely on rote character copying in Chinese literacy 
 acquisition14. Hence, it is not surprising that visual skills seem to be more important for Chinese readers than 
for alphabetic readers. In a cross-cultural study, Huang and  Hanley15 found that performance on a task of visual 
paired associates learning (i.e., learning the association between colors and abstract line drawings) was a strong 
predictor of the reading ability of 8-year-old primary children in Hong Kong and Taiwan (Chinese script), but not 
in Britain (English script). Later studies also found that visual skills contributed uniquely to Chinese character 
reading after controlling for age, vocabulary knowledge, and metalinguistic  skills16.

Although researchers have compared Chinese children with and without dyslexia on a variety of visual skill 
 measures11 (e.g., visual search, visual spatial relationship), few of them have adopted visual WM tasks. Therefore, 
the first aim of the present study was to fill in this research gap by using the n-back  task17 with both visual and 
verbal stimuli. In this task, participants are typically presented a sequence of items one by one and required to 
indicate whether the current item is the same as the one presented n items back. For example, the second “3” in 
the sequence “5–2–3–3–0” is a target in a 1-back task, and the second “2” in the sequence “9–2–0–2–3” is a target 
in a 2-back task. As the sequence goes on, participants need to continuously update the information maintained 
in the WM and perform same-different judgment at the same time. WM demand varies with n and thus can be 
manipulated factorially. In the present study, two types of n-back task were used to compare Chinese children 
with and without dyslexia, one with Chinese characters as items while the other with visual patterns. These two 
types of tasks would reflect children’s verbal and visual WM, respectively. Another important reason for choos-
ing the n-back task is that the procedure of this task fits the methodological constraints in many neuroimaging 
techniques, which is related to the second aim of the present study as spelled out below.

Brain oscillations in relation to WM processes and individual differences. Despite the close rela-
tion between WM and reading development, few studies have investigated the potential neurophysiological 
substrate of a WM deficit in dyslexia. Nevertheless, the relation between brain oscillations and maintenance of 
information in WM has been extensively studied in the past few decades. A recent  review18 has shown that theta 
activity in the frontal midline region is most consistently associated with WM maintenance, especially in verbal 
WM tasks. The most typical finding is an increase in frontal midline theta during a retention phase of the WM 
task relative to the  baseline19. Among 15 EEG studies identified in the review that involved at least two load levels 
of verbal WM, ten reported stepwise increase of theta with memory  load20. On the other hand, theta increase has 
been less consistently observed in visual WM tasks (around half of the reviewed studies).

Due to its commonly observed increase at higher task difficulties, frontal midline theta is considered to reflect 
the mental effort engaged in the  task21. Hence, one may expect to see more pronounced theta increase in less apt 
individuals, since they probably need even more effort to complete a demanding task than more apt individu-
als do. This prediction is consistent with the neural efficiency  hypothesis22, which posits that better performing 
individuals show reduced (more efficient) neural activity in cognitive tasks. In an EEG study by Maurer and 
 colleagues23, healthy adults were required to memorize 2 or 4 unfamiliar symbols (low or high load) for 3.5 s and 
then to decide if a probe was one of the presented symbols (i.e., a Sternberg  task24). The participants’ behavioral 
performance decreased from the low load condition to the high load condition, while their frontal midline theta 
in the retention phase increased. Moreover, the theta increase correlated significantly with the decrease in accu-
racy at the individual level, indicating that the more difficult a given task seemed to an individual (as indicated 
by the larger decrease in accuracy), the larger increase in frontal midline theta was observed. Another study by 
Brzezicka and  colleagues25 recorded intracranial EEG while patients with epilepsy were performing a Sternberg 
task with 3 load levels (1, 2, or 3 pictures). Theta power in the retention phase increased with memory load in 
the hippocampus but decreased in the dorsolateral prefrontal cortex (DLPFC). Furthermore, the faster one 
participant responded, the larger theta power decrease with memory load was found in the DLPFC. Although 
the load effect on theta power was partly in different directions, both studies found that better performing par-
ticipants showed a tendency of reduced theta power (smaller increase or larger decrease with memory load) in 
the retention phase of a WM task.
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In addition to theta power, alpha power has also been found to change with WM load, although the direction 
of alpha change was inconsistent. According to the review by Pavlov and  Kotchoubey18, the ratio of studies on 
verbal WM that found alpha increase versus decrease was 4:1, and this ratio became 3:2 for studies on visual WM. 
By dividing the alpha band into subbands (lower- and upper-alpha), some researchers found that upper-alpha 
activity tended to increase with memory load while lower-alpha activity tended to  decrease20,23. One explanation 
is that upper-alpha increase reflects inhibition of task-irrelevant regions in the retention phase and that lower-
alpha decrease reflects release of inhibition in task-relevant  regions20,26. In terms of individual difference, Grabner 
and  colleagues27 found that higher intelligence was associated with higher upper-alpha power (i.e., lower brain 
activation) in WM tasks, consistent with the neural efficiency  hypothesis22.

The present study. So far, much fewer studies have investigated WM-related brain oscillations in  children28, 
and almost none for children with  dyslexia29. The present study recorded concurrent EEG while the children 
with and without dyslexia were doing the n-back task, in order to compare not only behavioral performance but 
also brain oscillations of the two groups in a WM task. In addition to verbal WM, nonverbal stimuli were also 
included to tap visual WM (considering the logographic nature of the Chinese writing system), which seemed to 
have received less attention in the reading literature. Based on the previous findings mentioned above, we chose 
to examine theta power in the frontal midline  region19,21 as well as lower- and upper-alpha  power23 in the pos-
terior  region30,31. Moreover, logistic regression analysis was conducted to find out whether these behavioral and 
neurophysiological measures were significant predictors of  dyslexia32,33. We hypothesized that the children with 
dyslexia would show poorer behavioral performance in the WM task. The neural efficiency hypothesis predicted 
that the children with dyslexia would manifest higher theta and lower alpha power (i.e., more brain activation) 
during the retention phase of the task.

Results
In the current design, Type of task (verbal, visual) and Load level (1-back, 2-back) were two within-participants 
factors, while Group (control, dyslexic) was a between-participants factor. Since the control group had a sig-
nificantly higher non-verbal intelligence than the group with dyslexia (p = 0.014), ANCOVA was conducted on 
each of the dependent variables in the n-back task with Intelligence as a covariate: (1) reaction time (RT, i.e., the 
time interval between stimulus offset and response) when the target was correctly hit, (2) d  prime17, which was 
calculated based on the hit and false alarm rates, (3) log-transformed theta power in the frontal midline region, 
(4) log-transformed lower-alpha power in the posterior region, and (5) log-transformed upper-alpha power in 
the posterior region. The restriction to the frontal midline region for theta analysis was based on previous studies 
that showed a topographically more restricted effect for theta compared to  alpha20,23, while alpha activity was 
relatively widespread and most prominent over posterior  areas30,34.

d prime. Calculated based on the hit and false alarm rates, d prime (d’) can be considered as an index reflect-
ing how well one can differentiate targets from non-targets (the higher d’, the better). Table 1 shows the mean 
d’ in each of the four conditions for each group. The ANCOVA showed that the main effect of Intelligence on 
d’ was significant (F(1,71) = 6.30, p = 0.014, ƞp

2 = 0.08) while all interactions involving this covariate were non-
significant (ps ≥ 0.150). The main effects of Type (F(1,71) = 14.87, p < 0.001, ƞp

2 = 0.17), Load (F(1,71) = 5.23, p = 0.025, 
ƞp

2 = 0.07), and Group (F(1,71) = 15.80, p < 0.001, ƞp
2 = 0.18) were significant, showing that the d’ was higher in the 

verbal tasks than in the visual tasks and also higher in the 1-back tasks than in the 2-back tasks. Besides, the 
control group demonstrated a higher sensitivity to detect the targets in the WM tasks than the group with dys-
lexia. The Load × Group interaction (F(1,71) = 4.90, p = 0.030, ƞp

2 = 0.07) and the Type × Load × Group interaction 
(F(1,71) = 4.84, p = 0.031, ƞp

2 = 0.06) were significant, while all other interactions were non-significant (ps ≥ 0.369). 
The Load effect was comparable between the two groups in the verbal tasks (− 0.54 vs. − 0.58, p = 0.863, d = 0.04). 
In the visual tasks, the control group showed a significantly larger Load effect than the group with dyslexia 
(− 1.53 vs. − 0.77, p = 0.001, d = − 0.80), possibly because the group with dyslexia performed poorly in the visual 
1-back task already.

Reaction time. The ANCOVA showed that the main effect of Intelligence on RT and interactions involving 
this covariate were all non-significant (ps ≥ 0.434). The main effect of Group (F(1,71) = 12.82, p = 0.001, ƞp

2 = 0.15) 
and the Type × Load × Group interaction (F(1,71) = 4.56, p = 0.036, ƞp

2 = 0.06) were significant, while all the other 
effects were non-significant (ps ≥ 0.395). The group with dyslexia showed a slightly larger Load effect than the 
control group in the verbal tasks (241 vs. 162 ms, p = 0.129, d = 0.37). In the visual tasks, the Load effect of the 
group with dyslexia was marginally smaller (77 vs. 215 ms, p = 0.079, d = − 0.43), possibly because this group 
responded quite slowly in the visual 1-back task already. Post-hoc t-tests showed shorter RT in the control group 
than in the group with dyslexia for all the conditions (verbal 1-back: p = 0.005, d = − 0.69; verbal 2-back: p < 0.001, 
d = − 0.96; visual 1-back: p < 0.001, d = − 0.99) except the visual 2-back one (p = 0.129, d = − 0.34).

Frontal midline theta. In the n-back task, the children needed to make same-different judgment for each 
presented item and to maintain the newly updated items before seeing the next one. The mean RT in each condi-
tion ranged from 779 to 1173 ms. We can infer that the last 1-s interval of the 3.5-s fixation period fell into the 
retention phase of the n-back task, before which the encoding of new information and the same-different judg-
ment were completed. Thus, band power during WM maintenance was obtained from this time window (see 
Fig. 1 and Fig. S1 for the topographic maps of band power differences between groups and between load levels, 
respectively).
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The ANCOVA showed that the main effect of Intelligence on log-transformed theta power and interactions 
involving this covariate were all non-significant (ps ≥ 0.223). The Load × Group interaction (F(1,71) = 5.99, p = 0.017, 
ƞp

2 = 0.08) was significant, while all the other effects were non-significant (ps ≥ 0.318). Post-hoc t-tests showed that 
the log-transformed theta power of the control group had a marginally significant decrease from 1-back tasks to 
2-back tasks (0.542 − 0.564 = − 0.022, p = 0.078, d = − 0.35). In contrast, the group with dyslexia demonstrated an 
opposite trend (0.588 − 0.575 = 0.013, p = 0.173, d = 0.20). In terms of group difference, the group with dyslexia 

Table 1.  Behavioral performance and EEG band power of the typically developing and dyslexic children in the 
n-back task (standard errors in parentheses).

Verbal 1-back Verbal 2-back Visual 1-back Visual 2-back

M SE M SE M SE M SE

d prime

Control 3.49 (0.16) 2.95 (0.20) 2.84 (0.22) 1.31 (0.12)

Dyslexic 2.66 (0.16) 2.08 (0.14) 1.71 (0.14) 0.94 (0.11)

All 2.98 (0.12) 2.41 (0.12) 2.14 (0.14) 1.08 (0.08)

Reaction time (ms)

Control 779 (33) 940 (46) 830 (36) 1044 (56)

Dyslexic 932 (36) 1173 (36) 1095 (45) 1172 (61)

All 874 (27) 1085 (31) 995 (34) 1123 (44)

Frontal midline theta power (log-transformed)

Control 0.546 (0.037) 0.531 (0.041) 0.583 (0.044) 0.553 (0.036)

Dyslexic 0.566 (0.028) 0.588 (0.030) 0.583 (0.029) 0.588 (0.030)

All 0.559 (0.022) 0.566 (0.024) 0.583 (0.024) 0.575 (0.023)

Upper-alpha power in the posterior region (log-transformed)

Control 0.744 (0.057) 0.731 (0.055) 0.743 (0.060) 0.713 (0.059)

Dyslexic 0.579 (0.056) 0.573 (0.054) 0.590 (0.053) 0.595 (0.053)

All 0.642 (0.042) 0.633 (0.040) 0.648 (0.041) 0.639 (0.040)

Lower-alpha power in the posterior region (log-transformed)

Control 0.607 (0.049) 0.596 (0.044) 0.585 (0.046) 0.568 (0.049)

Dyslexic 0.547 (0.046) 0.546 (0.042) 0.548 (0.042) 0.557 (0.043)

All 0.570 (0.034) 0.565 (0.031) 0.562 (0.031) 0.561 (0.032)

Theta Lower-alpha Upper-alpha
0.5 µV2/Hz

Group differences in the 1-back tasks

Theta Lower-alpha Upper-alpha

-0.5 µV2/Hz

Group differences in the 2-back tasks

Figure 1.  The group effects (dyslexic–control) on the log-transformed power of theta, lower-alpha, and 
upper-alpha bands during working memory maintenance. Data were collapsed across the two types of working 
memory tasks (verbal and visual). Frontal midline theta power was pooled from AFz plus 4 surrounding 
electrodes; posterior alpha power was pooled from Pz, P3, P4 and 15 surrounding electrodes (selected electrodes 
are enclosed by the dashed circles).
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had a non-significantly higher theta power than the control group in both 1-back and 2-back tasks (1-back: 
0.575 − 0.564 = 0.011, p = 0.818, d = 0.06; 2-back: 0.588 − 0.542 = 0.046, p = 0.325, d = 0.24).

Upper-alpha in the posterior region. The ANCOVA showed that the main effect of Intelligence on log-
transformed upper-alpha power and interactions involving this covariate were all non-significant (ps ≥ 0.100). 
The main effect of Group (F(1,71) = 4.91, p = 0.030, ƞp

2 = 0.07) was significant, while all the other effects were non-
significant (ps ≥ 0.188). The control group demonstrated a higher upper-alpha power in the posterior region than 
the group with dyslexia.

Lower-alpha in the posterior region. The ANCOVA showed that all the effects were non-significant on 
log-transformed lower-alpha power (ps ≥ 0.119).

Distinguishing children with and without dyslexia. To find out which variables were most strongly 
and uniquely associated with dyslexia, the following variables from the WM tasks were entered by  block32 into 
logistic regression models as predictors of dyslexia: (1) Block 1 included general control variables: age, grade, 
non-verbal intelligence; (2) Block 2 included 8 behavioral variables: reaction time and d prime in each of the four 
conditions; and (3) Block 3 included 12 neurophysiological variables: log-transformed frontal midline theta, 
posterior lower- and upper-alpha power in each of the four conditions. The forward Wald  method33 was adopted 
in each block so as to identify behavioral measures (if any) that uniquely predicted dyslexia beyond control 
variables as well as unique neurophysiological predictors (if any) beyond both control and behavioral variables.

Table 2 shows the three logistic regression models generated in each block. In Block 1, the Wald statistic 
showed that only non-verbal intelligence was a significant predictor (p = 0.040). Model 1 made significantly better 
prediction of dyslexia than a null model (χ2

(1) = 4.99, p = 0.025). In Block 2, two behavioral variables (i.e., RT in 
the visual 1-back condition, d’ in the verbal 2-back condition) were entered (ps ≤ 0.009), and Intelligence became 
non-significant (p = 0.328). Model 2 significantly improved prediction of dyslexia relative to Model 1 (χ2

(2) = 24.53, 
p < 0.001). The classification accuracy increased from 59.5% (dyslexic: 82.6%; control: 21.4%) to 81.1% (dyslexic: 
84.8%; control: 75.0%), and Nagelkerke’s R2 improved from 0.089 to 0.448. In Block 3, two neurophysiological 
variables (i.e., log-transformed frontal midline theta in the verbal 2-back condition, log-transformed posterior 
upper-alpha in the visual 1-back condition) were further entered (ps ≤ 0.006), while the two behavioral vari-
ables remained significant (ps ≤ 0.002). Model 3 significantly improved prediction of dyslexia relative to Model 
2 (χ2

(2) = 16.27, p < 0.001). The classification accuracy further increased from 81.1 to 82.4% (dyslexic: 87.0%; 
control: 75.0%). Nagelkerke’s R2 of Model 3 was 0.628, suggesting a relatively strong relation between the predic-
tors and dyslexia (see Fig. S2 for the distribution of predicted probabilities in the classification plots). To sum up, 
significant and unique predictors of dyslexia were found from both behavioral and neurophysiological measures 
of WM in the present study.

Figure 2 displays the scatterplots of the two groups, showing each significant predictor of dyslexia (y axis) 
as a function of non‐verbal intelligence (x axis). To further examine the predictive role of WM measures in 
dyslexia without any confounding effect of non‐verbal intelligence, we conducted additional logistic regression 
analysis on the control group and a subsample of the group with dyslexia (i.e., excluding those who scored 21 or 
lower in non‐verbal intelligence), whose non‐verbal intelligence scores were comparable (p = 0.860). The results 
showed that non‐verbal intelligence was no longer a significant predictor while behavioral and neurophysiological 
measures of WM (i.e., verbal 2-back RT, visual 1-back d’, verbal 2-back theta and upper-alpha) still significantly 
and uniquely predicted dyslexia. More details of the additional logistic regression analysis can be found in the 
Supplemental Material.

Table 2.  Parameter estimates, standard errors, and statistical significance in the logistic regression analyses of 
factors associated with dyslexia. *p < 0.05, **p < 0.01, ***p < 0.001.

B SE Wald p χ2 df Nagelkerke’s R2 Classification accuracy

Model 1 4.99* 1 0.089 59.5%

Non-verbal intelligence − 0.109 0.053 4.207 0.040*

Model 2 29.52*** 3 0.448 81.1%

Non-verbal intelligence − 0.069 0.071 0.956 0.328 (Model 2 vs: Model 1: χ2
(2) = 24.53, p < 0.001)

RT (visual 1-back) 0.005 0.002 10.548 0.001**

d’ (verbal 2-back) − 0.889 0.339 6.872 0.009**

Model 3 45.79*** 5 0.628 82.4%

Non-verbal intelligence − 0.048 0.094 0.260 0.610 (Model 3 vs: Model 2: χ2
(2) = 16.27, p < 0.001)

RT (visual 1-back) 0.006 0.002 11.044 0.001**

d’ (verbal 2-back) − 1.458 0.477 9.355 0.002**

Theta (verbal 2-back) 7.098 2.582 7.559 0.006**

Upper-alpha (visual 1-back) − 4.998 1.735 8.302 0.004**
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Discussion
The present study required Chinese children with and without dyslexia to complete verbal and visual WM 
tasks with concurrent EEG recording. Consistent with the findings of previous  studies10–12, the control group 
responded significantly faster and more accurately than the group with dyslexia, in both types of tasks. In the 
retention phase of the tasks, the frontal midline theta power of the control group tended to decrease from the 
low load to the high load condition, while the group with dyslexia showed an opposite trend. The control group 
also demonstrated a higher upper-alpha power than the group with dyslexia did across all conditions. Forward 
stepwise logistic regression identified a few significant predictors of dyslexia, including both behavioral and 
neurophysiological measures of WM.

WM-related neurophysiological correlates of dyslexia. In the logistic regression model, frontal 
midline theta activity in the verbal 2-back task was positively associated with dyslexia, and posterior upper-
alpha power in the visual 1-back task was negatively associated with dyslexia. This means that children in our 
sample who spent more mental effort and inhibited brain activation to a lesser extent during WM maintenance 
tended to have dyslexia, which is consistent with the neural efficiency  hypothesis22. Importantly, these neu-
rophysiological correlates uniquely predicted reading difficulty in addition to non-verbal intelligence (though 
non-significant in the final model) and behavioral correlates. While behavioral indicators (speed and accuracy) 
reflected the children’s final achievement in WM tasks, neurophysiological measures (theta and alpha oscilla-
tions) reflected the amount of mental effort and neural resources engaged during WM  maintenance21,23. These 
variables tapped into different aspects of WM, and all predicted reading difficulty uniquely.
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Figure 2.  Scatterplots of the two groups showing each significant predictor of dyslexia (y axis) as a function of 
non‐verbal intelligence (x axis). Significant predictors included (a) reaction time in the visual 1-back condition, 
(b) d’ in the verbal 2-back condition, (c) log-transformed frontal midline theta in the verbal 2-back condition, 
and (d) log-transformed posterior upper-alpha in the visual 1-back condition.
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A few fMRI studies have also compared brain activation of dyslexic and non-dyslexic readers during WM 
tasks. While some found reduced prefrontal activation in  dyslexia35, some found both increased and decreased 
activation in the prefrontal  cortex36. These mixed results could be partly due to the differences in the tasks. 
Researchers have found that neural efficiency could be modulated by task difficulty and other  factors37. There are 
situations where better performing individuals may display the same amount of or even more brain  activation38. 
Besides, the relatively low temporal resolution of the fMRI technique could be another reason. An EEG study 
by Jaušovec and Jaušovec39 showed that in a modified n-back task, the theta power of high-intelligence indi-
viduals was higher than that of low-intelligence ones in 0–500 ms post-stimulus onset. Then it decreased soon 
and the group difference was reversed in 1000–2000 ms, suggesting that the high-intelligence individuals were 
more intensely engaged with the task in the first 500 ms and soon lowered their mental effort in the following 
retention phase. Hence, the retention phase, the phase selected for analysis in the present study, might be an 
optimal time interval for reduced neural activation in better performing individuals (i.e., neural efficiency) to 
occur. Previous fMRI studies might have captured neural activation across different phases, which could be one 
of the reasons for the mixed findings. By using EEG, the present study was able to examine brain activation in 
the retention phase more precisely.

In contrast to the prominent Group effect, the Load effect on brain oscillations seemed to be relatively minor 
in the present study. For frontal midline theta power, only the Load × Group interaction was significant, caused 
by the opposite directions of theta change in the two groups with increasing load. While the control group had 
a marginally significant theta decrease, the group with dyslexia demonstrated a non-significant trend of theta 
increase. For lower- and upper-alpha power, no significant difference was found between load levels. Different 
patterns of theta and alpha changes with WM load have been reported in previous studies, and the modulating 
factors remain largely  unclear18. For example, a few studies found an inverted U-shape influence of WM load on 
frontal midline theta power, i.e., highest theta power with a moderate load  level40,41. So, one explanation for the 
trend of theta decrease in the control group could be that the current 2-back tasks were beyond the moderate 
load level for early grade children. However, this account would predict a theta decrease in the group with dys-
lexia as well, since their behavioral performance was even worse than that of the control group. This prediction 
contradicted the observed trend of theta increase in the group with dyslexia. Note that the Load effect was not 
significant in either group. Further studies are needed to examine the robustness of the observed theta change 
when children perform WM tasks with different load levels.

WM impairment: cause or effect. The present study identified a few behavioral and neurophysiological 
correlates (i.e., visual 1-back RT and upper-alpha, verbal 2-back d’ and theta) of WM impairment in dyslexia 
(i.e., more neural resources engaged but poorer behavioral performance). However, we cannot tell whether poor 
WM is a cause or an effect of dyslexia. In the verbal n-back tasks, the children were able to make use of phono-
logical codes of the Chinese characters to achieve better performance than in the visual tasks, where only visual 
codes were usable. The group differences in the verbal tasks could result from inefficient processing of Chinese 
characters in the children with dyslexia, due to their poor orthography–phonology  conversion42. Hence, poor 
verbal WM could be a consequence of other deficits in dyslexia.

On the other hand, similar group differences were observed in the visual n-back tasks, where non-verbal 
stimuli were used without involving orthographic or phonological encoding. The visual 1-back RT and upper-
alpha were also unique predictors of dyslexia in the logistic regression model. This finding seems to support a 
deficit in the central executive component of  WM43,44, whose dysfunction impairs both verbal and visual working 
memories. Nevertheless, an alternative explanation is that the development of visual processing is influenced by 
the children’s reading  skills45. In a longitudinal study, Pan and  colleagues42 tracked Chinese children’s character 
reading accuracy and pure visual skill for three years (at ages 6 to 8). They found that reading accuracy predicted 
subsequent performance in a pure visual task but not vice versa. Hence, poor visual WM could be a consequence 
of reading difficulty as well.

Despite these alternative possibilities, we believe that the children with dyslexia are highly likely to have cen-
tral executive dysfunction given the available evidence. Melby-Lervåg and  colleagues7 have shown that verbal 
short-term memory does not contribute uniquely to word reading performance when metalinguistic skills are 
controlled. But WM together with other executive functions seems to have a unique contribution to reading 
 achievement8,9,46, suggesting the importance of central executive in reading development. In the present study, 
similar group differences were observed across the two types of WM tasks, consistent with the existence of central 
executive dysfunction in dyslexia. Note that developmental dyslexia can be classified into different  subtypes47,48, 
so not all children with dyslexia have the same deficits or the same cause of the deficits. The scatterplots in Fig. 2 
show that not all children in the dyslexic group appeared to have WM impairment and that some control chil-
dren demonstrated poor WM. Although WM differences can be observed in between-groups comparisons, WM 
impairment does not always co-occur with  dyslexia49. In the current logistic regression analysis, Model 3 only 
correctly classified 87.0% of the children with dyslexia and 75.0% of the control children. Hence, behavioral and 
neurophysiological measures of WM could potentially predict dyslexia, but these measures alone are insufficient 
to classify children as having dyslexia or not.

The present study adopted the n-back task and identified both behavioral and neurophysiological correlates of 
WM impairment in dyslexia, among early grade children. Importantly, EEG band power (theta and alpha oscil-
lations) uniquely predicted reading difficulty in addition to the behavioral measures (RT and d’). One limitation 
of the present study is that the non-verbal intelligence of the two groups was not matched, although additional 
logistic regression analysis on the subsample showed a similar pattern of results after matching the non‐verbal 
intelligence scores. Besides, previous studies found that dyslexic children’s deficits in certain short-term memory 
tasks disappeared when they were matched to controls on non-verbal intelligence and oral language  abilities50,51. 
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Although the current n-back tasks required key-pressing responses only and involved the use of oral language 
minimally (especially the visual tasks), this study could be improved by including measures of oral language 
abilities. With stricter control on non-verbal intelligence and oral language abilities, future studies may replicate 
the present study among younger or preliterate children and follow them  up52 to find out whether earlier behav-
ioral and neurophysiological measures of WM longitudinally predict later reading development. Compared to 
the backward span task and some other WM tasks, the n-back task has at least two advantages. First, the chil-
dren are able to respond by simply pressing a key without verbal articulation, so that any confounding effects 
of language abilities are minimized. Second, the procedure of this task allows concurrent EEG recording and 
frequency analysis in a retention phase, which could potentially improve the prediction success. Longitudinal 
studies are needed to examine the effectiveness of these potential predictors and to determine whether they can 
be used in clinical practice.

Conclusions
In the 1-back and 2-back WM tasks, the typically developing children performed better than the children with 
dyslexia. Frontal midline theta and posterior upper-alpha power in the retention phase of the tasks reflected the 
amount of mental effort and neural resources being engaged, and they predicted dyslexia uniquely in addition 
to indices of speed and accuracy. However, it remains unclear whether these behavioral and neurophysiological 
patterns are merely consequences of reading difficulty or not. Further investigation is needed to examine whether 
the current measures can be used to predict reading difficulty in pre-readers.

Methods
Participants. Data of 28 typically reading children and 46 children with dyslexia (native Cantonese-speak-
ing; second or third grade; 7–11 years old) from a larger research project (approved by The Joint Chinese Uni-
versity of Hong Kong—New Territories East Cluster Clinical Research Ethics Committee) are reported. They 
were recruited from Hong Kong primary schools and education authorities, and written informed consent was 
obtained from the children and their guardians. All methods were performed in accordance with relevant guide-
lines. Among 103 children (66 with dyslexia) who completed all the relevant tasks as described below, 29 chil-
dren (20 with dyslexia) were excluded from the present study due to too few usable EEG segments (see section 
on EEG recording and preprocessing below). The typically developing children had no difficulty in reading or 
writing based on parents’ report. Those with dyslexia were formally diagnosed by either educational or clinical 
psychologists based on The Hong Kong Test of Specific Learning Difficulties in Reading and Writing for Primary 
School Students—Third Edition [HKT-P(III)]53, whose criteria included adequate IQ (higher than 85), poor 
literacy (− 1 SD or below), and at least one area of cognitive-linguistic deficit (− 1 SD or below)54. Besides, they 
had no history of significant sensory impairment, birth complications, or brain injury. Based on the parents’ 
responses in a questionnaire (N = 70), 7 children from the dyslexic group (16.7%) and 2 from the control group 
(7.1%) had a formal diagnosis of language impairment (p = 0.244). Table 3 shows the demographic information 
of the two groups, who did not differ significantly in gender, age, grade, maternal or paternal education level, or 
monthly family income (ps ≥ 0.248).

Procedure. Raven’s Standard Progressive Matrix (RSPM). RSPM55, Sets A to C were used to assess non-
verbal intelligence. Each test item required the children to choose an option out of six (Sets A and B) or eight (Set 
C) to fill the missing part of a design. There were 12 test items in each set and thus 36 items in total.

Verbal n‑back task. Sixty Grade-2 level characters with a varying number of strokes (from 4 to 13) were selected 
from the Hong Kong Corpus of Primary School  Chinese56 and formed a sequence for verbal 1-back and 2-back 
tasks respectively. In each task, twenty of the characters appeared twice, and those appearing at the second time 
were targets. The targets appeared immediately after the same characters in the 1-back task and appeared the sec-
ond after the same characters in the 2-back task (Fig. 3). The same set of characters were used in both tasks, but 
the target characters were mostly different so that one could not predict whether a character was a target or not 
based on its status in an earlier task. Each task contained 60 non-targets and 20 targets and was divided into two 
blocks of 40 characters. The characters were sequenced in a way that there was no obvious semantic relatedness 
or orthographic similarity between each pair of consecutive characters, except for the targets in the 1-back task.

The n-back task was administered with the E-Prime 3.0 software (https:// pstnet. com/ produ cts/e- prime/). 
Each character appeared for 500 ms, followed by a 3500-ms fixation and then the next character. The children 
needed to press “1” on the keyboard as accurately and quickly as possible, when they detected a target, and did 
not need to press any key for non-targets. At the beginning of each task, the task requirement (1-back or 2-back) 
was explained to the children, and they needed to complete a practice block with 14 characters (4 targets) to make 
sure that they understood the task requirement. They were able to repeat the practice once or more if needed.

Visual n‑back task. Thirty 3 × 3 checkerboard patterns were created for visual 1-back and 2-back tasks. Each 
pattern contained 3 black squares and 6 white ones (see  Supplemental Material). We did not use 60 different 
patterns, as it would yield too many similar patterns making the task too difficult. Similar to the verbal n-back 
task, both visual 1-back and 2-back tasks consisted of two blocks of 40 items (30 non-targets and 10 targets each). 
The patterns were sequenced in a way that each pair of consecutive patterns did not look similar, except for the 
targets in the 1-back task. The procedure was the same as that of the verbal n-back task. Each child completed 
all the four tasks (2 types × 2 load levels), whose order was counterbalanced across participants for each group.

https://pstnet.com/products/e-prime/
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EEG recording and preprocessing. EEG data were recorded at 500 Hz (online filter: 0.1–100 Hz; Cz as record-
ing reference) using an EGI (Electrical Geodesics, Inc.) 128-channel system while each child was completing 
the n-back task in a quiet room. Impedances were controlled below 50 kΩ. The EEG recordings were offline 
filtered (0.1–70 Hz; notch filter: 50 Hz). Bad channels were excluded, and the remaining data were submitted 
to independent component analysis for eye movement  correction57. The excluded channels were then spline 
 interpolated58. All data were re-referenced to the average  reference59 and then segmented to include the last 1-s 
interval of the fixation period (i.e., before the onset of the next item; see Fig. 4). Only segments following non-
targets (without motor artefacts from key pressing) and not exceeding ± 100 μV were used in further analysis. 
Twenty-nine children with poor EEG data quality in any of the four conditions were excluded from the present 
study, so that all the 74 children reported here had no fewer than 10 usable epochs in each condition. The aver-
age number of usable EEG epochs was 29, 28, 31, and 29 in the verbal 1-back, verbal 2-back, visual 1-back, and 
visual 2-back conditions respectively.

Before the n-back task, EEG recordings were also obtained during a 3-min eyes-closed resting state block, 
with the same setting. The resting EEG data went through similar preprocessing steps and were segmented into 
1-s epochs for determination of individual alpha  frequency60 (IAF). The fast Fourier transformation was applied 
to each of the EEG epochs obtained from the n-back task and the eyes-closed state. For each child, the frequency 
with peak power density in the alpha band (8–13 Hz) across all electrodes in the eyes-closed state was identified 
as IAF. For two children, the alpha peak failed to be detected with power density averaged across electrodes, 
and power density at the occipital electrode Oz was then used to identify IAF; for another two children with 
eyes-closed EEG data of poor quality, their IAF was set at 10. The two groups did not differ significantly in IAF 
(p = 0.438).

Three frequency bands were defined with IAF as an individual anchor point: (IAF-6) to (IAF-3) as theta band, 
(IAF-2) to (IAF-1) as lower-alpha band, and IAF to (IAF + 1) as upper-alpha  band60. For each child, mean theta 
power in the frontal midline region (pooled from AFz plus 4 surrounding electrodes) was calculated for each of 

Table 3.  Demographic and other information. Coding of educational levels: 1 = middle school or below, 
2 = high school, 3 = preparatory, 4 = college, 5 = postgraduate; monthly family income: 1 = HKD10,000 
(USD1280) or below, 2 = HKD10,001–20,000 (USD1281–2560), 3 = HKD20,001–30,000 (USD2561–3840), 
4 = HKD30,001–40,000 (USD3841–5120), 5 = HKD40,001–50,000 (USD5121–6400), 6 = HKD50,001 
(USD6401) or above. *p < 0.05.

Characteristic Control Dyslexic p

Male-to-female ratio 16:12 22:24 0.437

Age in months

M 103.6 101.3 0.248

SE 1.4 1.3

N 28 46

Grade

M 2.71 2.72 0.977

SE 0.09 0.07

N 28 46

Maternal education

M 2.82 3.07 0.407

SE 0.22 0.19

N 28 44

Paternal education

M 3.00 2.93 0.829

SE 0.24 0.21

N 27 43

Family income

M 4.04 3.93 0.777

SE 0.28 0.24

N 28 43

Non-verbal intelligence

M 27.96 25.15 0.014*

SE 0.62 0.93

N 28 46

Individual alpha frequency

M 9.36 9.22 0.438

SE 0.14 0.11

N 28 46
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Figure 3.  Example stimuli in the n-back task. Targets in each task are marked by arrows here for illustration.

Figure 4.  Parameters in the n-back task. EEG epochs in the last 1-s interval of the fixation period following 
non-targets were used in the frequency analysis.
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the four conditions separately and log-transformed to approach a normal distribution across  children23,61. Mean 
power in the lower- and upper-alpha bands in the posterior  region30,31 (pooled from Pz, P3, P4 and 15 surround-
ing electrodes) was calculated and log-transformed as well for each condition and child.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 21 January 2022; Accepted: 14 July 2022
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