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Estimation of biological heart age 
using cardiovascular magnetic 
resonance radiomics
Zahra Raisi‑Estabragh1,2,9*, Ahmed Salih3,4,9, Polyxeni Gkontra4, Angélica Atehortúa4, 
Petia Radeva4, Ilaria Boscolo Galazzo3, Gloria Menegaz3, Nicholas C. Harvey5,6, 
Karim Lekadir4 & Steffen E. Petersen1,2,7,8

We developed a novel interpretable biological heart age estimation model using cardiovascular 
magnetic resonance radiomics measures of ventricular shape and myocardial character. We included 
29,996 UK Biobank participants without cardiovascular disease. Images were segmented using 
an automated analysis pipeline. We extracted 254 radiomics features from the left ventricle, right 
ventricle, and myocardium of each study. We then used Bayesian ridge regression with tenfold 
cross-validation to develop a heart age estimation model using the radiomics features as the model 
input and chronological age as the model output. We examined associations of radiomics features 
with heart age in men and women, observing sex-differential patterns. We subtracted actual age 
from model estimated heart age to calculate a “heart age delta”, which we considered as a measure 
of  heart aging. We performed a phenome-wide association study of 701 exposures with heart age 
delta. The strongest correlates of  heart aging were measures of obesity, adverse serum lipid markers, 
hypertension, diabetes, heart rate, income, multimorbidity, musculoskeletal health, and respiratory 
health. This technique provides a new method for phenotypic assessment relating to cardiovascular 
aging; further studies are required to assess whether it provides incremental risk information over 
current approaches.

Abbreviations
CPHA	� Corrected predicted heart age
CMR	� Cardiovascular magnetic resonance
HDL	� High density lipoprotein
NHS	� National Health Service
LDL	� Low density lipoprotein
LV	� Left ventricle
MAE	� Mean absolute error
MRI	� Magnetic resonance imaging
PDFF	� Proton density fat fraction
PheWAS	� Phenome wide association study
ROI	� Regions of interest
RV	� Right ventricle
VAT	� Visceral adipose tissue volume

People around the world are living longer1. As such, there is increasing burden from chronic non-communicable 
disease of older age. Of these, cardiovascular diseases are the most common cause of death and disability in the 
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world. Better understanding of the determinants of aging and improved methods of risk assessment are critical 
to promotion of cardiovascular health in older age2.

There are distinct age-related changes in cardiovascular structure and function, which are detectable by 
cardiovascular imaging3–5. Thus, image-derived cardiovascular phenotypes may be used to estimate biological 
heart age. This information may be used to investigate drivers of cardiovascular aging and to better capture 
individual-level risk.

Cardiovascular magnetic resonance (CMR) is the reference modality for assessment of cardiovascular struc-
ture and function. To the best of our knowledge, there are no existing models for heart age estimation using 
conventional CMR metrics. It is likely that such models would be hampered by high inter-correlation of con-
ventional metrics. There is limited data on heart age models developed using whole medical images as the model 
input6. However, these models have limited interpretability, because it is not always possible to reliably identify 
which parts of the image have influenced the model and in what manner. Thus, existing approaches do not permit 
modelling of heart age using interpretable measures of cardiovascular structure and function.

CMR radiomics analysis allows extraction of a large number of highly detailed measures of cardiac shape 
and myocardial tissue character7, which provide new information over conventional metrics. It may be possible 
to develop an interpretable model of biological heart age using CMR radiomics cardiovascular phenotypes. 
However, this has not been previously reported.

In the present study, we used CMR radiomics features to develop a heart age estimation model in 29,996 
healthy men and women from the UK Biobank. We examined associations of radiomics features with heart age 
in men and women, observing sex-differential patterns. We subtracted actual age from model estimated heart 
age to calculate a “heart age delta”, which we considered as a measure of accelerated (or decelerated) heart aging. 
We performed a phenome-wide association study (PheWAS) of 701 exposures with heart age delta.

Methods
Setting and participants.  The UK Biobank is a cohort study including over 500,000 participants. Individ-
uals aged 40–69 years old were identified from National Health Service (NHS) registers and recruited between 
2006 and 2010. Baseline assessment comprised characterisation of participant demographics, lifestyle, and med-
ical history, a series of physical measures, and blood sampling. Participants who were unable to consent or com-
plete baseline assessment due to discomfort or ill health were not recruited. The UK Biobank protocol is publicly 
available8. The UK Biobank Imaging Study, which includes CMR, launched in 2015 and is currently underway 
with the aim of scanning a random 100,000 of the original participants.

Study sample.  We included all UK Biobank participants with CMR data available and without cardiovascu-
lar disease, as ascertained from baseline assessment and linked Hospital Episode Statistic records (Supplemen-
tary Table 1). We limited to individuals from White ethnic backgrounds, to remove noise from ethnicity-related 
variation of CMR phenotypes. There was inadequate sample size to build separate models for other ethnicities. 
A complete overview of the study methods including sample selection and all subsequent analyses is presented 
in Fig. 1 and Supplementary Fig. 1 in accordance with TRIPOD recommendations.

CMR image acquisition.  CMR imaging in the UK Biobank is performed using standardised equip-
ment and staff training9. The acquisition protocol is detailed elsewhere10. CMR scans were performed using 
1.5 Tesla scanners (MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen, Germany). 
Cardiac function was assessed with three long axis cines (horizontal long axis, vertical long axis, left ventric-
ular outflow tract) and a complete short axis stack covering the left ventricle (LV) and right ventricle (RV) 
acquired at one slice per breath hold using balanced steady-state free precession sequences. Typical acquisition 
parameters were as follows: Repetition Time/Echo Time = 2.6.1.1 ms, flip angle 80°, Grappa factor 2, voxel size 
1.8 mm × 1.8 mm × 8.0 mm (6.0 mm for long axis). The actual temporal resolution of 32 ms was interpolated to 
50 phases per cardiac cycle (~ 20 ms). Aside from distortion correction, no signal or image filtering was applied.

CMR image segmentation.  The first 5000 UK Biobank CMR scans were manually segmented using 
CVI42 post-processing software (Version 5.1.1, Circle Cardiovascular Imaging Inc., Calgary, Canada). The anal-
ysis protocol has been previously published11. In brief, LV endocardial and epicardial borders were contoured 
in end-diastole and end-systole in the short axis stack images. End-diastole was defined as the first phase of the 
acquisition. End-systole was selected as the cardiac phase at which the mid-ventricular LV intra-cavity blood 
pool appeared smallest by visual inspection. The LV papillary muscles were considered part of the blood pool 
(excluded from LV mass). The right ventricular (RV) endocardial borders were segmented in end-diastole and 
end-systole. The most basal slice for the LV was included in the segmentation if at least half of the LV blood 
pool circumference was surrounded by myocardium. The pulmonary valve plane was used to define the most 
basal RV slice, with volumes below the valve plane considered as part of the RV. This ground truth manual 
analysis set was used to develop a fully automated image analysis pipeline with inbuilt quality control, which 
is described elsewhere12. Details of reproducibility performance of the automated algorithm are available in 
dedicated publications12,13. The segmentations generated from this automated pipeline were used to define three 
regions of interest (ROIs) for radiomics analysis: LV, RV, and LV myocardium.

CMR radiomics feature extraction.  CMR radiomics is a novel image analysis method that allows deeper 
phenotyping of cardiac structure and myocardial tissue character7. On one hand, compared to conventional 
cardiac indices such as cardiac volumes and ejection fraction, radiomics encode a highly rich set of advanced 
shape, size, intensity and textural characteristics, including sphericity, compactness, eccentricity, elongation, 
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average intensity, entropy, texture uniformity, texture coarseness, localised contrast, and structural continuity. 
On the other hand, compared to black box deep learning based approaches, radiomics features permit develop-
ment of cardiovascular statistical or machine learning models that are both predictive and interpretable. Prior 
to feature extraction, we applied image normalisation by means of histogram matching using as reference one 
of the available studies to reduce intensity variations related to the acquisition process. We extracted radiomics 
shape features from all three ROIs and signal intensity based features (first-order, texture) from the LV myocar-
dium. We included all radiomics features available from the Pyradiomics open source platform version 2.2.014, 
except features with poor repeatability, identified from our previous work15. A total of 254 radiomics features 
per study were included, comprising 78 shape, 35 first order, and 141 texture features. The full list of radiomics 
features included in modelling is presented in Supplementary Table 2. Further background to CMR radiomics 
is available in a dedicated review paper7.

Model building.  Analysis was performed using scikit-learn in Python16. We trained models separately in 
men and women. The radiomics features were set as the independent variables (predictors, model inputs) and 
the age at imaging as the dependent variable (model output). We implemented a Bayesian ridge regression 
model with tenfold cross-validation. This method was selected due to its reported ability to handle multicol-
linearity, which we expect between radiomics features17,18. Furthermore, this model does not require splitting 
of the data into training and test sets for hyperparametric tuning as it does not have many parameters to run. 
Instead, we may apply k-fold cross-validation and then include all the subjects in the model for further analysis, 
as we do in our study. The radiomics features were set as the independent variables (predictors, model inputs) 
and the age at imaging as the dependent variable (model output). We adjusted radiomics features for body size 
variation using height and weight measured at imaging. These confounds were regressed from the radiomics 
features using linear regression model where each feature was dependent variable and the confounds were the 
independent variables. The de-confounded radiomics features were subsequently standardized to have zero-
mean and unit-variance before fitting them to the model. Then we trained and validated the model using tenfold 
cross-validation, i.e., the samples were divided into 10 folds: 9 folds to train the model and one fold for valida-
tion. To evaluate the model performance, for each fold, we calculated mean absolute error (MAE), coefficient of 
determination (R2), and correlation between predicted heart age and actual age.

We calculated the difference between the model predicted heart age and the actual age, to derive a heart age 
delta variable for all participants. Heart age delta is, in other words, the residuals from the model and quantifies 
the degree of variation of actual age from the predicted heart age. As such, a positive heart age delta indicates 
that the individuals’ heart age is older than their actual age, whilst a negative heart age delta indicates that their 
heart age in younger than their actual age.

Figure 1.   Summary of study workflow.
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As previously described in brain age modelling, we found that heart age was systematically underestimated for 
older subjects and overestimated for younger subjects, whilst providing the most accurate estimates for subjects 
with ages closer to the sample mean. This phenomenon is known as regression dilution bias and is reported in 
a range of settings19, including brain age estimation20,21. Within brain age estimation correction methods have 
been proposed. We sought to describe participants’ heart age without dependency on their current age. As such, 
we adopted a statistical bias-adjustment method, to correct estimated heart age, as used previously to correct 
brain age22. First, we calculated the regression line between heart age delta and the actual age in the training sets 
as shown in Eq. (1):

where D is the heart age delta in the training data, α and β are the slope and the intercept, respectively, of the 
linear regression model and � represents the actual age.

Then we used the estimated parameters to correct the predicted heart age in the validation data as shown 
in Eq. (2):

where CPHA stands for corrected predicted heart age (bias free).
To verify the impact of the bias correction method, we calculated the correlation between predicted heart age 

and actual age, and the correlation between actual age and heart age delta before and after correction.
We used heart age delta, calculated from the final bias-corrected model, to investigate the association of a 

wide range of exposures with heart aging.

Phenotypic alterations and heart age.  Statistical analysis was performed using scikit-learn and seaborn 
in Python16,23. We calculated the correlation of each radiomics feature with biological heart age. Thus, we were 
able to quantitively characterise phenotypic changes in the hearts of men and women with increasing biological 
heart age. The radiomics features were de-confounded (height, weight, age) before performing correlation. We 
report Pearson correlation coefficient (r) and Bonferroni corrected p-values (corrected p-value = p-value * num-
ber of tests) at α = 0.05 , which were converted to − log10 in the manuscript figures for better visualization. We 
organised the results into radiomics feature category (shape, first-order, texture) and sorted by “most informa-
tive” features first, designated based on the strength and statistical significance of the correlation.

PheWAS.  To investigate the relative importance of exposures associated with heart aging, we calculated cor-
relations of a wide range of exposures with heart age delta and examined the magnitude and direction of these 
relationships. We reviewed all exposure variables recorded in the UK Biobank. From these, we selected 701 vari-
ables for inclusion in the study. These included 666 exposures for both men and women, plus 30 female-specific 
and 5 male-specific factors. We grouped these into the following categories: (1) Abdominal MRI; (2) Blood 
biomarkers; (3) Cognitive function; (4) Education and employment; (5) Early life factors; (6) Health related 
outcomes; (7) Lifestyle and environment; (8) Mental health; (9) Physical measures; (10) Primary demographics; 
(11) Self-reported health conditions; (12) Female specific factors; (13) Male specific factors.

We first regressed confounds (age, height, weight) from the exposure variables using linear regression. Then 
we calculated the correlation between heart age delta and the de-confounded exposures. A positive correlation 
indicates that increasing levels of the exposure are linked to larger heart age delta, suggesting older heart age 
compared to actual age. Whilst a negative correlation indicates the reverse. We present Pearson correlation 
coefficients (r) and Bonferroni corrected p-values at α = 0.05 (association is significant if the corrected p-value 
(p-value * number of tests) < 0.05). The number of tests equal to the number of exposures included in each of the 
13 categories mentioned above. For example, the number of tests in abdominal MRI is 16. Then, each p-value 
within this group is multiplied by 16 and the resulting (corrected) p-value is considered significant if < 0.05. 
The corrected p-values were converted to − log10 for better visualization in the figures. The full list of exposure 
variables and granular results are available in Supplementary Files 1 and 2.

Ethics statement.  This study complies with the Declaration of Helsinki; the work was covered by the ethi-
cal approval for UK Biobank studies from the National Health Service (NHS) National Research Ethics Service 
on 17th June 2011 (Ref 11/NW/0382) and extended on 18 June 2021 (Ref 21/NW/0157) with written informed 
consent obtained from all participants.

Results
Baseline characteristics.  CMR segmentations were available for 32,121 participants. We excluded 1185 
individuals with cardiovascular disease and 940 participants from ethnic backgrounds other than White. Thus, 
15,920 women and 14,076 men were included in the analysis. The age range at time of imaging was 45–82 years 
old for both men and women with similar age distribution for both sexes (Table 1).

Model performance.  As expected, there was bias in the uncorrected heart age estimation model demon-
strated by the correlation between heart age delta and the actual age (Supplementary Figs. 2 and 3, Panel A). 
The proposed bias-free correction method was successful in reducing this correlation to near zero, indicating 
removal of the age dependency, and hence related bias, from the model (Fig. 3, Panel C). Model performance was 
poorer in men compared to women, with a larger MAE (5.48 vs 4.95) and lower R2 value (0.22 vs 0.31).

(1)D = α ∗�+ β

(2)CPHA = Predicted heart age − (α ∗�+ β)
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Correlation of radiomics features with heart age.  In men, 76% (193/254) of the radiomics features 
associated with biological heart age, compared to 70% (177/254) in women (Fig. 2, Supplementary Table 2).

For both men and women, the most informative features were from the shape category. There were significant 
(p-value * 254 < 0.05) associations of heart age with 85% and 83% of the radiomics shape features in men and 
women, respectively. In men, the most informative (most significant (p-value * 254 < 0.05) and greatest magni-
tude) associations appeared with RV shape features; advancing heart age was associated with smaller RV axis 
dimensions (in all directions), smaller RV volumes, and smaller RV internal cavity surface area (Supplementary 
Table 2). Amongst women, the most informative associations were with shape features extracted from the LV 
myocardium and the LV cavity. These included greater sphericity of the LV myocardium, and greater surface 
area to volume ratio of the LV cavity and of the LV myocardium with increasing heart age. There were also asso-
ciations between greater heart age and smaller LV and RV cavity sizes in women, but these appeared to be less 
prominent features of aging than for men (Supplementary Table 2).

The significant associations (p-value * 254 < 0.05) between heart age and signal intensity based radiomics 
features (first order, texture) extracted from the LV myocardium appeared notably more numerous and of greater 
magnitude in men compared to women (72% vs 64%, Fig. 3). With increasing heart age, there was observation 
of a brighter myocardium and greater variation in LV myocardial signal intensities. Overall, the direction of 
change in these features appeared similar but less pronounced in women compared to men (Supplementary 
Table 2). The most defining radiomics features of biological heart age are summarised in Supplementary Fig. 4.

PheWAS.  Granular results for the PheWAS are presented in Supplementary File 1 (men) and Supplementary 
File 2 (women) and visualised in Fig. 3. We additionally summarise all significant (corrected p-value < 0.05) 

Table 1.   Baseline participant characteristics. Categorical variables are as number (percentage). Continuous 
variables are reported as mean (± standard deviation) and median [25th percentile, 75th percentile]. All 
measures are as recorded at the imaging visit, except for serum cholesterol and glycosylated haemoglobin, 
which are from baseline.

Women Men

Number of participants 15,920 14,076

Age (years) Mean 62.7 (± 7.3)
Median 63 [57, 68]

Mean 63.8 (± 7.6)
Median 65 [58, 70]

Townsend deprivation score Mean − 1.9 (± 2.6)
Median − 2.6 [− 3.8, − 0.6]

Mean − 2 (± 2.6)
Median − 2.7 [− 3.9, − 0.7]

Height (m) Mean 163.7 (± 6.3)
Median 164 [160, 168]

Mean 177.4 (± 6.6)
Median 177 [173, 182]

Weight (kg) Mean 68 (± 12.7)
Median 66 [60, 75]

Mean 83.1 (± 13.2)
Median 81 [74, 90]

BMI (kg/m2) Mean 26 (± 4.5)
Median 25.1 [22.9, 28.3]

Mean 27 (± 3.8)
Median 26.6 [24.5, 29]

Systolic blood pressure (mmHg) Mean 133.4 (± 19.1)
Median 131 [120, 145]

Mean 140.9 (± 17.3)
Median 139 [129, 151]

Diastolic blood pressure (mmHg) Mean 79.3 (± 10.2)
Median 79 [72, 86]

Mean 83.7 (± 10.1)
Median 83 [77, 90]

Multimorbidity (number of non-cancer illnesses) Mean 2.8 (± 3.3)
Median 2.0 [1.0, 4.0]

Mean 2.5 (± 2.8)
Median 2.0 [1.0, 3.0]

Current smoker 826 (5%) smokers 1029 (7.3%)

Cholesterol (mm/L) Mean 5.9 (± 1.1)
Median 5.8 [5.1, 6.5]

Mean 5.6 (± 1.1)
Median 5.6 [4.9, 6.3]

Glycosylated haemoglobin (mmol/mol) Mean 34.7 (± 4.5)
Median 34.4 [32.2, 36.8]

Mean 35 (± 5.3)
Median 34.6 [32.2, 37.0]

Table 2.   Data characteristics and model performance.

Matrices Women Men

Number of participants 15,920 14,076

Age (years) 62.7 (± 7.3) 63.8 (± 7.6)

Age range 45–82 45–82

Number of features 254 254

Mean absolute error 4.95 5.48

R squared 0.31 0.22

Correlation of chronological age with predicted age 0.90 0.91

Correlation of heart age delta with actual age − 0.01 − 0.01
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associations in Supplementary Table  3. There was a greater number of statistically significant (corrected 
p-value < 0.05) exposure associations with heart age delta in men compared to women (27.1% vs 20.2%), and in 
general, the magnitude of associations appeared larger for men (Fig. 3). There was overlap of 16.2% associations 
for men and women (Supplementary Table 4).

Obesity.  The most convincing positive correlations were between heart age delta and different measures 
of obesity (Figs.  3, 4). The strongest correlations, for both men and women, were observed with abdominal 
magnetic resonance imaging (MRI) measures of visceral adipose tissue volume (VAT), total trunk fat volume, 
abdominal subcutaneous adipose tissue volume, and total adipose tissue volume. Notably, higher Proton Density 
Fat Fraction (PDFF), an MRI measure of liver fat, was also positively and significantly (p-value = 2.6 × 10–13 for 
women, p-value = 1.9 × 10–5 for men) correlated with higher heart age delta (accelerated heart aging). Consist-
ently, greater lean tissue volume (measured from various body locations) correlated with significantly (p-value 
0.0001 for women, p-value = 4.3 × 10–28 for men) smaller heart age delta for both men and women.

Body composition measures were also obtained using a non-invasive analysis method, which works by trans-
mitting a low-level current through the body and analysing the ‘impedance’ or current lost in flow. As with the 
abdominal MRI metrics, we found that these impedance measures of obesity (e.g., whole body fat mass) were 
linked to greater heart aging, whilst impedance measures of lean/muscle mass (e.g., whole body fat-free mass) 
were linked to smaller heart age deltas.

More established anthropometric measures of obesity, e.g., body mass index (BMI) and waist circumference, 
also associated positively with heart age delta. The correlations with BMI appeared weaker than the MRI or 
impedance obesity measures. For example, in men, heart age delta was positively correlated with abdominal VAT 
(cc = 0.30; p-value = 2.93 × 10–85), impedance trunk fat mass (r = 0.17; p-value = 7.83 × 10–81), and BMI (r = 0.06; 
p-value = 1.27 × 10–11). Interestingly, higher self-reported comparative body size in childhood was linked to decel-
erated heart aging for both women (r = − 0.07; p-value = 1.68 × 10–6) and men (r = − 0.09; p-value = 2.10 × 10–8).

Figure 2.   Association of radiomics features with heart age. Each circle represents an individual radiomics 
feature. The blue, orange, and green circles indicate individual radiomics shape, first order, and texture features 
respectively. Correlation coefficients are from Pearson correlation of radiomics features against heart age. The 
p-values are corrected for multiple testing and converted to − log10, so larger values indicated smaller (more 
significant, p-value * 254 < 0.05) values. (A and B) are the results for women. (C and D) are the results for men. 
(A and C) The distance of each circle from the blue line indicates the magnitude of the correlation coefficient (as 
per y-axis) with heart age. The size of the circles reflects magnitude of the p-value with larger circles indicating 
smaller p-values. (B and D) The distance from the blue line indicates size of the p-value (level of significance) 
and the size of the circle indicates magnitude of the correlation coefficient. Horizontal line depicts the 
Bonferroni threshold of significance (p-value * 254 < 0.05) for multiple comparisons (a = 0.05).
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Blood biomarkers.  In line with the physical and imaging measures of obesity, adverse serum lipid profile 
also appeared strongly associated with greater  heart aging in both men and women (Fig.  3, Supplementary 
Table 3). Greater heart age delta was linked to higher triglyceride, higher low density lipoprotein (LDL) cho-
lesterol, and lower high density lipoprotein (HDL) cholesterol levels. Overall, the pattern of associations with 
adverse serum lipid markers appeared more consistent for women, with generally stronger associations and 
significant (corrected p-value < 0.05) correlations across a larger number of metrics than men. For example, 
of all the lipid metrics, triglyceride level had the strongest correlations with heart age delta for both men and 
women, however, the correlation was stronger in women (r = 0.15, p-value = 1.57 × 10–78) than in men (r = 0.07; 
p-value = 1.42 × 10–15).

In men, serum liver metrics (e.g., alkaline phosphatase, gamma glutamyl transferase, alanine aminotrans-
ferase) also appeared as significant (p-value = 2.2 × 10–8, 3.3 × 10–7,1.9 × 10–6 respectively) positive correlates of 
heart age delta. These correlations were also seen for women but were of slightly smaller magnitude. Interestingly, 
the liver fat associations (as per the MRI PDFF metric) appeared stronger in women than in men. For both men 
and women, poorer glycaemic control, measured by higher glycosylated haemoglobin (HbA1c) was linked to 
larger heart age delta. We also observed links between blood markers of systematic inflammation (e.g., neutrophil 
count, C reactive protein) and greater heart age delta.

Blood pressure, heart rate, and arterial stiffness.  Faster heart rate appeared as a consistent and 
strong positive correlate of heart age delta for men (r = 0.31; p-value = 1.85 × 10–273) and women (r = 0.30; 
p-value = 5.80 × 10–284). Higher systolic and diastolic blood pressure measurements (SBP, DBP) appeared as posi-
tive correlates of heart age delta; these associations appeared more convincing in women than in men. In women 
correlation of heart age delta with both SBP (r = 0.19; p-value = 2.64 × 10–96) and DBP (r = 0.24; p = 6.68 × 10–165) 
was stronger and more consistent than for men (DBP: r = 0.17; p = 1.52 × 10–70; SBP: r = 0.08; p = 4.00 × 10–15). 
Greater pulse wave arterial stiffness index positively correlated with heart age delta in women (r = 0.08; 
p-value = 6.29 × 10–17) and in men (r = 0.05; p-value = 2.26 × 10–7).

Figure 3.   Results from the phenome wide association study. Associations of exposures recorded in UK 
Biobank with heart age delta expressed using Pearson correlation coefficient with corrected p-value (− log10). 
Each circle represents an individual exposure. In (A and C), correlation coefficient is shown on the y-axis 
and the magnitude of p-value is represented by the size of the circles (larger circles indicate more significant 
(p-value * number of tests < 0.05) results). (B and D) have − log10 corrected p-value on the y-axis, thus distance 
from the line represents significance level and size of the circles represents magnitude of the correlation. Bio: 
biochemistry; CF: cognitive function; E&E: education and employment; EL: early life factors; Female_sp: female 
specific factors; Male_sp: male specific factors; HR: health related outcomes; MRI: magnetic resonance imaging; 
L&E: lifestyle and environment; MH: mental health; PM: physical measures; PD: primary demographics; SR: 
self-reported health conditions.
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Respiratory function.  Better lung function assessed using spirometry correlated with decelerated heart 
aging. For example, higher forced vital capacity, peak expiratory flow, and forced expiratory volume were linked 
to lower heart age delta in both men and women, but with slightly stronger associations and a little more consist-
ency in men (Fig. 3, Supplementary Table 4).

Musculoskeletal health.  Higher hand grip strength was negatively correlated to heart age delta in both 
men (r = − 0.06; p-value = 1.53 × 10–9) and women (r = − 0.03; p-value = 0.04). In men, measures of better bone 
health from quantitative heel ultrasound (speed of sound, broadband ultrasound attenuation, estimated bone 
mineral density) were all linked to smaller heart age delta. These associations with bone health were not observed 
in women.

Cognitive function.  Better performance on cognitive function tests was linked to less heart aging in both 
men and women. For example, higher fluid intelligence score correlated with lower heart age delta in women 
(r = − 0.03; p-value = 1.20 × 10–3) and men (r = − 0.04; p-value = 1.65 × 10–3).

Lifestyle and environment.  For both men and women, measures representing greater levels of socio-
economic deprivation were linked to greater  heart aging. Greater household income and greater number of 
vehicles in the household were linked to smaller heart age delta. In men, having a job involving shift work was 
linked to higher heart age delta.

Higher physical activity levels were linked to lower heart age delta for both men and women, but with slightly 
greater strength of correlation for men. For both, longer time watching television was linked to larger heart age 
delta. Smoking was linked to larger heart age delta for both men and women. In women greater pork intake and 
in men greater beef intake, correlated with higher heart age deltas. In both men and women, greater oily fish 
intake and greater intake of cereals were linked to smaller heart age delta.

Figure 4.   Selected results from the PheWAS. Results are Pearson correlation coefficients of exposures with 
heart age delta in men (orange) and women (blue). Positive correlations indicate exposures linked to greater 
heart age delta (accelerated heart aging) and negative correlations indicate exposures linked to smaller heart age 
delta (decelerated heart aging). Asterix indicates results that are not statistically significant (p-value * number 
of tests > 0.05). ALP: alkaline phosphatase; ALT: alanine aminotransferase; ASAT: abdominal subcutaneous 
adipose tissue volume; ASI: arterial stiffness index; BMD: bone mineral density; BMI: body mass index; BUA: 
bone ultrasound attenuation; DBP: diastolic blood pressure; FEV1: forced expiratory volume in 1 s; FVC: forced 
vital capacity; GGT: gamma glutamyl transferase; HbA1c: serum glycosylated haemoglobin; HDL: high density 
lipoprotein; HR: heart rate; LDL: low density lipoprotein; Neut: neutrophil; PDFF: Proton density fat fraction; 
PEF: peak expiratory flow; SBP: systolic blood pressure; TG: triglyceride level; TV: television; VAT: visceral 
adipose tissue volume; WC: waist circumference. Please note, for “health satisf.” “financial satisf.”, and “overall 
health rating” variables, the UK Biobank standard coding tables allocate higher score to poorer ratings, here we 
reverse the coding for more intuitive interpretation.
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Mental health.  Higher health satisfaction and financial satisfaction scores were significant (p-value = 1.6 × 
10–21, 0.0002 for men & 4.7 × 10–12, 0.0008 for women respectively) negative correlates of heart age delta for both 
men and women. For both sexes, higher neuroticism score, and greater tendency to “nervous” feelings, or “wor-
ried/anxious” feelings were all correlated with significantly (p-value = 0.001, 0.03 for men and 5.3 × 10–5, 0.0003 
respectively) greater heart age delta. In men, there were additional significant (p-value = 0.01) associations with 
variables indicating low mood or depression, which did not appear significantly (p-value = 1.00) correlated with 
heart age delta in women. For example, in men, lower happiness score, greater “miserableness”, low enthusiasm, 
and greater tendency to “fed-up” feelings all appeared as significant (p-value = 0.003, 0.01, 0.0001, 0.03 respec-
tively) positive correlates of heart age delta.

Medical history.  In both men and women, poorer self-reported health rating, greater number of medica-
tions taken, and history of chronic disease or disability were all linked to greater  heart aging. Self-reported 
symptoms of chest pain or wheezing correlated with higher heart age delta, as did a history of dental problems. 
History of medication use for cholesterol, diabetes, or hypertension as well as a clinical diagnosis of diabetes 
associated positively to heart age delta.

Sex‑specific factors.  In women, older age at both time of the first live birth and last live birth was associ-
ated with lower heart age delta. In men, “number of children fathered” was linked to lower heart age delta. In 
men, there was a small but statistically significant (p-value = 0.01) correlation between lower heart age delta and 
a more extensive balding pattern (Type 4 pattern, as per Giles et al.24).

Discussion
Summary of findings.  In this large population-based cohort free from cardiovascular disease, we devel-
oped a novel heart age estimation tool using CMR radiomics measures of cardiac shape and myocardial charac-
ter. There was evidence of differential heart aging in men and women. Men had extensive age-related phenotypic 
alterations across all radiomics feature categories (shape, first-order, texture), suggesting that in men, older heart 
age is linked to both gross morphological alterations of the heart and important alterations in the LV myocar-
dium. Whilst women also showed some alterations of LV myocardium texture features, these were less extensive 
than in men. In men, changes of RV shape appeared to be the most important feature of heart aging, whereas in 
women geometric alterations of the LV and myocardium appeared more prominent.

In the PheWAS we demonstrate the feasibility and validity of using heart age delta, derived from our heart 
age estimation model, as a measure of the rate of cardiac aging. The strongest correlates of accelerated heart 
aging were measures of obesity, adverse serum lipid markers, hypertension, diabetes, heart rate, income, multi-
morbidity, musculoskeletal health, and respiratory health. The presented heart age model may now be used to 
investigate determinants of heart aging in dedicated hypothesis driven studies.

Comparison with existing work.  Our observations of smaller LV and RV sizes with older heart age are 
consistent with previous reports of conventional heart metrics in healthy aging5. The dominance of RV mor-
phological alterations in men and LV and myocardial geometric alterations in women has not been previously 
reported. Furthermore, the novel radiomics features allowed appreciation of more detailed phenotypic altera-
tions, for example alongside reduction in RV cavity axis dimensions and volumes we also observed reduction of 
the RV cavity internal surface area, which may indicate attenuation of RV endocardial trabeculations with aging. 
Additionally, we found greater sphericity of the overall LV shape, reduced height of the LV (and accordingly, 
greater surface area to volume ratio of the LV myocardium) to be dominant features of heart aging in women.

We observed convincing evidence of alterations at the myocardial level with increasing heart age in men, but 
less so in women. Ours is the first study to report these myocardial texture patterns using CMR radiomics fea-
tures. However, our results are consistent with previous studies using conventional measures of myocardial char-
acter, such as, myocardial native T1, which report clear age trends in men but inconsistent results in women25–27.

We found significant correlations between spirometry measures indicating better lung function and 
smaller heart delta. These correlations, along with the adverse heart age effect of smoking, appeared more con-
sistent in men than women. Given the strong dependency of RV size and function on respiratory health, these 
more convincing cardio-respiratory relationships in men may explain the dominance of RV alterations seen in 
aging of male hearts. The interconnected relationship between cardiovascular and respiratory health is of course 
well described28 and previous epidemiologic research has suggested links between poorer spirometry metrics 
and greater risk of cardiovascular mortality29.

The strongest correlates of greater heart aging in our study were measures of obesity. Interestingly, measures 
of visceral and central obesity appeared to correlate more strongly with accelerated heart aging than measures of 
subcutaneous obesity. The links between obesity and adverse conventional LV CMR measures have been previ-
ously reported using anthropometric measures of obesity30 and measures of visceral adiposity31. However, the 
key importance of obesity in heart aging in the general population has not been highlighted previously.

Furthermore, we found significant correlations of greater heart aging with higher liver fat and adverse serum 
liver markers. Indeed, there is growing interest in the importance of the heart-liver axis and recent reports have 
emphasised the links between non-alcoholic fatty liver disease and poorer cardiovascular health32. Our findings 
add strength to these reports and demonstrate novel links between liver adiposity and heart aging in a population 
cohort without cardiovascular disease, which merits further dedicated investigation.

We demonstrate multiple further cross-system interactions with heart aging, including with brain and 
musculoskeletal health, which are broadly consistent with previous reports of multi-system health33,34. Indeed, 
measures of multimorbidity also appeared as important correlates of heart aging. There is growing support for 
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consideration of disease patterns within multisystem contexts35–37. Our findings in association with heart aging 
support such approaches.

An interesting observation was the strong correlation of faster heart rate with  heart aging. Previous work has 
demonstrated faster resting heart rate as a reliable predictor of cardiovascular outcomes in men and women38. 
However, the underlying mechanisms for these relationships are not fully understood. Our results suggest that 
faster heart rates are linked to  aging related alterations of the cardiac phenotype. Thus, our findings support heart 
rate as an indicator of cardiovascular risk and suggest that these effects may be mediated through promotion of 
adverse cardiovascular remodelling.

We also observed expected correlation of SBP and DBP with heart aging in both men and women, with 
stronger associations for women. Our observations are in keeping with reports indicating greater end-organ 
damage in women with hypertension39,40 and may explain greater propensity for women to develop heart failure41.

Finally, our work also highlights the importance of mental wellbeing and socio-economic factors in heart 
aging. These relationships are complex and difficult to quantify, however, our results demonstrate consistent 
correlations across a range of measures. Further study into these important exposures is warranted.

Strengths and limitations.  The large standardised CMR dataset in the UK Biobank and the availability 
of automated image analysis tools provided the ideal platform to develop the presented heart age estimation 
model. There is limited ethnic diversity in the UK Biobank (> 98% White ethnicities), as such we were unable to 
develop models for other ethnicities. As CMR measures are known to vary by ethnicity5, our model may not be 
applicable across different ethnic groups. Furthermore, as we sought to understand heart aging in individuals 
without overt cardiac disease, the observed relationships in this study may not be applicable in clinical cohorts. 
In this paper, we demonstrate the initial feasibility of heart age estimation using CMR radiomics data. Wider 
application of our model requires validation in external independent cohorts and careful scientific scrutiny 
of reproducibility and validity. As this was the first work to use radiomics feature for heart age estimation, we 
included all the features available in the present model to avoid excluding any feature that could have a biological 
meaning and to establish a benchmark for complex methods and feature selection. Application of features selec-
tion methods would be appropriate steps in future work. The detailed characterisation of participants permitted 
examination of associations of a wide range of exposures with heart age delta. The correlations described in the 
PheWAS are after minimal confounder adjustment. Additionally, the exposures are taken as reported by the UK 
Biobank; consideration of outlier removal or other sense checks were beyond the scope of this study. In future 
studies, a more focused hypothesis-driven approach with greater care in preparation of exposures and consid-
eration of more extensive confounder adjustment are needed. Some of the reported exposure associations with 
heart age delta were statistically significant but very small in magnitude. Whilst these relationships are informa-
tive in understanding population-level trends, their value in evaluating individual-level risk is uncertain. Future 
research is required to evaluate the clinical utility of heart age delta as an indicator of cardiovascular risk and its 
incremental value over existing approaches.

Conclusions
We present a novel heart age estimation tool developed using image derived radiomics phenotypes of cardiac 
shape and myocardial character. We propose heart age delta derived from this model as an indicator of heart 
aging. We observed a pattern of exposure associations with heart age delta which is consistent with our biologi-
cal knowledge of cardiovascular health. As such, our findings support the validity of the heart age delta metric 
to investigate novel determinants of heart aging in population cohorts. Furthermore, this new technique pro-
vides a novel method of phenotypic assessment relating to cardiovascular health; whilst this has been shown 
to be of value in this cross-sectional setting, further studies will be required to assess its predictive value for 
incident cardiovascular events, whether it generates a risk independent of traditional risk factors, and whether 
patients treated on the basis of heart age difference respond to treatment as well as those selected on the basis 
of a specific risk factor.

Data availability
This research was conducted using the UK Biobank resource under access application 2964. UK Biobank will 
make the data available to all bona fide researchers for all types of health-related research that is in the public 
interest, without preferential or exclusive access for any persons. All researchers will be subject to the same 
application process and approval criteria as specified by UK Biobank. For more details on the access procedure, 
see the UK Biobank website: http://​www.​ukbio​bank.​ac.​uk/​regis​ter-​apply.
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