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Transfer learning based generalized 
framework for state of health 
estimation of Li‑ion cells
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Estimating the state of health (SOH) of batteries powering electronic devices in real‑time while in 
use is a necessity. The applicability of most of the existing methods is limited to the datasets that are 
used to train the models. In this work, we propose a generic method for SOH estimation with much 
wider applicability. The key problem is the identification of the right feature set which is derived 
from measurable voltage signals. In this work, relative rise in voltage drop across cell resistance with 
aging has been used as the feature. A base artificial neural network (ANN) model has been used to 
map the generic relation between voltage and SOH. The base ANN model has been trained using 
limited battery data. Blind testing has been done on long cycle in‑house data and publicly available 
datasets. In‑house data included both laboratory and on‑device data generated using various charge 
profiles. Transfer learning has been used for public datasets as those batteries have different physical 
dimensions and cell chemistry. The mean absolute error in SOH estimation is well within 2% for all 
test cases. The model is robust across scenarios such as cell variability, charge profile difference, and 
limited variation in temperature.

An increasing number of electronic devices such as electric vehicles and mobile phones rely on rechargeable 
batteries as the only source of power for operation. As a battery is repeatedly charged and discharged, known 
as cycling, the available capacity decreases continuously thereby degrading the battery. Hence, every battery 
traverses through a health trajectory starting from a perfectly healthy state to a completely dead state. Accurate, 
on-device estimation of battery state of health (SOH) is essential to monitor the battery condition. The algo-
rithm should be robust enough to be compatible with rapidly evolving battery specifications. SOH of a battery 
is defined as the relative change in capacity over the charge-discharge cycles. For example, SOH of a battery at 
the n th cycle can be defined as

where, Crated is rated/nominal capacity of the battery, and Cn is the capacity of the battery after n number of cycles. 
SOH has to be estimated from the measured voltage and current signals.

State-of-the-art SOH estimation algorithms can be broadly categorized into model-based methods and data-
driven  methods1. Model-based techniques use estimation algorithms such as Kalman  filter2,3, particle  filter4,5, 
etc. to estimate SOH from equivalent circuit model of the battery. Data-driven methods use regular charge or 
discharge data and corresponding SOH to train machine learning  models1,6. With time, data-driven methods 
have gained popularity due to ease of use, and advancement in the computational capability of machines. Further, 
the potential of data-driven methods can be enhanced as more data becomes available. This ensures improved 
accuracy with minimal intervention in the underlying computation.

Another set of SOH estimation methods rely on the shift in peaks from an incremental capacity (IC) analysis. 
A shift in peak height in the IC curve (dQ/dV vs V plot) can be observed with a decrease in SOH. This informa-
tion has been exploited  in7–10 for SOH estimation. These methods have been trained and tested using data of the 
same battery. Other IC curve features such as peak height, peak voltage, and peak area have been used  in11  and12 
for SOH estimation. Though the authors have used exclusive test battery data for model evaluation, effect of 
charge profile variation on the algorithm performance has not been explored. Long-short term memory (LSTM) 
based SOH prediction algorithm  in1 and LSTM+ANN based algorithm proposed  in13 also use initial cycle data 

(1)SOHn =
Cn

Crated
;
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of the test battery for training. The robustness of these algorithms to varying battery specifications and charge 
profiles has not been reported.

Change in state of charge (SOC) vs open circuit voltage (OCV) curve with aging has been utilized  in14 for the 
estimation of capacity degradation.  In15, the shift in charging voltage curve due to aging has been used as feature 
to train support vector machine (SVM) models. Unlike most of the state-of-the-art methods, the relation between 
battery surface differential temperature and SOH has been used to train a support vector regression model  in16. 
All these methods have been tested on limited cell data, and their robustness to changes in battery type and 
charging profile has not been investigated. Constant current (CC) charge time and time to charge between two 
voltage levels reduce with aging.  In17, these charge-time-based parameters have been used as input to the least 
square SVM for SOH estimation. However, any variation in charging current profile would change the elapsed 
time features thereby deviating the output of SVM.

Incremental voltage difference has been used as a feature  in18 to train a shallow ANN. However, as simulated 
data has been used for training and the slope of voltage curve has been used as a feature, the method might fail 
if charge profile or device specifications change. The energy of equal discharge voltage difference has been used 
 in19 as a health indicator (HI). Features extracted from the smoothed HI curve have been used in an ANN to 
estimate SOH. Transfer learning with convolutional neural networks (CNN) has been used  in20. The CNN trained 
using accelerated aging data of cells has been fine-tuned on 15% data of unknown cells, and the rest 85% data has 
been used to test the algorithm. Though the methods proposed  in19  and20 seem promising, their efficacy on data 
with different charge profile (other than CCCV such as multi-step CCCV (MSCCCV)) have not been explored. 
Transfer learning with neural network models have been used  in13,20–22 for SOH estimation. However, they use 
transfer learning to fine-tune the offline trained models on the data of target batteries. Though, it eliminates 
training, but requires parameter tuning for every new cell.

Existing SOH estimation algorithms are effective in estimating SOH when the variation across battery type 
(battery specifications such as capacity, internal resistance, etc.) and charge profile (CCCV or MSCCCV charging) 
is assumed to be the same in training and testing. To the best of our knowledge, none of the methods address 
the challenges associated with variation in charge profile and battery specification. The existing SOH estimation 
methods lack extensive testing on different batteries. Most of those methods would require model tuning to 
estimate the SOH of an unseen cell.

To overcome these issues, the feature has to be robust. It has to be unaffected by variations in battery behavior 
and charge profiles. It would not require re-training or fine-tuning of SOH estimation models for every new bat-
tery. From the analysis of several Li-ion cell data, it has been observed that the voltage drop across cell resistance 
increases proportionately with degradation in capacity. The absolute values of voltage drop and SOH may differ 
for similar batteries; however, the relative change largely remains the same. Therefore, the relative increase in volt-
age drop with aging has been used as a feature to estimate the relative drop in battery SOH. The relation between 
feature and SOH is independent of C-rate and charge profile. Following are the contributions made in this paper. 

1. A novel feature has been proposed which is independent of operating conditions such as charging current 
profile (CCCV charging or MSCCCV charging etc.), C-rate, and limited variation in temperature.

2. A relative quantity instead of absolute values (absolute quantities might change with battery variability), 
obtained directly from measured quantities, has been used as feature to estimate the relative battery degra-
dation. The relative increase in voltage drop over cycles has been mapped to the relative decrease in SOH.

3. The model is trained or fine-tuned using only one cell data of a particular chemistry and physical dimen-
sion. After that, it can be used for other cells irrespective of charge profile, C-rate, and limited variation in 
temperature.

4. Extensive testing of the proposed method has been done using both offline and online battery data having 
different charge profile, capacity, and operating temperature. The SOH estimation error remains low in all 
test scenarios.

Results
Feature selection. The robustness and accuracy of SOH estimation largely depend on the effectiveness 
of extracted features. A thorough study of literature indicates that SOH features lack robustness to change in 
battery operating conditions such as current rate, charging current profile, temperature, etc. For example, time 
stamp to charge a battery between two voltage  intervals13 will change if the C-rate or charge profile changes. The 
slope of the voltage curve used  in18 varies with SOH in the CC region. The slope variation will be negligible in 
the CV region, and thus would be inefficient if the charge profile changes to MSCCCV or to a CCCV profile with 
small CC region. A robust feature to estimate SOH from the measured voltage and current has been the need 
of the hour.

In order to select a feature for SOH estimation, laboratory cycled data was analyzed. A resistance model 
(Fig. 1) was assumed as the electrical equivalent circuit of the  battery23. In the figure, R is the resistance, and 
OCV is the open-circuit voltage of the battery. V and I are charging voltage and current respectively. It was 
observed from the data that voltage drop across the resistance was increasing with aging. The quantity reflecting 
incremental voltage drop was computed by subtracting the drop across fresh cell resistance from the measured 
voltage. An average fresh cell resistance of 60 m � was assumed as the measured resistance of fresh cells were in 
the range of 50–70 m � . The fresh cell resistance was computed using voltage jump at the beginning of charge 
when step charging current was applied.
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Let Vr be the quantity reflecting the increase in voltage drop across battery resistance. Vr is computed by sub-
tracting the voltage drop across the fresh battery resistance (cycle 0) from the measured terminal voltage. In other 
words, Vr represents the combined voltage of cell OCV and the incremental voltage drop across the resistance.

where R0 is the resistance of the fresh battery, V is the measured voltage, and I is the charging current. SOC(t) 
(%) at an instant t after beginning of charge was computed using current and sampling interval dt

where t = 0 refers to the beginning of charge in a cycle, and Crated is the rated capacity of the battery. Vr at a 
fixed SOC was found to be increasing with battery aging. Figure 2 shows feature plots for three different charg-
ing protocols: (a)1C-CCCV, (e)1.3C-CCCV, and (i)1C-MSCCCV. Vr vs SOC at different SOH values for these 
3 charging protocols have been plotted in Fig. 2b,f, and j respectively. A clear shift in Vr vs SOC curves can be 
observed with a decrease in SOH in all three cases. Value of Vr might get affected by differences in voltage and 
current profile and R0 value; whereas, the relative shift in Vr has been observed to be similar across batteries. 

(2)Vr = V − I ∗ R0,

(3)SOC(t)(%) = SOC(0)(%)+

∫ t
0
Idt

Crated
× 100,

Figure 1.  Electrical equivalent circuit of battery.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.  (a), (e), (i) Voltage current plots for charge profile 1C-CCCV, 1.3C-CCCV, 1C-MSCCCV respectively. 
(b), (f), (j) Vr at different SOH values for charge profiles in (a), (e), (i) respectively. (c), (g), (k) Correlation 
between �Vr and �SOH for plots in (b), (f), (j) at 3 different SOC points. (d), (h), (l) A set of features computed 
from the plots in (b), (f), (j) respectively.
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Therefore,  unlike18, the relative change in Vr over cycles has been selected as a feature. Let the relative shift in Vr 
vs SOC curve with respect to that at SOH = 1 (cycle 0 or fresh battery) be denoted as �Vr.

where 20% < SOCi < 90% . Vrc and Vr0 are Vr of cycle c and 0 respectively. �Vrc represents �Vr for cycle c. �Vr 
is computed by sampling Vrc and Vr0 based on SOC values. The advantage of using �Vr as feature is that any 
component of Vr which remains constant with aging will be canceled in the �Vr computation, and any other 
voltage component which varies with aging will be reflected in the feature. Let �SOH be the drop in SOH (from 
1) corresponding to �Vr shift in Vr . �Vr at 30%, 40%, and 50% SOC have been plotted against �SOH in (c), (g), 
and (k) respectively for charge profiles in (a), (e), and (i) of Fig. 2. �Vr can be seen to be almost linearly varying 
with �SOH at fixed SOC points. �Vr vs �SOH for all 3 charge profiles have been shown in a single plot at two 
different SOC points in Fig. 3. It can be observed that the feature-label proportionality does not change with 
variation in charge profile.

SOH estimation of exclusive test battery set. A base ANN model was trained using data from 8 
cells which makes about 1/4 of the total number of batteries involved in experiments. Input to the ANN is �Vr 
features computed from charging voltage and current. �SOH is the output of the ANN. The same base ANN 
has been used in all tests described hereafter, without any further training. Batteries which were not involved in 
training of the base ANN were used for blind testing of the proposed algorithm. Blind testing was performed to 
confirm the robustness of the trained base ANN to cell variability. The method was tested on long cycled battery 
data to validate its performance in advanced cycles. For quantitative evaluation, the estimated SOH values were 
compared against the ground truth SOH computed from low current (0.2C) probe cycles.

Robustness to charge profile variability. The base ANN was tested on exclusive test battery data. Different charg-
ing protocols had been used in cycling of these batteries. Test accuracy for in-house laboratory generated data 
have been given in Table 1 in the form of mean absolute error (MAE), root mean square error (RMSE), and 
standard deviation error (SDE). MAE is well within the range of 0.02, and it is below 0.01 for most of the cases. 
The error is not affected by variation in charging C-rates for S1 batteries. Also, the MAE values for both CCCV 
and MSCCCV charge profiles are within 0.02. Estimated SOH and error of two S1 cells charged using 0.8C 

(4){�Vrc }SOCi = {Vrc }SOCi − {Vr0 }SOCi ,

(a) (b) (c)

Figure 3.  �Vr vs �SOH plot for different charge profiles at (a) 30% SOC, (b) 40% SOC, (c) 50% SOC.

Table 1.  SOH estimation results for laboratory data test.

Test battery MAE RMSE SDE

S1-B1 0.0045 0.005 0.0046

S1-B2 0.0084 0.0092 0.006

S1-B3 0.0087 0.01 0.0083

S1-B4 0.0153 0.0162 0.006

S1-B5 0.0121 0.0199 0.0158

S1-B6 0.0055 0.0122 0.0141

S1-B7 0.0081 0.021 0.0207

S2-B1 0.0118 0.0133 0.0064

S2-B2 0.0027 0.0079 0.0034

S2-B3 0.0061 0.007 0.0035

S2-B4 0.0036 0.0043 0.004

S5-B1 0.0044 0.0069 0.0066

S6-B1 0.0032 0.0039 0.0035

S7-B1 0.0032 0.0044 0.0042

S8-B1 0.0041 0.0048 0.004
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CCCV (B3) and 1.2C CCCV (B6) profiles have been plotted in Fig. 4a,b respectively. Figure 4c shows the esti-
mated SOH and error plot for S6-B1 which had been charged using 1C MSCCCV profiles. It can be observed 
that the estimated SOH is close to the ground truth even in the advanced cycles. 

Validation in the presence of noise. On-device measured voltage and current have inherent noise due to associ-
ated measurement uncertainty. The effect of the noise on performance of the proposed method has been vali-
dated by adding random noise to the cycler data. The measurement uncertainty of the devices used in the experi-
ment are in the range of ţV and ţA. The added noise amplitude was increased beyond the ţV and ţA range to 
measure the noise tolerance limit of the method (assuming an acceptable SOH estimation MAE 2%). Amplitude 
of the noise added to the cycler voltage and current were increased in steps of 10 mV and 10 mA starting from 1 
mV and 1 mA respectively. The SOH estimation method was applied to the noisy data. The results indicated that 
the MAE hit the tolerance limit of 2% at a noise level around 100 mV, mA. The MAE vs noise amplitude plot, 
estimated SOH, and noisy voltage and current plots have been shown in Fig. 5. It is evident from the plots that 
the MAE increases with increase in noise level. If an MAE tolerance limit is set at 2%, then the method can be 
said to be robust to noise of 100mV and 100mA in voltage and current measurements respectively.

(a) (b)

(c)

Figure 4.  Plots of actual and estimated SOH, and error for laboratory testing. (a) S1-B3: 0.8C, CCCV charging, 
(b) S1-B6: 1.2C, CCCV charging, and (c) S6-B1: 1C MSCCCV charging.

(c)(b)(a)

Figure 5.  SOH estimation in the presence of noise. (a) Voltage and current with added noise, (b) Estimated 
SOH in the presence of noise, (c) SOH estimation MAE at different noise levels.

(a) (b)

Figure 6.  Plots of actual and estimated SOH, and error for on-device testing. (a) S2-B1, (b) S4-B1.
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SOH estimation of on‑device batteries. Charging data of batteries in a laboratory environment are 
devoid of device noise. However, data acquired from on-device batteries are vulnerable to noise because of sev-
eral factors such as temperature, device usage, etc. Therefore, to test the real-time applicability of the method, it 
was tested on some of the batteries mounted on user devices.

Robustness to on‑device noise. The same base ANN was used to estimate SOH of batteries mounted on devices. 
An android based application was made which ran the proposed algorithm in the background while batteries 
were charged and discharged using device-specific chargers. Assuming that identical batteries will age at the 
same rate, SOH computed from laboratory cycled data of similar batteries were used as the ground truth for 
on-device experiments. The accuracy numbers have been shown in Table 2. MAE values are in the same range as 
laboratory test results. Estimated SOH and error plots of two batteries from the S1 and S2 set have been shown 
in Fig. 6a,b respectively.

Transfer learning for unseen dataset. As the base ANN was trained using data from multiple batteries, 
it is expected to work for batteries with similar �Vr vs �SOH relation (Fig. 3). However, if the battery type or 
physical dimension of another set of batteries are significantly different, then the feature-label proportionality 
relation might  change24,25. In such a scenario, transfer learning was used. The first fully connected layer in the 
base ANN extracts information from input features; the second layer maps the proportionality relation between 
input and output. Therefore, the first layer of the base ANN (trained using in-house data) was kept unchanged, 
and only the second layer was fine-tuned on single-cell data of the new set. Hyper parameters such as loss func-
tion, optimizer, etc. was the same as that used for training of the base ANN.

Generalization to different battery datasets. The proposed method was tested on two publicly available datasets: 
 CALCE26,27, and  NASA28. The batteries used in these data were of different physical dimension and cell chemis-
try than in-house batteries used for training of the base ANN. Therefore, the feature-SOH relation will be differ-
ent and the base ANN will not work for these datasets. Transfer learning was used to make the base ANN work 
for the new data. The last fully-connected layer of the base ANN was fine-tuned using one randomly chosen cell 
data from each dataset. The rest of the batteries in the set were used for testing.

CS2 batteries of CALCE data were used in the experiment. Fine-tuning of ANN was done using CS2-33 
data. CS2-34, 35, 36, 37, 38 were used for blind testing. The accuracy numbers have been given in Table 3. The 
estimated SOH and error in estimation have been plotted in Fig. 7 for two batteries in the set. The MAE is within 
0.02 for all the cases.

Table 2.  SOH estimation results for on-device test.

Test battery MAE RMSE SDE

S2-B1 0.0068 0.01 0.0095

S2-B2 0.0066 0.0094 0.008

S2-B3 0.0051 0.0056 0.0041

S2-B4 0.0036 0.0041 0.0024

S3-B1 0.0122 0.0163 0.0111

S4-B1 0.0034 0.0045 0.0044

S4-B2 0.0011 0.0014 0.0009

S4-B3 0.0017 0.0019 0.0007

S5-B1 0.0066 0.0092 0.0074

S5-B2 0.0094 0.0116 0.0076

S5-B3 0.0033 0.0034 0.0009

S5-B4 0.0031 0.0032 0.00076

S7-B1 0.0109 0.011 0.0011

S8-B1 0.0184 0.0198 0.0072

Table 3.  SOH estimation results for CALCE data.

Test battery MAE RMSE SDE

CS2-34 0.0168 0.0199 0.0118

CS2-35 0.0121 0.0157 0.0119

CS2-36 0.0132 0.0158 0.0091

CS2-37 0.0084 0.0117 0.0103

CS2-38 0.0114 0.0169 0.0157
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(a) (b)

Figure 7.  Plots of actual and estimated SOH, and error for (a) battery CS2-34, (b) battery CS2-38 of CALCE 
dataset.

Table 4.  SOH estimation results for NASA data.

Temperature Test battery MAE RMSE SDE

Room Temp

B06 0.0103 0.0127 0.0126

B07 0.01 0.0113 0.0064

B18 0.0324 0.0352 0.0157

43◦ C

B29 0.0034 0.0041 0.004

B30 0.0089 0.0102 0.006

B31 0.0036 0.0045 0.0043

B32 0.0167 0.0194 0.0099

(a)

(c)

(b)

(d)

Figure 8.  Plots of actual and estimated SOH, and error (a) B06, (b) B07, (c) B29, (d) B31 of NASA dataset.

Battery data collected at two different temperatures were used in the experiment. Data of B05, B06, B07, and 
B18 were collected at room temperature. B29, B30, B31, and B32 data were collected at an elevated temperature 
of 43◦ C. The last FC layer of the base ANN was fine-tuned on B05 data. Other cell data were used for blind test-
ing. The accuracy numbers have been given in Table 4. The estimated SOH and error in estimation have been 
plotted in Fig. 8 for two batteries in the set. The MAE is within 0.02 for most of the cases except B18. It can also 
be observed that the feature-SOH relation is not getting affected by the variation in temperature. SOH estima-
tion accuracy of the proposed method on CALCE and NASA data have been compared with that reported in 
two recently published  methods13  and29. The comparison has been shown in Table 5. The accuracy figures for 
the proposed method are comparable and in some cases better than that of state-of-the-art. Additionally, this 
method does not require ANN fine-tuning for every cell. It is evident that fine-tuning of only second layer of the 
base ANN (trained using in-house data) on one cell data of the new dataset is sufficient to test on other batteries 
in the dataset. The SOH estimation method reported  in13 uses LSTM for SOH computation. It can be seen from 
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Table 5 that the proposed technique has lower SDE in most of the cases as  compared13. The better accuracy can 
be attributed to the feature as the neural network is much simpler as compared to the LSTM model.

Discussion
Good the feature is, robust will be the SOH estimation. In this work, a novel, efficient, and generic feature, 
computed solely from the measurable voltage and current, has been proposed. The feature has a proportional 
relation with battery SOH. Also, the feature-SOH proportionality relation has been observed to be independent 
of the charge profile, C-rate, and limited variation in temperature. The voltage drop across the series resistance 
has been observed to be increasing with the drop in battery SOH. As a result, the voltage across the resistance vs 
SOC curve shifts upwards. The relative voltage shift has been seen to be independent of charge profile (CCCV 
or MSCCCV) and C-rate. A two-layer ANN has been used to map the variation in voltage into SOH.

The proportionality relation between feature and label is the same for similar types of batteries, i.e. batteries 
having similar physical dimension and base chemistry. Hence, the base ANN can be used to estimate the SOH 
of similar batteries at an MAE within 0.02. However, the proportionality relation might be different for a bat-
tery set having different physical dimension and chemistry than the training set. In that scenario, fine-tuning of 
the final fully connected layer of ANN has been done for SOH estimation. The use of only one battery data for 
fine-tuning has been observed to be sufficient for SOH estimation of other batteries with an MAE limit of 0.02.

The proposed method has been verified using 37 in-house battery data The batteries were cycled in labora-
tory and user devices using different charge profiles and C-rates. Test on the exclusive battery set resulted in 
SOH estimation MAE within 0.02. The method has also been tested on two publicly available battery datasets: 
CALCE and NASA. SOH estimation error for almost all the batteries of the two datasets was within 0.02. Test on 
NASA battery data cycled at room temperature and 43 °C confirmed the robustness of the proposed method to 
temperature variation. Following are the advantages of the proposed method compared to deep learning methods. 

1. It involves less computation as network is shallow. It can be used on edge devices for real time battery health 
monitoring.

2. It is a generic method. The model does not require retraining or fine-tuning for every new cell. Transfer 
learning is done only once when the battery chemistry and dimension changes.

3. The method is robust to variation in charge profile, C-rate, and temperature.

Methods
This section describes the SOH estimation technique. The experimental data generation process has been 
explained in detail, followed by feature selection criteria. The feature has been selected based on the analysis of 
experimentally generated data. The ANN used for SOH mapping has been described next. Steps to estimate SOH 
and the evaluation metrics have been outlined at the end of this section.

Experimental data generation. Multiple cells of different capacity and charge protocols as listed in 
Table 6 were used in the experiment. The basic chemistry for all these batteries was the same. It was an LCO 
cathode- Graphite anode pouch cell configuration. Depending on the manufacturer, there are variations in bat-
tery raw material, manufacturing process, additives, etc. As a result, the behavior of batteries such as resist-
ance magnitude and SOC-OCV profile changes. To generate data for algorithm development and validation, 
23 batteries were cycled in the laboratory. The batteries were charged and discharged repeatedly while allowing 
it to rest (current = 0) for 10 min between every charge and discharge. Current, voltage, and timestamps were 
recorded during the cycling process. For real-time validation of the algorithm, 14 batteries were cycled in com-
mercial devices by replicating user charge-discharge scenario. Battery specifications such as capacity and charge 
protocol have also been indicated in Table 6. All S1 batteries have been cycled at different current rates (0.6C, 
0.7C, 0.8C, 0.9C, 1C, 1.1C, 1.2C, 1.3C).

In order to get the ground truth SOH for each battery cycled in the laboratory, a low current probe cycle was 
repeated after every 50 cycles. In the probe cycle, batteries were CCCV charged and CC discharged at 0.2C. The 
capacity of a probe cycle was computed by coulomb counting.

Table 5.  Performance comparison with state-of-the-art methods.

Battery no

Proposed Method 13 29

MAE RMSE SDE RMSE SDE MAE

CS2-35 0.0121 0.0157 0.0119 0.0052 0.063

CS2-36 0.0132 0.0158 0.0091 0.0104 0.3233

CS2-37 0.0084 0.0117 0.0103 0.0075 0.09

CS2-38 0.0114 0.0169 0.0157 0.0073 0.0525

B05 0.0076 0.0103 0.0092 0.0054 0.0398 0.0119

B06 0.0103 0.0127 0.0126 0.0143 0.0412

B07 0.01 0.0113 0.0064 0.0049 0.079 0.0128

B18 0.0324 0.0352 0.0157 0.0288



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13173  | https://doi.org/10.1038/s41598-022-16692-4

www.nature.com/scientificreports/

where Cprobe and Iprobe stand for capacity and current of the probe cycle respectively. SOH was computed from 
capacity using (1). As probe cycles were done after every 50 cycles, linear interpolation was used to obtain the 
SOH of intermediate cycles. Let SOHc and SOHc+50 be the SOH values computed using probe at cycle number c 
and c + 50 respectively. SOH of intermediate cycles were obtained by sampling the straight line joining (c, SOHc) 
and (c + 50, SOHc+50).

where SOHc+i denotes the SOH for cycle number c + i , and 1 < i < 49.

ANN used for SOH mapping. A simple two-layer ANN has been used to model the relation between �Vr 
and �SOH . The feature label relation is largely linear (Fig. 3). We have observed through experimental valida-
tion that the ANN outperforms linear regression model when used on batteries of unseen devices. Additionally, 
transfer learning is possible using ANNs, where, the model generalizes on new data while retaining its earlier 
learning. The ANN has been shown in Fig. 9. As shown in the figure, input to the ANN has dimension 1x10. A 
hidden dense layer of 10x10 has been used which takes a 1 x 10 input and produces a hidden output of dimen-
sion 1 x 10. Then, a second dense layer of 10x1 takes the hidden layer output as input and computes the SOH 
value. Ten consecutive samples of �Vr computed at a gap of 2% SOC constitutes one feature vector. A set of 
feature vectors computed in the SOC range 30–50% at different SOH values have been shown in (d), (h), and (l) 

(5)Cprobe =

∫ T

0

Iprobedt,

(6)SOHc+i = SOHc + (c + i − c)

(

SOHc+50 − SOHc

c + 50− c

)

,

Table 6.  Batteries used in experiments.

Device set no. Max capacity (Ah)

Cycled in laboratory Cycled on device

No. of batteries Charge protocol No. of batteries Charge protocol

S1 3.0 8 CCCV 0 –

S2 3.89 5 MSCCCV 4 CCCV

S3 4.37 1 MSCCCV 1 CCCV

S4 4.37 1 MSCCCV 3 CCCV

S5 5.83 2 CCCV 4 CCCV

S6 3.88 2 MSCCCV 0 –

S7 4.37 3 MSCCCV 1 MSCCCV

S8 4.855 1 MSCCCV 1 MSCCCV

Figure 9.  The two layer ANN used for mapping �Vr to �SOH.
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of Fig. 2. One feature vector can be computed for every 20% SOC range. The ANN takes one �Vr feature vector 
as input and gives �SOH as output. Multiple SOH values are computed using feature vectors from multiple SOC 
windows in the 20–90% SOC range. The mean of all SOH values is considered as the SOH of the cycle.

SOH estimation method. A flowchart of the steps followed in the proposed SOH estimation method has 
been depicted in Fig. 10. The method primarily consists of two steps: offline training or fine-tuning of ANN, and 
online estimation of SOH.

Feature extraction. Following are the steps to compute feature vectors from the measured voltage and current 
in a particular cycle. 

1. SOC is computed using current and sampling interval dt as shown in (3). Vr is computed using voltage and 
current as depicted in (2).

2. Vr0 and SOC0 of the first cycle of the fresh battery are saved for computation of �Vr in later cycles.
3. �Vrc for a cycle c is computed using (4) for 20% ≤ SOC < 90%.
4. Feature vectors (FV) are formed using 10 samples of �Vrc sampled at an SOC interval of 2%. For eg. FV for 

30% ≤ SOC < 50% is

The next FV is computed for 31% ≤ SOC < 51% . The complete FV set for 20% ≤ SOC < 90% is 
{FV20%≤SOC<40%, FV21%≤SOC<41%, ..., FV71%≤SOC<89%}.

Training of base ANN. The base ANN model was trained using data from multiple batteries. One cell from each 
set listed in Table 6 was chosen to train the ANN. Cells were randomly selected from each set. Feature vectors 
were computed as described in previous section. Total 62512 feature vectors were extracted from the charging 
data of those 8 cells. �SOH labels for the FVs were computed from the ground truth SOH values obtained using 
probe cycles.

The extracted feature and label set were randomly split into 80:20 ratio for training and validation. A windows 
machine having Intel core i7 processor was used for training. Code was written in the PyTorch framework. The 
training was run for 50 epochs with Adam optimizer and L1 loss function. A learning rate of 0.01 was used. The 
model was tested on the validation set after every epoch. The best model with minimum loss was saved.

Transfer learning for new dataset. The feature label proportionality relation will change when battery chemistry 
or physical dimension  change24,25. The ANN model has to be fine-tuned to adapt to the new dataset. The first 
layer of the base ANN is kept unchanged. The second layer is fine-tuned using only one cell data of the new set. 
Same training hyper parameters such as loss function, learning rate, number of epochs, optimizer, etc. were used 
for model tuning.

SOH estimation of an unseen battery. Cells that were excluded during training or fine-tuning were used for 
blind testing of the learned ANN model. Following are the steps to estimate SOH from charging data of a par-
ticular cycle. 

1. Feature vectors are computed from charging voltage and current in a cycle c.
2. All feature vectors are passed through ANN to get �SOH values.

(7)FV30%≤SOC<50% = [{�Vrc }SOC=30%, {�Vrc }SOC=32%, ..., {�Vrc }SOC=48%].

Figure 10.  Flow chart of the method.
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3. Mean of all �SOH values is considered as �SOH for the cycle.

Evaluation metrics. For quantitative evaluation of the proposed SOH estimation method, following 
parameters have been used.

where, N is the total number of cycles in a single battery data. {SOHc}actual and {SOHc}predicted are the actual and 
predicted SOH values for cycle c. Errorc = {SOHc}actual − {SOHc}predicted , and Error =

1

N

∑c=N
c=1 Errorc.
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