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Exploring synthetic lethal network 
for the precision treatment of clear 
cell renal cell carcinoma
Zhicheng Liu1,6, Dongxu Lin2,6, Yi Zhou1,6, Linmeng Zhang3, Chen Yang3, Bin Guo1, Feng Xia1, 
Yan Li4, Danyang Chen5, Cun Wang3, Zhong Chen2*, Chao Leng1* & Zhenyu Xiao1*

The emerging targeted therapies have revolutionized the treatment of advanced clear cell renal cell 
carcinoma (ccRCC) over the past 15 years. Nevertheless, lack of personalized treatment limits the 
development of effective clinical guidelines and improvement of patient prognosis. In this study, 
large-scale genomic profiles from ccRCC cohorts were explored for integrative analysis. A credible 
method was developed to identify synthetic lethality (SL) pairs and a list of 72 candidate pairs was 
determined, which might be utilized to selectively eliminate tumors with genetic aberrations using SL 
partners of specific mutations. Further analysis identified BRD4 and PRKDC as novel medical targets 
for patients with BAP1 mutations. After mapping these target genes to the comprehensive drug 
datasets, two agents (BI-2536 and PI-103) were found to have considerable therapeutic potentials in 
the BAP1 mutant tumors. Overall, our findings provided insight into the overview of ccRCC mutation 
patterns and offered novel opportunities for improving individualized cancer treatment.

Renal cell carcinoma (RCC) is one of the most common malignancies in the genitourinary system. A recent 
study showed that 431,288 new cases and 179,368 deaths of RCC occurred in  20201. Approximately 70% of renal 
cancers are localized stage, indicating the possibility of complete tumor excision by radical  nephrectomy2,3. Clear 
cell renal cell carcinoma (ccRCC) is the most prevalent subtype, accounting for more than 70% of all RCC 4. 
Although most ccRCCs are effectively treated, by surgery or ablation when diagnosed early, the distant metastasis 
rate is up to 33% after  treatment5. Considering the poor prognosis of ccRCC patients, more efforts are required 
in developing optimal adjuvant or targeted therapies.

With the rapid development of genome sequencing and the availability of tremendous genomic informa-
tion on carcinoma, the significant role of driver mutation (DM) in the occurrence and development of renal 
cancer was  proved6. And genetically targeted drugs have been successfully used in patients with gene mutations. 
VEGFR inhibitor sunitinib and mTOR signaling inhibitor everolimus are frequently used for renal cancers. 
Nonetheless, many patients still suffer from tumor recurrence due to drug resistance. The SL strategy provides 
a promising approach for the treatment of renal cancers, and a robust evident is the effective and tailored anti-
cancer compounds, such as poly (ADP-ribose) polymerase (PARP) inhibitor olaparib. Briefly, the simultaneous 
mutation of a specific gene pair causes tumor cell death, and the functional loss of either one has little effect on 
cell survival. Since many challenges are faced in pharmacologically rescuing the function of mutated genes such 
as von Hippel-Lindau (VHL) and BRCA1 associated protein 1 (BAP1), the drugs targeting a second-site of SL 
pairs are considered an alternative method in treating patients with gene mutations. Harnessing this concept, 
current investigations have focused on identifying SL gene pairs associated with VHL-hypoxia-inducible factor 
(HIF)  signaling7–9. To find more SL gene pairs with therapeutic potentials, it is necessary to expand the process 
of screening molecular candidates.

Previous studies proposed various algorithms to identify SL gene pairs, such as DAISY9 and MiSL10. Neverthe-
less, such procedures mainly use non-specific inference for pan-cancer analysis, which could be unsuitable for 
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renal cancers with specific mutation patterns. Therefore, we aimed to conduct a comprehensive literature review 
to search for publicly available data on ccRCC in this study. Then a novel strategy of SL interaction analysis was 
applied to identify the potential SL gene-partners of driver genes in ccRCC. The paired genes with therapeutic 
implications will be identified after filtering out the candidate SL pairs, and compounds collected from multiple 
drug databases will be matched to identify potential therapeutic candidates for tumor patients. Generally, our 
findings may provide comprehensive insight into the mutation pattern of ccRCC, and new opportunities for 
exploring highly specific therapeutic targets for renal tumors.

Result
Overview of the SL interaction analysis. A total of 1174 ccRCC transcriptome profiles together with 
clinical information were collected from numerous publicly available cohorts, including the Cancer Genome 
Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC)11, renal cell cancer-EU (RECA-EU), CheckMate 
009 (CM-009)12, CheckMate 010 (CM-010)13, CheckMate 025 (CM-025)14, E-MTAB-1980, E-MTAB-3218, 
E-MTAB-3267 and GSE29609. Of these patients, 928 were from RNA sequencing data, which were used for fur-
ther SL framework construction, and 246 were from microarray data, which were considered external validation 
for evaluating the result of the DM-druggable gene (DG)-drug network. A schematic diagram of the procedures 
of SL inference and the overall study design are presented in Fig. 1.

The SL interaction analysis is a computational pipeline evaluation for identifying candidate SL interactions 
based on the experiences from several previous researches, such as DAISY9, MiSL10 and SELECT15. This analysis 
consists of four statistical inference procedures:

(1) Differential gene expression: The procedure exploited gene expression and somatic alterations of the input-
ting tumor samples to discover potential SL gene pairs under the assumption that carcinoma cells may 
increase the expression of its SL partners as a compensatory mechanism when a driver gene loses its func-
tion due to the mutation. Differential expression analysis was conducted using Wilcoxon rank-sum test 
between the samples with and without DMs, and only target genes with higher expressions in the mutated 
samples were saved as potential SL partners of corresponding DMs.

(2) Pairwise gene co-expression: The procedure tended to select gene pairs which could have similar functions 
of cell metabolism and growth, and be likely co-expressed in the para-carcinoma normal tissues with the 
notion that there is often an intensive relationship between both genes of the SL pair. Gene pairs presenting 
significant correlations (Spearman correlation coefficient > 0.1 and P adjust < 0.05) were considered as SL 
candidate pairs.

(3) Functional similarity: The procedure aimed to filter out the gene pairs with high semantic similarity, moti-
vated by the assumption that the SL partners tend to engage in closely related biological processes. And 
accordingly, their locations in Gene Ontology (GO) topological structure should be close. The functional 
similarity score (FSS), which was defined as the geometric mean of semantic similarities of molecular 
function (MF) and cellular component (CC), ranged from 0 to 1. And FSS ≤ 0.45 between gene pairs were 
considered to have no significant functional similarity and thus they were excluded from the candidate SL 
pairs.

(4) Mutual exclusivity: The procedure selected those gene pairs in which the incidence of simultaneous muta-
tion was significantly lower than common gene pairs, based on the concept that simultaneous mutation of 
two genes in an SL pair would affect the cellular process and cause tumor cell death. The gene pairs with 
the P adjust < 0.15 were considered as potential SL pairs.

Those candidate pairs passing the requirements of all the four procedures composed the final output set of 
candidate SL pairs and were subsequently used for constructing the DM-DG-drug network.

Detection of driver genes in ccRCC . The current consensus on tumor development and progression is 
that only a few mutational events affecting driver genes were determined to be the origin of malignancy, which 
confers selective growth advantage to the tumor cell. Compared with traditional chemicals, small molecular 
compounds targeting DMs have the advantage of avoiding impairment of normal tissue, and thus screenings 
on these DMs are more likely to identify clinically significant targets. In this study, the DriverNet algorithm was 
applied to identify candidate drivers in the most comprehensive metadata set of ccRCC currently, which con-
tained 610 patients from five clinical cohorts with both available expression and mutation data (Fig. 2A). A total 
of 36 candidate genes had been yielded with the P adjust < 0.1 and mutation frequency beyond the mean (Sup-
plementary Table 1). Notably, due to the limitations of the influence graph derived from the Reactome functional 
interactions, SETD2 which was confirmed as a driver gene in previous  studies11,16,17 was added to our prediction 
model to generate more reliable results. Of these genes, 25 genes (67.6%) that demonstrated the reliability of our 
prediction have been reported by at least one previous research and were then taken as robust drivers of ccRCC 
for subsequent analysis.

To explore the clinical implications of DMs in ccRCC, the network-based stratification (NBS) algorithm was 
applied to stratify patients into different subtypes utilizing their mutation profiles. According to the outcome of 
cophenetic correlation coefficients, 610 patients were assigned into two groups (Supplementary Fig. 1A,B). The 
result indicated that each group had distinguishing mutation features (Fig. 2B). The NBS2 contained a higher 
proportion of common DMs, including VHL, PBRM1 and SETD2, while the NBS1 consisted of a high frequency 
of BAP1 and increased mutational burden (Fig. 2C and Supplementary Fig. 1C). Additionally, we analyzed the 
relationship between the NBS classification and the previously reported RCC molecular subgroups, includ-
ing Rini’s (Low–High recurrence score group)18, Brooks’ (ccA-ccB group)19 and Motzer’s (Poor-Favorable risk 
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group)20. The NBS1 was positively associated with Rini’s high recurrence score group (P = 0.1713), Brooks’ ccB 
group (P = 0.046) and Motzer ‘s poor risk group (P = 0.0416), while the NBS2 exhibited opposite patterns (Fig. 2C 
and Supplementary Table 2). Subsequently, the correlation between NBS classification and clinical characteristics, 
containing the clinical stage, pathological stage and survival time, was investigated using the combined cohort. 
A significant difference in survival outcome was found between the NBS groups, in which the NBS2 exhibited a 
better prognosis than the NBS1(P = 0.0021) (Fig. 2D). However, other clinical characteristics were weakly cor-
related with the NBS classification (Supplementary Table 2). Taking together, the NBS classification provided a 
novel insight into the DM-based clinical subclasses of ccRCC patients and enhanced our understanding of the 
crucial role of driver genes played in tumorigenesis and progression.

Selection of druggable genes. The SL candidates of DMs were derived by leveraging the computational 
pipeline while encountering another problem that not all identified partners of DMs could be targeted when 

Figure 1.  Flow chart of identification of potential synthetic lethal interactions and construction of DM-DG-
drug networks.
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performing genome-wide scanning for potential SL partners. Therefore, to infer statistically significant SL part-
ners that could be targeted by conventional chemical agents, a list of 4465 DGs was compiled from the current 
public pharmacological databases and considered as the input genes for SL analysis. Of these DGs, only 1981 

Figure 2.  Identifying driver genes and subclass characteristics in clear cell renal cell carcinoma. (A). Overview 
of driver genes identification via DriverNet analysis in clinical cohorts. (B) The mutation profiles of subclasses 
classified by network-based stratification (NBS). Characteristics of clinical stage, histological grade, previously 
reported transcriptome-based molecular subclasses (MSKCC, Rini and Brooks) between two subclasses were 
presented simultaneously. (C) Difference in mutation frequency of driver genes, molecular characteristics 
stratified by Brooks and MSKCC between two subclasses. Fisher’s exact tests were applied to compared the 
statistical differences. (D) Kaplan–Meier survival curve of two subclasses. Statistical difference was calculated by 
log-rank test.
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target genes were used for constructing the DM-DG network due to low expression of some DGs after removing 
batch effects.

Inference of driver mutation-druggable gene interactions. Based on the selected 25 DMs and 1981 
DGs, the SL interaction analysis was conducted to infer the DM-DG pairs which met the corresponding cri-
teria. In total, 72 DM-DG pairs (containing 69 unique drug targets) passed all the screening procedures and 
thus considered SL candidates for ccRCC (Fig. 3A). Additionally, the rank aggregation analysis was performed 
to integrate the results of each procedure in SL interaction to obtain a robust ranking for the 72 DM-DG pairs. 
Accordingly, the ranks of candidate pairs were based on FS scores (functional similarity), fold change values (dif-
ferential expression), correlation coefficients (pairwise co-expression), and P adjust (mutual exclusivity). Then, 
the Stuart method was applied to integrate all the rankings and calculated the rank aggregation score (RAS) for 
each DM-DG pair (Supplementary Table 3).

To validate whether the DM-DG pair exhibited SL interaction, we performed univariate survival analysis 
between DG expression in patients with specific DM and progression-free survival (PFS) using the Cox pro-
portional hazards regression model. Partly significant DGs were associated with the shorter recurrence time 
(HR > 1) among patients with relevant DMs (Supplementary Table 4). Additionally, the Kaplan–Meier analysis 
was conducted to reveal the clinical relationship between PFS and the status of DG in patients with correspond-
ing DM. Specifically, we mainly defined the functional status of one gene by dividing expression data into active 
(> median) and inactive groups (< median) for lacking aberration situation of DGs (Fig. 3B,C). As depicted from 
the figure, the BRD4 and TYK2 inactive groups had significant survival advantage in ccRCC patients with the 
BAP1 and VHL mutations, compared with the active groups. These survival data-based analyses demonstrated 
that these DM-DG pairs have crucial clinical effects and were well compatible with their roles as SL candidates.

Estimation of drug response in clinical samples. Three pharmacogenomic datasets described in the 
Materials and Methods section, containing drug sensitivity data and gene expression profiles from multiple can-
cer cell lines (CCLs), were utilized to construct the drug prediction model. The chemical compounds with NAs 
in more than 20% of the samples and CCLs derived from hematopoietic and lymphoid tissue were excluded to 
achieve the prediction result precisely. After removing the duplicated or invalid compounds, 1801 compounds 
were found in total. Of these, 669 CCLs with 402 compounds in the Cancer Therapeutics Response Portal 
(CTRP) dataset, 474 CCLs with 1,285 compounds in the PRISM dataset and 786 CCLs with 320 compounds in 
the Genomics of Drug Sensitivity in Cancer (GDSC) dataset were used for subsequent drug prediction analy-
sis (Fig. 3D). The ridge regression model located in the package pRRophetic was applied to perform the drug 
response prediction for the clinical samples based on their expression profiles, and the estimated area under 
curve (AUC) value of each compound among clinical samples was used as an evaluation indicator for the drug 
sensitivity.

Before proceeding further, the results of drug response estimation were validated computationally. Pazopanib, 
an oral small-molecule multi-kinase inhibitor for the treatment of advanced renal cell carcinoma, was used to 
evaluate whether the estimated drug sensitivity was consistent with its clinical efficacy. A retrospective cohort 
study found that the mutation status of BAP1 had independent prognostic value in advanced RCC patients treated 
with first-line tyrosine kinase  inhibitors21. Compared with wild-type (WT) patients, those patients harboring 
the BAP1 mutation performed worse outcomes from pazopanib treatment, with the unfavorable PFS and overall 
survival (OS). Therefore, patients from the combined RNA-seq cohort were categorized into the two groups 
according to their alteration statuses of BAP1 (altered versus unaltered: 84 versus 526). The Wilcoxon rank-sum 
test was used to compare the estimated AUC values of pazopanib between the two groups, and the result sug-
gested that a significantly higher value of patients with mutant BAP1 than WT (P = 0.018) (Fig. 3E), consistent 
with the clinical behavior of pazopanib.

Constructing prediction model of BAP1 mutation. On the basis of the combined RNA-seq cohort, 
the elastic net (EN) algorithm described in the Materials and Methods section was utilized to construct a robust 
model for predicting BAP1 mutation status. The differentially expressed genes between the BAP1 mutant and 
WT samples contributed to this prediction model. Therefore, the limma package was applied to investigate the 
expression difference of these samples and differential genes were defined when P adjust < 0.05 and absolute log2 
fold change (FC) > 1.

Survival analysis on 1,207 patients with prognostic and mutation data was conducted to investigate whether 
the functional status of the BAP1 was associated with the survival outcome of cancer patients. A significant 
prognostic difference between the two groups was identified, with longer median survival time (MST) in 
WT patients (MST = 6.16 years, 95% confidence interval [CI]: 5.31–7.95 years) than in BAP1 mutant patients 
(MST = 2.46 years, 95%CI: 2.00–3.52 years), which was consistent with the results of the MSKCC and the TCGA-
KIRC cohorts (Supplementary Fig. 2).

The enrichment analysis was performed using R package GSVA to characterize the biological processes 
affected by the BAP1 mutation. The result showed that the up-regulated genes in the BAP1 mutant group were 
enriched in multiple carcinogenesis associated pathways, such as E2F targets, MTORC1 signaling and DNA 
repair, while the up-regulated genes in the WT group were enriched in metabolism-associated pathways, such 
as pancreatic beta cells and bile acid metabolism (Fig. 4A and Supplementary Table 5).

Based on the BAP1 mutation prediction model, the prediction accuracy was 93.1% in the training cohort 
(combined RNA-seq cohort) and 84.2% in the independent validation cohort (E-MTAB-1980) (Supplementary 
Fig. 3A,B). To evaluate the ability of the prediction model, the receiver operating characteristic (ROC) curve 
was used using R package pROC, and a higher AUC indicated a preferable performance of the model. The AUC 
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Figure 3.  Exploring feasibility of druggable genes in treating driver mutation-specific clear cell renal cell 
carcinoma patients. (A) The bipartite network of representative DM-DG interactions. (B) Overall survival of 
distinct BRD4 expression profiles in BAP1 mutated patients. (C) Overall survival of distinct TYK2 expression 
profiles in VHL mutated patients. (D) The venn graph for summarizing the available cancer cell lines and 
compounds in CTRP, PRISM and GDSC pharmacogenomic datasets. (E) Comparing estimated drug sensitivity 
(LogAUC) of pazopanib between BAP1 mutated and wild-type samples.
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Figure 4.  Determining sensitivities of identified drugs on renal cancer cell lines. (A) Gene set enrichment 
analysis between BAP1 mutated and wild-type groups. Blue dots indicate BAP1 mutant-enriched pathway, while 
red dots indicate wild type-associated pathways. (B) The bipartite network of representative TSG-DT-drug 
interactions. (C) The DEMETER scores derived from RNAi screens of BI-2536 across 24 kidney CCLs. (D) The 
CERES scores derived from CRISPR knockout screens of BI-2536 across 26 kidney CCLs. (E) The DEMETER 
scores derived from RNAi screens of OTX015 across 24 kidney CCLs. (F) The CERES scores derived from 
CRISPR knockout screens of OTX015 across 26 kidney CCLs.
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of this prediction model was 0.956 in the training cohort and 0.895 in the validation cohort (Supplementary 
Fig. 3C,D), suggesting that this model was efficient and robust enough for predicting the BAP1 alteration in other 
transcriptomic cohorts. Therefore, this model was used to identify the estimated BAP1 mutant samples from the 
combined microarray cohort (E-MTAB-3267, E-MTAB-3218, E-MTAB-1980 and GSE29609).

Identification of therapeutic candidates for the BAP1 mutant ccRCC . According to the target 
annotation, 167 associated drugs were retained after mapping drugs to 69 unique targets in the DM-DG pairs. 
The differential drug response analyses between the WT and mutant patients were conducted to further connect 
DMs with these DG-associated drugs. Compared with WT samples, only drugs with significantly lower esti-
mated AUC values in the mutated samples (logFC < 0 and P value < 0.05) were considered SL-associated drugs. 
There remained 149 DM-drug pairs and 49 DM-DG pairs met the screening requirements, which were then 
visualized in a DM-DG-drug network (Fig. 4B and Supplementary Table 6). Among the final candidate SL pairs, 
the number of BAP1 mutant gene pairs was far more than other DM-DG pairs, which provided more potential 
therapeutic agents for this kind of patients. Since BAP1 mutated tumors were significantly associated with worse 
overall survival than tumors without mutated BAP16, it was essential to investigate the specialized therapeutic 
agents for the BAP1 mutant ccRCC. Accordingly, the BAP1 mutation was selected for further investigations 
regarding its therapeutic potential in renal cancers.

In the DM-DG-drug network, these analyses yielded 26 compounds with potential therapeutic effects for 
treating BAP1-mutant ccRCC. We compared the dependency scores of specific compound targets between the 
BAP1 mutant and WT cells from RCC to validate the effect of these potential drugs (Fig. 4C–F). Although there 
was no statistically difference in results, CCLs with the BAP1 mutation still exhibited a trend toward the lower 
dependency scores. Through integrating drug prediction results, survival and dependency analyses, it was found 
that the BRD4 and PRKDC could be the optimal targets for treating ccRCC patients with the BAP1 mutations 
(Fig. 5A). Nevertheless, above analyses alone cannot fully support the conclusion that the actual clinical effect of 
compounds when used in tumors was consistent with the theoretical inference. Therefore, the multiple perspec-
tive approaches for drug prediction were adopted to explore the potential effect of these compounds in treating 
ccRCC. First, the connectivity map (CMap) analysis was utilized to find candidates whose drug signatures, 
namely drug-induced profiles of expression changes, were opposite to the BAP1 mutant expression pattern. A 
total of three compounds, including ZSTK-474, BI-2536 and PI-103, had CMap scores less than −80, represent-
ing the therapeutic efficacy in patients with the BAP1 mutations. Second, the expression differences of candidate 
DG were calculated between normal and tumor tissues, and compounds with higher fold change values were 
considered to have greater potential for ccRCC treatment. Third, through searching relevant literature on these 
compounds in PubMed (https:// pubmed. ncbi. nlm. nih. gov/), we found out the experimental and clinical evidence 
of candidates in treating ccRCC. Lastly, the dependency analysis of the DGs across kidney CCLs was conducted, 
and lower CERES or DEMETER scores denoted that the relevant genes were more likely to be essential for the 
CCLs survival. All results are presented in Fig. 5B and Supplementary Table 7. In general, the BI-2536 and PI-103 
that had robust abilities in vitro and in silico, were considered the best therapeutic compounds for the BAP1 
specific ccRCC treatment.

In addition, an independent dataset, which comprised molecular profiles and mutation data of 246 ccRCC 
patients from the combined microarray cohort, was also used for further external validation. By comparing the 
estimated AUC values of two specific agents (BI-2536 and PI-103) between the BAP1 mutant and WT groups, 
the mutant group was more sensitive to both BI-2536 and PI-103 than the WT group, highly consistent with the 
results of the in silico prediction (Fig. 5C,D and Supplementary Table 7).

Discussion
A recently accepted concept of tumorigenesis and progression is that tumor cells are susceptible to mutation 
events, thus they depend on other genes to gain survival advantages. Considering a pivotal challenge to rescue 
the activity of driver targets, it is urgent to discover alternative approaches. Fortunately, pharmaceutical agents 
based on SL strategy provide novel insight for precisely killing tumor cells with certain mutations. The PARP 
inhibitor Olaparib is the first drug to be clinically used in treating breast cancer patients with BRCA1/2 mutation 
based on the SL interaction  mechanism22. Although pan-cancer analysis has obtained considerable  results10,23, 
the practical application value in ccRCC patients may be limited due to their distinct metabolism process, pro-
liferative characteristic and genetic feature.

The applications of RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats 
(CRISPR) are preferable choices to identify SL pairs, but such methods are expensive and only suitable for 
screening partners of few fascinating driver  genes8,24. Currently, given the easily accessible genomic data, using 
computational procedure is attractive to predict SL pairs. In the current study, we performed SL interaction 
analysis in the most comprehensive metadata set of ccRCC so far, which included 610 patients from five clini-
cal cohorts with available expression and mutation data, to predict the potential gene pairs. The first predictive 
method, differential gene expression, assumes that most mutations of driver genes result in loss-of-function 
and hence allows the tumor cells to compensatively up-regulate the expression of the SL  partners9. The second 
predictive method, pairwise gene co-expression, depends on the concept that SL pairs seem to exert related 
biological functions and co-express in WT tumor  samples9. The third predictive method, functional similarity, 
indicates that gene pairs with SL interaction are likely to engage in similar biological process, thus their locations 
in GO topological network should be neighboring. The last one, mutual exclusivity, is based on the notion that 
inhibition of two genes with SL interplay can reduce tumor cells vitality and hence two genes of tumor samples 
express in a mutually exclusive  manner25.

https://pubmed.ncbi.nlm.nih.gov/
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Classifying the genomic characteristics provides a brilliant prospect for the occurrence, progression and 
precise treatment of RCC. That is, VHL mutation acts as an initiative event to induce tumor occurrence, while 
PBRM1, BAP1 and SETD2 cause DNA repair defect and cell overgrowth. Subsequently, the effective pathways, 
such as PI3K-mTOR activation, confer tumor cells the potential to evade death signals and  metastasis6. In 
this study, chromatin remodeling gene BAP1 accounts for 59.7% of potential SL-based driver genes, followed 
by another frequent mutating gene PBRM1 (23.6%). It is revealed that BAP1 and PBRM1, residing closely on 
chromosome 3p, are frequently mutated (approximately 10% and 40%, respectively) in RCC  patients26–28. Sev-
eral studies have proved the crucial role of BAP1 and PBRM1 in tumor development. Briefly, BAP1 interacts 
with BRCA1/ BARD1 complex to regulate crucial biological processes, such as chromatin modification, DNA 
damage repair and cell cycle  control29,30. Depletion of BAP1 was associated with aggressive histological  grade27, 
advanced tumor  stage31 and poor  prognosis29. Additionally, BAP1 mutation was correlated with high genome 
instability index (GII) and low intratumoural heterogeneity (ITH), conferring the adaptive advantage and single 
lethal target to ccRCC  clone32. In regards to PBRM1, its depletion promoted the upregulation of HIF-1α, STAT3 
and the activation of mTOR signaling induced by VHL  mutation33. Such phenomenon may explain that patients 
with BAP1 mutation experienced a worse outcome than patients with PBRM1 mutation after receiving first-
line VEGFR inhibitor everolimus and mTOR inhibitor sunitinib  treatment28. VHL represents the most widely 
mutated gene in ccRCC, and CAMKK1, RORA, and TYK2 were identified as potential SL partners of VHL in 
this study (Fig. 3A, Supplementary Table 3). Among them, JAK kinase TYK2 might be the most promising 
therapeutic target towards VHL-loss ccRCC patients, since the overall survival of TYK2 high expression group 
was significantly higher than that of TYK2 low expression group in patients with VHL mutation. It was reported 
that VHL-mutated RCC cells performed elevated TYK2 activity, while the invasive and metastasis features of 
VHL-mutated cells were reversed by JAK kinase  inhibitors34. It cannot be ignored that the current computational 
method involves four rigorous screening criterions, which may lead to some effective SL pairs being ignored 
since they cannot meet all the requirements.

To explore available compounds for clinical usefulness, we further estimated drug response of clinical sam-
ples from pharmacogenomics profile databases CTRP, PRISM and GDSC. The estimated drug sensitivity of 

Figure 5.  Estimating drug responses of BI-2536 and PI-103 across BAP1 mutated renal cancer patients. (A) 
Differential drug response analyses of identified 26 compounds with potential therapeutic efficacies on BAP1-
mutant ccRCC. The BRD4 and PRKDC inhibitors with significant response differences between BAP1 mutant 
and wild type groups were labeled on the plot. (B) Summarizing the current evidences, target gene expression, 
drug dependency and CMap analysis of candidate drugs. (C) Estimating the drug responses of BI-2536 and 
PI-103 in treating BAP1 mutated and wild-type RCC patients.
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bromodomain containing 4 (BRD4) inhibitor BI-2536, phosphoinosmde-3-kinase (PI3K)/mammalian target 
of rapamycin (mTOR) inhibitor PI-103, and PI3K specific inhibitor ZSTK474 in BAP1 mutated samples are 
attractive for further study due to their desirable matching scores. In this study, BI-2536 showed a high drug 
sensitivity against BAP1 mutated samples by inhibiting BRD4 function. Among ccRCC patients with BAP1 
mutation, the up-regulated expression of BRD4 was associated with poor prognosis, indicating a possible ben-
efit of BRD4 inhibition in BAP1 mutated samples. It is well-known that BRD4, an important component of the 
bromodomain and extra terminal (BET) protein family, shares similar functions with BAP1 in chromatin remod-
eling and transcriptional  regulation35,36. The up-regulation of BRD4 expression was found in RCC tissues, and 
associated with advanced histological stage and lymph node metastasis, while knockdown of BRD4 reduced cell 
vitality and inhibited tumor  growth37. The BRD4 inhibitor JQ-1 enhanced the anti-tumor activity of the mTOR 
inhibitor Palomid 529 in RCC  cells38. Malignant peripheral nerve sheath tumor with PRC2 loss-of-function was 
sensitive to BRD4 inhibitor, suggesting a promising therapeutic approach of SL-based BRD4  inhibition39. The 
dual PI3K/mTOR inhibitor PI-103 is available to treat various tumor types. For example, the inhibitory ability of 
SCD-1 interference on cell proliferation and migration of RCC cells was amplified by PI-10340. Combination of 
PI-103 and mTOR inhibitor rapamycin performed a better therapeutic effect than single agents in human ovar-
ian and prostate cancer cells, and can effectively prevent rebound activation of the Akt pathway after rapamycin 
 treatment41. In addition to the PI-103, ZSTK474, another inhibitor that specifically targets PI3K, also received 
a high score in our analysis. In vitro experiments have shown that it can inhibit the proliferation of tumor cells 
through interfering cell G0/1 stage  arrest42,43. It is exciting that ZSTK474 induced the degradation of multidrug 
efflux pumps ABCB1 and ABCG2 so as not to be affected by the efflux effect of resistant cancer  cells44. Further-
more, ZSTK474 exhibited antiangiogenic activity via downregulating HIF-1α and VEGF, and suppressed renal 
cancer growth in a xenograft  model45. Generally, above evidences of these three compounds indirectly proved 
the reasonability of our computational pipeline and the reliability of the prediction results.

This study still has several limitations. First, several studies employed pairwise survival analysis to SL 
 identification9,46, which was not included in our screening criteria, for the reason that the relatively low muta-
tion frequency of crucial driver genes like BAP1 and some inaccessible survival data of cohorts would reduce 
the statistical power and thus ignore several important SL interactions. Second, despite the robust evidence from 
pharmaceutical database, there is still a lack of experimental validation. Related experiments are needed in the 
future to support our conclusions. Third, BI-2536 is also considered as PLK1  inhibitor47, so further exploration 
of the target of BI-2536 is essential to elucidate its anti-cancer mechanism in ccRCC.

In conclusion, capitalizing on extensive screening data combined with molecular and clinical data from 
multiple cohorts, this study developed a novel computational-based strategy to identify SL pairs for ccRCC 
patients harboring genetically mutation as well as some potential therapeutic agents for BAP1 mutated patients. 
The potential SL-associated partners for BAP1 and PBRM1, two frequent altered genes, have complemented 
the current VHL-predominant research and mapped a comprehensive landscape for SL interaction in ccRCC, 
which might help to deepen our understanding of ccRCC mutation patterns and provide an alternative strategy 
of personalized renal cancer treatment.

Materials and methods
RNA-sequencing cohorts. In total, five RNA-sequencing cohorts of ccRCC, including TCGA-KIRC 
 cohort11, RECA-EU, CM-00912, CM-01013 and CM-02514 were used in this study. Of these, gene-expression, 
mutation profiles and full clinical annotations of TCGA-KIRC, RECA-EU were obtained from the Can-
cer Genome Atlas (TCGA) database (https:// portal. gdc. cancer. gov/ repos itory) and the International Cancer 
Genome Consortium (ICGC) portal (https:// dcc. icgc. org/). The relevant information about CM cohorts was 
achieved from the supplementary files of three prospective clinical trials which comprised of ccRCC patients 
treated with anti-PD-1 antibody  immunotherapy48. All expression data (raw counts) of RNA-sequencing data-
sets mentioned above were transformed into transcripts per million (TPM) values and these RNA-seq cohorts 
were integrated into one combined metadata. The ComBat algorithm of SVA R  package49 was applied to correct 
batch effects from non-biological technical biases to ensure comparability between different cohorts (Supple-
mentary Fig. 4A). The single nucleotide variants (SNVs) and small insertions/deletions (INDELs) of mutation 
data were saved for further analysis, while copy number variants (CNVs) profiles were not included due to the 
data limitation. In order to evaluate the effect of mutation on gene expression, the expression data and functional 
mutations were involved in this study. Notably, functional mutations, including frameshift and nonsense muta-
tions, were defined as alternations that the resulting proteins usually affected normal physiological functions 
of cells. The non-functional mutations, including silent mutations (synonymous mutations) were excluded and 
samples with no functional mutations or fewer than ten mutations in gene panels were considered as outliers and 
discarded from downstream analyses. Genes with duplicated mutations were merged to keep only one record.

Microarray cohorts. The expression data, somatic mutations data and clinical information of 
E-MTAB-198050 (including 101 ccRCC samples based on GPL13497), E-MTAB-321851 (including 114 ccRCC 
samples based on GPL13667), E-MTAB-326752 (including 59 ccRCC samples based on GPL6244) were acquired 
from the ArrayExpress database (https:// www. ebi. ac. uk/ array expre ss/). Then background adjustment and quan-
tile normalization were performed on these raw expression files from Affymetrix and Agilent by using the robust 
multiarray average (RMA) method located in R package Affy53. For GSE29609  cohort54 (including 39 ccRCC 
samples based on GPL1708), the expression data and detailed clinical information were collected from the Gene 
Expression Omnibus (GEO) (http:// www. ncbi. nlm. nih. gov/ geo/) and the raw expression data were also normal-
ized by the RMA method. These microarray cohorts were merged into one combined cohort with batch effect 
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removal using ComBat function (Supplementary Fig. 4B). Additionally, the mutation annotation information of 
GSE29609 cohort is unavailable.

Cancer cell line data. Gene expression profiles and somatic mutation data of human CCLs were down-
loaded from the Cancer Cell Line Encyclopedia (CCLE) project (https:// porta ls. broad insti tute. org/ ccle/) and 
Genomics of Drug Sensitivity in Cancer (GDSC) project (https:// www. cance rrxge ne. org/). The experimental 
information of different drug responses against CCLs was achieved from the Cancer Therapeutics Response 
Portal (CTRP v2.0, released October 2015, https:// porta ls. broad insti tute. org/ ctrp), PRISM Repurposing data-
set (19Q4, released December 2019, https:// depmap. org/ portal/ prism/) and GDSC 1&2 datasets (Release 8.2, 
release February 2020, https:// www. cance rrxge ne. org/ downl oads/ bulk_ downl oad), respectively. Of these medi-
cine databases, PRISM contained the drug sensitivity data of 1448 compounds against 499 CCLs, CTRP pro-
vided the drug sensitivity data of 545 compounds against 907 CCLs, and GDSC included the drug sensitivity 
data of 518 compounds against 988 CCLs. And the AUC values of dose–response acquired from these three 
datasets were used as evaluation indicators of drug sensitivity, which lower AUC value suggests higher response 
probability to therapy treatment. Compounds with missing AUC values across more than 20% of the CCLs 
were excluded firstly, and the rest of compounds containing incomplete data were imputed using the K-nearest 
neighbors (KNN)  method55 located in R package Impute. Notably, expression profiles and molecular data of 
CCLs were downloaded from the same CCLE Project, and were used for subsequent PRISM and CTRP analyses. 
In order to investigate the cancer survival-essential genes, the genome-wide gene dependency scores, including 
CERES scores from clustered regularly interspaced short palindromic repeats (CRISPR) knockout  screens56 and 
DEMETER scores from RNA interference (RNAi)  screens57, were achieved from the Cancer Dependency Map 
(DepMap) portal (https:// depmap. org/ portal/ downl oad/), which lower CERES or DEMETER scores denote that 
relevant genes are more likely to be essential in cell survival and proliferation of CCLs.

BAP1 mutation prediction. Due to missing mutation data of part samples in E-MTAB-3267, E-MTAB-3218 
and GSE29609, EN-based prediction model, a generalized linear model in the R package glmnet58, was utilized 
to forecast BAP1 mutation status. The RNA-seq metadata mentioned above were then used as training cohort 
to construct the prediction model, and samples with mutation annotations in E-MTAB-1980 were considered 
as external validation for evaluating the performance of BAP1 prediction model. To select significant genes 
which were taken as input into EN model (abs (Log2FC) > 1.5 & adjust P < 0.05), differential expression analy-
sis between the BAP1 mutant and WT samples from the training cohort was performed using the R package 
limma59. Additionally, the leave-one-study-out cross-validation was performed to evaluate the accuracy of EN 
model. Specifically, after splitting a dataset into a training set and a testing set, and using all but one observation 
as part of the training set, the prediction model was built using data from the training set. Lastly, this process was 
repeated n times (where n is the total number of observations in the dataset), leaving out a different observation 
from the training set each time, which meant that it provided a much less biased measure of test mean squared 
error compared to other cross-validation methods. Notably, the penalty was set as 0.9 in fitting a generalized lin-
ear model. The predictive performance of the EN model in training and validation cohorts was evaluated using 
ROC curve via the R package pROC60.

Detection of cancer driver mutations. To discern likely DMs regulating gene network of tumor expres-
sion from thousands of mutations, the DriverNet  algorithm61 was applied in this study, which could evaluate the 
DM probability through integrating genome and expression data. Accordingly, a mutation matrix, a correspond-
ing expression matrix and an influence graph were taken as input documents of DriverNet. In this analysis, the 
influence graph was derived from the Reactome Functional  interactions62, an updated protein functional inter-
action network (Version 2020). Notably, the results of DriverNet indicated the probabilities whether imported 
mutations belong to DMs, and genes with P value < 0.05 were deemed statistically significant. To make our 
prediction more reliable, we compiled a comprehensive list of cancer-associated driver genes which have been 
validated from prior studies and made a comparison between our prediction and previous results. These same 
DMs were saved for constructing the network between DMs and DGs subsequently.

Collection of drug-target interactions. The medicine information about drug-target was acquired from 
the Drug Repurposing  Hub63 and  DrugBank64, respectively. The Drug Repurposing Hub (released March 2020, 
https:// clue. io/ repur posing# downl oad- data) contained 6798 unique compounds and 2183 targeted genes, and 
DrugBank (Version 5.1.8, released January 2021, https:// go. drugb ank. com/ relea ses/ latest) comprised 7540 com-
pounds and corresponding 3976 targeted genes. Then two drug data were merged into one meta-drug set, and 
a total of 11,875 compounds and 4465 DGs were identified after removing duplicated medicine information. In 
order to identify genes with potential therapeutic implications, DGs were utilized to construct DM-DG-drug 
network.

Mutual exclusivity analysis. Under the SL hypothesis, no somatic alteration happens on both genes of 
candidate partners in ccRCC simultaneously. Based on the somatic mutation data of 1211 patients, the analysis 
was performed by using the DISCOVER R package to determine significant mutual  exclusivity65. Gene pairs with 
P adjust value < 0.1 were considered statistically significant.

Connectivity map analysis. To identify potentially therapeutic compounds, CMap analysis (https:// clue. 
io/) was used for searching compounds of which gene expression patterns were opposite to the BAP1 mutant 
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expression pattern. Differential analysis between BAP1 mutant and WT samples was performed to select 150 
up-regulated and down-regulated genes with the most significant fold changes respectively. Through the CMap 
analysis, the standardized connectivity score for each perturbation was calculated, which ranges from −100 to 
100. Compounds with the CMap score < −80 were considered to have a potential therapeutic effect for ccRCC.

Identification of ccRCC subclasses. NBS was performed to identify subclasses of ccRCC via Python 
package pyNBS66, which divides tumor samples with available somatic mutation profiles into molecularly and 
clinically relevant subtypes on the basis of the mutation characters of the combined RNA-seq  cohort67. Through 
integrating a high-quality cancer reference network from the recent  study66 and a mutation matrix of driver 
genes, we acquired the resulting data which contained the clustering information and corresponding consensus 
matrix from NBS. To evaluate the robustness of clusters k ranging from 2 to 5, the cophenetic correlation coef-
ficient was calculated using the R package NMF68 and the value of k with the maximum cophenetic correlation 
coefficient was considered as the optimal number of clusters. In addition, the nearest template prediction (NTP) 
analysis was conducted via R package CMScaller, which could predict the previously published RCC classifica-
tions based on the provided subclass  signatures69.

Functional similarity analysis. In this study, GOSemSim, an R package for measuring semantic similarity 
among GO terms and gene  products70, was utilized to estimate the similarity of MF and CC among different 
genes. Gene pairs achieved from DM-DG network above were used to measure FSS, which was calculated based 
on the semantic similarity in MF (SsMF) and CC (SsCC), as following formula:

Notably, gene pairs with FSS > 0.45 were considered to have high functional correlations and were used for 
further analysis.

Rank aggregation analysis. To obtain a consistent result across multiple sources, rank aggregation algo-
rithm, an order statistics-based method located in R package RobustRankAggreg proposed by Kolde et al71, was 
applied in this study, of which the result (P value) indicates whether the ranking of a particular gene pair is sta-
tistically significant. In this analysis, we chose the order statistics method proposed by Stuart et al72 by assigning 
the corresponding parameter to ‘the Stuart’ and defined the rank aggregation score (RAS) as follows:

The ranking of candidate gene pairs was determined by the RAS, and a higher RAS denoted a more concord-
ant ranking.

Predicting drug response in clinical samples. Three large pharmacogenomic datasets, including CTRP, 
PRISM and GDSC, contained massive drug screening and gene expression data across hundreds of cancer cell 
lines. Previous studies have demonstrated that drug response in clinical samples can be predicted using data 
from in vitro cell line  experiments73. To perform drug response prediction, we intended to test different machine 
learning methods, including support vector machine, random forest and multivariate linear regression, based on 
the actual drug sensitivity and molecular data. In this study, the ridge regression model that exhibited great and 
precise performance in the previous  research74 was utilized for transcriptome data-based drug response predic-
tion using the R package pRRophetic. Through exploiting the expression and drug response data of solid CCLs 
from CCLE and GDSC projects (excluding hematopoietic and lymphoid tissue-derived CCLs), this predictive 
model was trained with a satisfied predictive accuracy evaluated by default tenfold cross-validation and then 
applied to calculate different drug response across clinical samples. These compounds with positive response 
calculated by this model were matched to their DGs for subsequent construction of the DM-DG-drug network.

Enrichment analysis. We performed gene set variation analysis (GSVA) using the R package GSVA based 
on the hallmark definitions (h.all.v7.4.symbols) extracted from the Molecular Signatures Database (https:// www. 
gsea- msigdb. org/ gsea/ msigdb/)75 to explore the differential expression of certain pathway or signature between 
BAP1 and WT  patients76. Notably, the resulting P value from the hypergeometric test was adjusted for multiple 
comparison testing and P adjust < 0.05 was considered significant.

Statistical analysis. All the statistical tests and graphical visualization were conducted utilizing R statisti-
cal software, version 4.0.5 (https:// cran.r- proje ct. org/). Student’s t-test or Wilcoxon rank-sum test was applied 
for comparison of two groups with or without normally distributed variables, respectively. Similarly, correlation 
between two continuous variables was measured by either Pearson’s r correlation (measure of linear relationship 
between two continuous variables) or Spearman’s rank-order correlation (nonparametric measure of statisti-
cal dependence between two variables). Contingency table variables were analyzed by Fisher’s exact tests. The 
Kaplan–Meier method was applied to perform survival analysis and the statistical significance of differences was 
determined using the log-rank (Mantel-Cox) test. The hazard ratios (HR) were calculated using the univariate 
Cox proportional hazards regression model located in R package survival. The Benjamini–Hochberg method 
was utilized to adjust P value of multiple testing in those analyses with more than 20 comparisons. P value < 0.05 
was considered statistically significant for all computational analysis unless otherwise stated.

Functional Similarity Score =
√
SsMF ∗ SsCC

Rank Aggregation Score = −log2(Pvalue)
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Data availability
All data used in this study are publicly available. The TCGA-KIRC dataset is available in the Cancer Genome Atlas 
(TCGA) database (https:// portal. gdc. cancer. gov/ repos itory). The RECA-EU dataset is available in the Interna-
tional Cancer Genome Consortium (ICGC) portal (https:// dcc. icgc. org/). The E-MTAB-1980, E-MTAB-3218, 
E-MTAB-3267 datasets are available in the ArrayExpress database (https:// www. ebi. ac. uk/ array expre ss/). The 
GSE29609 set is available in the Gene Expression Omnibus (GEO) (http:// www. ncbi. nlm. nih. gov/ geo/). The 
Human cancer cell lines data are available in the Cancer Cell Line Encyclopedia (CCLE) project (https:// porta ls. 
broad insti tute. org/ ccle/) and Genomics of Drug Sensitivity in Cancer (GDSC) project (https:// www. cance rrxge 
ne. org/). The drug responses data are available in The Cancer Therapeutics Response Portal (https:// porta ls. broad 
insti tute. org/ ctrp), PRISM Repurposing dataset (https:// depmap. org/ portal/ prism/) and GDSC 1&2 datasets 
(https:// www. cance rrxge ne. org/ downl oads/ bulk_ downl oad). The drug-target data were available in The Drug 
Repurposing Hub (released March 2020, https:// clue. io/ repur posing# downl oad- data) and DrugBank (Version 
5.1.8, released January 2021, https:// go. drugb ank. com/ relea ses/ latest). All codes required to reproduce the results 
were available from the first author upon reasonable request.
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