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Optimal control for a SIR epidemic 
model with limited quarantine
Rocío Balderrama1, Javier Peressutti2, Juan Pablo Pinasco1,3, Federico Vazquez4 & 
Constanza Sánchez de la Vega1,4*

Social distance, quarantines and total lock-downs are non-pharmaceutical interventions that 
policymakers have used to mitigate the spread of the COVID-19 virus. However, these measures 
could be harmful to societies in terms of social and economic costs, and they can be maintained only 
for a short period of time. Here we investigate the optimal strategies that minimize the impact of 
an epidemic, by studying the conditions for an optimal control of a Susceptible-Infected-Recovered 
model with a limitation on the total duration of the quarantine. The control is done by means of the 
reproduction number σ(t) , i.e., the number of secondary infections produced by a primary infection, 
which can be arbitrarily varied in time over a quarantine period T to account for external interventions. 
We also assume that the most strict quarantine (lower bound of σ ) cannot last for a period longer than 
a value τ . The aim is to minimize the cumulative number of ever-infected individuals (recovered) and 
the socioeconomic cost of interventions in the long term, by finding the optimal way to vary σ(t) . We 
show that the optimal solution is a single bang-bang, i.e., the strict quarantine is turned on only once, 
and is turned off after the maximum allowed time τ . Besides, we calculate the optimal time to begin 
and end the strict quarantine, which depends on T, τ and the initial conditions. We provide rigorous 
proofs of these results and check that are in perfect agreement with numerical computations.

The Covid-19 pandemic outbreak raises an unprecedented series of decisions in different countries around the 
world. Since vaccines and effective pharmaceutical treatments were not initially available, governments had 
decided to impose non-pharmaceutical interventions like social distance, quarantines and total lock-downs as 
the most effective tools to mitigate the spread of the disease. Although these kinds of measures are helpful in 
reducing the virus transmission and giving time to health systems to adapt, they could be extremely stressful in 
terms of economic and social costs, and, in longer periods, tend to have less compliance with the population.

In this article we consider the classical SIR model introduced by Kermack and  McKendrick1 and widely used 
in  epidemiology2,3, where the population is divided in compartments of Susceptible, Infected and Recovered (or 
Removed) individuals. As it is usual in SIR models, we assume that people who have recovered develop immunity 
and, therefore, would not be able to get infected nor infect others. We consider that infection and recovery rates 
are allowed to change over time, and that are homogeneous among the population, instead of heterogeneous rates, 
not depending on age, individual protection measures, or  awareness4,5. Let us observe that these heterogeneous 
rates implies the existence of effective rates, obtained as weighted means of the individual  rates6. However, for 
age-structured models, better results are obtained by considering integro-differential equations, and different 
tools from mathematical control theory are  needed7. We also assume a mean-field hypothesis that implies random 
interactions between any pair of agents, unlike other  works8–10 where interactions are mediated by an underlying 
network of contacts. In this case, by weighted means of agents degrees, it is possible to derive a system equivalent 
to a SIR  model11. Also, a full proof of a derivation using probabilistic tools was studied  recently12 together with 
the optimal control problem for vaccination.

Optimal control problems for a system governed by a SIR or a SEIR model (with the addition of the Exposed 
compartment) with pharmaceutical interventions as vaccination or treatment were widely  studied13–16. On its 
part, in the field on optimal control problems, non-pharmaceutical interventions were studied mostly for a con-
trol consisting of isolation acting only on the  infected17–20. Taking into account that there is a window of time 
when the infected are not detected, in this article we will consider that the quarantine is applied to the whole 
population. Non-pharmaceutical interventions can range from a mild mitigation policy to a strong suppression 
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policy. As discussed by Ferguson et al.21, a suppression policy “aims to reverse epidemic growth, reducing case 
numbers to low levels and maintaining that situation indefinitely”. Suppression can be achieved by restricting 
travels, closing schools and nonessential businesses, banning social gatherings, and asking citizens to shelter in 
place. These measures, often referred to as a lockdown, are highly restrictive on social rights and damaging to 
the economy. In contrast, a mitigation policy “focuses on slowing but not necessarily stopping epidemic spread”. 
Mitigation measures may involve discouraging air travel while encouraging remote working, requiring com-
panies to provide physical separation between workers, banning large gatherings, isolating the vulnerable, and 
identifying and quarantining contagious individuals and their recent contacts.

A critical parameter in the SIR model is the basic reproduction number R0 , defined as the expected number 
of cases directly generated by one case in a population where all individuals are susceptible to infection. At the 
beginning of the epidemic, when no one in the population is immune, infected individuals will infect R0 other 
people on average. Let us observe that, for R0 < 1 , the number of new cases decline, and when R0 > 1 , the num-
ber of new cases grows. However, at any time t > 0 , the effective reproduction number Rt replaces R0 , since the 
number of contacts between infected and susceptible agents is reduced due to the interactions with recovered 
individuals that are immune. Hence, the epidemic grows until a sufficient fraction of the population becomes 
infected, and after reaching a peak starts to gradually decline. Following Ferguson et al.21, for the Covid-19 the 
suppression phase can achieve R0 < 1 , while the mitigation measures are unlikely to bring R0 below 1. Therefore, 
the number of new cases are expected to decline during the suppression phase and to start rising again during 
the mitigation phase, although at a slower rate than in a non-intervention scenario.

In this work we assume that the intervention will occur in a preset period of time T, as proposed by 
 Greenhalgh22 and recently by  Ketcheson23, since it is unrealistic that interventions can be sustained indefinitely. 
Also, the lockdown or (strict quarantine) can last at most for a period τ < T , the maximum time that the popu-
lation will adhere. Now, there are several interesting questions related to the implementation of the measures: 

1. When should the suppression policy begin in [0, T]?
2. Is it convenient to split the maximum time τ into different intervals?
3. Is it better to apply a strong lockdown followed by mild mitigation measures or not?

In this article we study the previous questions using optimal control tools and numerical  computations24–27. 
The answers clearly depend on the goal, which in our case is to minimize the overall impact of the epidemics in 
terms of the final number of infected individuals and the social and economic cost of the interventions, which 
we assume to increase as the quarantine becomes more strict. To account for quarantine measures, we consider 
a time-dependent reproduction number. Using an optimal control approach we show that the optimal strategy 
is of a single bang-bang type, that is, the lockdown or strict quarantine is applied in a single interval of time. 
Moreover, we characterize the time to start and finish the lockdown during the intervention phase. Let us remark 
that these questions make sense also in SIHR models, which include hospitalized individuals, since it must be 
necessary to keep the maximum of the hospitalized group below some  threshold28.

Recently, many works have appeared dealing with these and related issues. The optimal time to start the 
suppression measures that maximizes this type of objective function was studied by  Ketcheson23, where it was 
proved that a bang-bang control is optimal. However, in that work it is assumed that the lockdown corresponds 
to a zero reproduction number, something that is impossible to achieve in the real world. Moreover, it is assumed 
that the strict lockdown can last during the whole intervention, which seems to be impracticable. This problem 
was also analyzed for a different objective  function29, i.e., minimizing the peak of infected individuals, for which 
they proved that the optimal policy is not bang-bang. Besides, Kruse and  Strack30 minimize a functional that 
depends on the number of infectives during the intervention plus a term that measures the social and economic 
cost of interventions, and prove that the optimal control is bang-bang, but they do not investigate the optimal 
time to start the suppression policy.

The second question is suggested by the strategy proposed by Ferguson et al.21: the lockdown must be turned 
on and off several times based on the incidence of the virus in the population. A control-theoretic approach was 
considered in several  works28,31–33, although no time limits for the interventions were imposed. We shall see that 
the optimal policy is of bang-bang type, which consists on turning the lockdown on only once and turning it off 
after the maximum allowed time τ , in agreement with other  authors23,30.

Finally, the third question involves both suppression and mitigation phases, and one of the policies was 
colorfully characterized as the hammer and the dance  in34: a strict lockdown, followed by mitigation measures 
in order to keep under control the propagation of the disease. However, our main results indicate that the best 
strategy actually depends on the initial condition, determined by the relation between R0 and the initial frac-
tion of susceptible individuals x0 . On the one hand, when x0 is smaller than 1/R0 the optimal strategy consists 
on applying a strong lockdown right at the beginning of the intervention period [0, T] for the maximum time 
period τ , followed by a mild mitigation measure until the end of the intervention (strong-mild strategy). On the 
other hand, when x0 is larger than 1/R0 the optimal strategy is to apply mild mitigation measures at the begin-
ning of the intervention, followed by a strong lockdown, and then a mild mitigation measure again in some cases 
(mild-strong-mild strategy). In this case, the optimal time to start the strong lockdown depends non-trivially 
on the initial condition.

The paper is organized as follows. We start by describing the basic SIR model in “The SIR model” section, and 
by introducing the SIR model with control in “The SIR control model” section. We then present the main results 
of the article supported by numerical simulations in “Results” section, followed by a discussion and conclusions 
including future work in “Discussion and conclusions” section. Finally, in “Methods” section we provide rigor-
ous proofs of the results by applying Pontryagin’s maximum principle to the control problem, and we prove that 
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the optimal control is bang-bang in Lemma 2. The main results that characterize the optimal control are given 
in Theorem 2, Corollary 1 and Theorem 3, for different case scenarios.

The SIR model
The basic SIR compartmental model of infectious diseases introduced by Kermack and  McKendrik1 considers a 
population of individuals that is divided in three compartments with homogeneous characteristics: Susceptible 
(S), Infected (I), and Recovered or Removed (R). The fraction of susceptible, infected and recovered individu-
als at time t is denoted by x(t), y(t) and z(t) = 1− x(y)− y(t) , respectively. It is assumed that each infected 
individual is in contact with an average number of β random individuals per unit time, and that infects only 
those who are susceptible ( S → I transition), generating new infections at an average rate βx(t) . Besides, each 
infected individual recovers at a rate γ ( I → R transition). Births and deaths are neglected, and the recovered 
population is assumed to no longer infect others and cannot be reinfected. The infection and recovery rates β 
and γ , respectively, are related to the basic reproduction number σ by σ = β/γ , that is, the mean number of 
infections produced by a single infected individual in a totally susceptible population ( x = 1 ) during its mean 
infectious period 1/γ . Then, the evolution of the system is governed by the following set of coupled nonlinear 
ordinary differential equations (see  Hethcote26, section 2.1): 

 with (x(0), y(0)) ∈ D =
{

(x0, y0) : x0 > 0, y0 > 0, x0 + y0 ≤ 1
}

 . Here x′ and y′ are short notations for the time 
derivatives dx/dt and dy/dt, respectively. The region D is forward-invariant and there exists a unique solution 
for all  time26. Then, since y0 > 0 , the proportion of infectious individuals is positive at any time. Even though 
the temporal dynamics of Eq. (1) depends on both σ and γ , the set of system’s trajectories on the x − y space 
depends only on the basic reproduction number σ because γ only affects the overall time scale of the system. In 
Fig. 1 we depict typical trajectories starting from different initial conditions x(0), y(0), for σ = 1.5 [panel (a)] 
and σ = 2.2 [panel (b)].

The system of Eq. (1) is at equilibrium if y(t) = 0 . This equilibrium is stable only if x(t) ≤ 1/σ , a condition 
referred to as herd immunity. If this condition is not satisfied at the initial time ( x(0) > 1/σ ), then y(t) first 
increases until it reaches its maximum value at a time t for which x(t) = 1/σ (dashed vertical lines in Fig. 1), 
and then decreases and approaches zero asymptotically, i.e., y∞ ≡ limt→∞ y(t) = 0 . That is, for y(0) > 0 , γ ≥ 0 
and σ ≥ 0 is y(t) larger than zero for any finite time t ≥ 0 . The fraction of susceptible individuals x(t) is strictly 
decreasing, and its value in the long time limit x∞ ≡ limt→∞ x(t) is always positive. Therefore, the state of 
the system in the long time limit consists only of susceptible and recovered individuals, x∞ + z∞ = 1 , where 
z∞ ≡ limt→∞ z(t) . Also, it is known that x∞ ∈ (0, 1/σ) (see Theorem 2.1 of the work by  Hethcote26).

The SIR control model
We now extend the classical SIR model to address the problem of controlling the spread of an epidemics with 
no access to vaccination, where the only possible control is isolation. We model this non-pharmaceutical inter-
vention via a time dependent reproduction number σ(t) that can be varied in the interval [σs , σm] , where σs 
corresponds to a more strict isolation (“strict” quarantine) than σm (“mild” quarantine), with 0 ≤ σs < σm , and 
assume that this intervention can only be applied over a finite time interval [0, T]. Here T is the length of the 
intervention period. After the intervention, the restrictions are removed, thus the disease spreads freely and 
σ(t) = σf ≥ σm for all t > T . We think of the control parameter σ(t) as capturing political measures such as 

(1a)x′(t) = −γ σ x(t) y(t),

(1b)y′(t) = γ σ x(t) y(t)− γ y(t),
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Figure 1.  Trajectories of the system in the x − y phase space for the SIR model Eq. (1) with basic reproduction 
number σ = 1.5 (a) and σ = 2.2 (b), where x and y are the fractions of susceptible and infected individuals, 
respectively. Each curve corresponds to a trajectory starting from a given initial condition (x(0), y(0)), as 
indicated in the legends. Arrows denote the direction of the time evolution of x and y. The vertical dashed line 
corresponds to the critical value x = 1/σ where y′ = 0.
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social distancing, and the lockdown of businesses, schools, universities and other institutions. Then, the system 
evolves according to the following set of coupled nonlinear ordinary differential equations: 

 with (x(0), y(0)) ∈ D =
{

(x0, y0) : x0 > 0, y0 > 0, x0 + y0 ≤ 1
}

 , σ(t) ∈ [σs , σm] for t ∈ [0,T] and σ(t) = σf  
for t > T , where 0 ≤ σs < σm ≤ σf  . We also assume that during the intervention period [0, T] it is not possible 
to impose an extremely restrictive isolation for a long time. Thus, we consider that the strict quarantine—cor-
responding to σs—can last at most for a fixed time period τ , with τ ∈ (0,T) . Once the period of intervention is 
finished at time T we compute x∞(x(T), y(T), σf ) = limt→∞ x(t) , where (x(t), y(t)) is the solution of the system 
of Eq. (2) with initial condition (x(T), y(T)) and constant reproduction number σ(t) ≡ σf  for t > T . Note that 
in this case, from  Hethcote26 we deduce that x∞(x(T), y(T), σf ) ∈ (0, 1/σf ).

While political measures reduce the spread of the disease, they often come at an important economic and 
social cost. A long and strict quarantine can be very effective at reducing contagions, but at the expense of hav-
ing a negative impact on the economy. Our goal is to find the optimal control on the SIR model described above 
that minimizes the total damage of a pandemic in terms of both, the total number of infections and also the 
socioeconomic costs. We model this trade-off by considering a global cost capturing the total number of indi-
viduals that were infected during the epidemics, i.e., those who are recovered in the long-time limit z∞ , and the 
socioeconomic cost of shutting down society during the intervention on [0, T], which we assume to increase as σ 
decreases (more restrictions). In order to find the optimal σ(t) it proves convenient to work with the fraction of 
susceptible individuals in the long term x∞ instead. Then, given that minimizing z∞ is equivalent to maximizing 
x∞ , since x∞ + z∞ = 1 , we define the functional

where

Our goal is to maximize the functional J, which has the following interpretation. The first term of J is the 
fraction of individuals that remain susceptible in the long term x∞ , and that we want to keep as large as possible 
subject to the condition of maximizing the second term of J as well, the functional C(σ ) . The functional C(σ ) 
is taken to be inversely proportional to the socioeconomic cost of the intervention ( C(σ ) increases as the cost 
decreases), as the function L is assumed to be a monotonously increasing function of σ . Then, an increase of 
the socioeconomic cost is achieved by decreasing σ (more restrictions or stricter quarantine), which leads to 
decreasing L and consequently C(σ ) . Therefore, we see that there is a non-trivial competition between the two 
terms of Eq. (3), given that by decreasing σ the value of x∞ increases, while C(σ ) decreases.

In the next section we describe the main results about the optimal control and we test them via numerical 
simulations.

Results
As mentioned in the last section, the optimal control is given by the shape of σ(t) that minimizes both, the final 
number of infected individuals and the socioeconomic costs, which corresponds to maximizing the functional J 
from Eqs. (3) and (4). From now on we restrict ourselves to the case where the socioeconomic cost of imposing 
a quarantine is linear in the control σ(t) . This is a simplified first approach that narrows the analysis of the gen-
eral problem formulated in ”The SIR control model” section but, as we shall see, has the advantage of providing 
further insight into the structure of the optimal policy. The assumption that the cost of socioeconomic measures 
that reduce the transmission rate is linear in σ can be interpreted in the context of social distancing as given by 
Kruse and  Strack30: “Shutting down half of the economy for two days is equally costly as shutting down the whole 
economy for a single day”. Then, we consider that the function L in Eq. (4) is a linear and increasing function that 
depends only on the control σ , that is L(σ (t)) = κσ(t) , which satisfies the condition of being a monotonically 
increasing function of σ expressed in the last section. In this case, the parameter κ ≥ 0 could be interpreted as 
the assessment that a policy maker gives to the socioeconomic impact of the quarantine compared to the final 
number of infected individuals. In this regard, κ is a fixed real number that can be chosen small enough by a 
government that intends to reduce the final number of infected individuals regardless the socioeconomic impact, 
or can be chosen large enough by a government that can face a large number of final infected and intends to 
control the socioeconomic impact. Here we mainly focus on the case where κ is small (see condition Eq. (33) in 
“Methods”  section). Also, when κ is large enough we prove that the optimal strategy consists in calling off the 
lockdown and take mild mitigation measures for all the intervention period (see Lemma 6 in “Methods” section).

Under these conditions, we prove in “Methods” section that the optimal control is of the form of a single bang-
bang. This consists on turning the strict quarantine on only once and switching it off after the maximum allowed 
time τ or, eventually, when the intervention ends at time T, depending on the initial condition and the values 
of the strict and mild reproduction numbers σs and σm , respectively. Then, the problem is reduced to find the 
optimal time to start the strict quarantine, which we call t∗ , and its length called η∗ . We also show in “Methods” 
section that the length of the strict quarantine η∗ for the optimal control could be less than the maximum time 

(2a)x′(t) = −γ σ(t) x(t) y(t),

(2b)y′(t) = γ σ(t) x(t) y(t)− γ y(t),

(3)J(x, y, σ) := x∞(x(T), y(T), σf )+ C(σ ),

(4)C(σ ) :=

∫ T

0
L(σ (t))dt.
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τ in some cases, as we shall see below. This means that, surprisingly, sometimes it is more convenient to make a 
shorter use of the strict quarantine to obtain better results in terms of pandemic costs.

We analyze the optimal control in three different case scenarios: i) κ = 0 , σm = σf  and σs = 0 , ii) κ = 0 , 
σm = σf  and σs > 0 and iii) κ > 0 and 0 < σs < σm < σf  . The optimal times t∗ and η∗ for each case are given in 
Corollary 1, Theorems 2 and 3, respectively, of “Methods” section, where the interested reader can find rigorous 
proofs. The optimal control for the different cases, given by t∗ and η∗ , is summarized and numerically tested 
below for specific parameter values. For that, we integrate the system of Eq. (2) using the Adams’  method35,36, for 
various time periods τ of the strict quarantine ( σ = σs ) in the bang-bang control, starting at time t but ending 
before T, which is the control period ( σ(t) = σf  for t > T ). That is, the value of σ(t) adopts the following form, 
depending on t, τ and T:

where

We start by testing the simplest case κ = 0 , σm = σf  and σs ≥ 0 , and we then test the most general case κ > 0 
and 0 < σs < σm < σf  . We take the value γ = 0.1/day for the recovery rate, which corresponds to a mean recov-
ery time of 10 days that falls within the range of Covid-19  estimates23. This value of γ sets the time scales of the 
system. For now on all time scales are given in units of “days”, even though we omit units for the sake of simplicity.

Case κ = 0 , σ
m
= σ

f
 and σ

s
= 0 (Corollary 1). We first analyze the case κ = 0 with a bang-bang control 

in the interval [0, T] that consists of a mild quarantine (σm = 1.5) and an extremely strict and unrealistic quaran-
tine ( σs = 0 ) during which there are no infections. The other parameter in the simulations is T = 260 , together 
with the initial condition y0 = y(t = 0) = 10−6 and x0 = x(t = 0) = 1− 10−6 . We can see from Corollary 1 
that the optimum initial time of the strict quarantine is t∗ = 0 for x0 ≤ 1/σf  ( w(0) ≤ 0 ), while for x0 > 1/σf  
( w(0) > 0 ) is given by

where t = T − τ ∈ [0,T − τ ] is the unique value, independent from τ ∈ [0, τ ] , such that xt,τ (t) = 1
σf

 . Likewise, 
t̃ = T − τ̃ ∈ [T − τ ,T] is the unique value, independent from τ ∈ [τ̃ ,T] , such that xt̃,T−t̃(t̃) =

1

σf (1−e−γ (T−t̃))
 . 

As κ = 0 , x∞ reaches a maximum value when the strict quarantine starts at the optimal time t∗ [see Eq. (12)]. 
In Fig. 2 we plot t∗ vs w(0) for τ = 10 , calculated from Eq. (54) (squares) and by estimating the maximum of x∞ 
(circles). We can see that t∗ takes values close to zero for w(0) ≤ 0 . In the rest of this section we consider the case 
w(0) > 0.

The behaviour of t∗ from Eq. (7) for x0 > 1/σf  ( w(0) > 0 ) is tested in Fig. 3a, where we compare numerical 
results (circles) with that obtained from Eq. (7) (squares, Corollary 1). We observe that the agreement between 
numerical computations and Corollary 1 is very good. Figure 3b is an auxiliary plot that shows how to obtain 

(5)σ(r) =











σm for 0 ≤ r < t,
σs for t ≤ r < t + η,
σm for t + η ≤ r < T ,
σf for r ≥ T ,

(6)η =

{

τ for t + τ ≤ T and
T − t for t + τ > T .

(7)t∗ =























t for 0 ≤ τ ≤ τ , where xT−τ ,τ (T − τ) ≤
1

σf
and η = τ ,

T − τ for τ < τ < τ̃ , where
1

σf
< xT−τ ,τ (T − τ) ≤ 1

σf (1−e−γ τ )
andη = T − τ ,

t̃ for τ ≥ τ̃ , where xT−τ ,τ (T − τ) > 1
σf (1−e−γ τ )

, and η = T − t̃.

-0.05 0.00 0.05 0.10 0.15
ω(0) x 10−6

0

0.1

0.2

0.3

0.4

0.5

0.6

t*  (
da

ys
)

Corollary 1
Numerical

Figure 2.  Optimal initial time of the strict quarantine t∗ vs w(0) for τ = 10 and κ = 0 . The other parameters 
are γ = 0.1, σm = σf = 1.5, σs = 0 and T = 260.
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graphically the optimum times t ≃ 252.71 and ̃t ≃ 238.78 that define the three different regimes of t∗ from Eq. (7). 
These times are obtained by estimating the values of τ for which the curve xt,T−t(T − τ) crosses the lines 1/σf  
and 1/

[

σf (1− e−γ τ )
]

 , which happens at τ ≃ 7.29 and τ̃ ≃ 21.22 , respectively.

Remark 1 The effective reproductive number Rσ
t ≡ σ xσ (t) represents the mean number of individuals that an 

agent infects during its infectious period, at time t. It is interesting to note that the optimal time from Eq. (7) 
can be rewritten in terms of Rσ

t  as

Here R
σf
T−τ = σf xσf (T − τ) , τ = T − t and τ̃ = T − t̃ , where t and t̃ are determined from the relations

In Fig. 4 we show the evolution of the system in the x − y phase space for a given τ and various t (right panels), 
together with the evolution of σ(t) (left panels), which describe the three different behaviours of t∗ . All curves 
start at (x0, y0) = (1− 10−6, 10−6) and follow the top curve with mild quarantine ( σ = σf  ) until the strict quar-
antine starts at t ( σ = σs = 0 ), vertically falling down up to a lower level curve when the mild quarantine starts, 
and finally following this curve until the fixed point (x∞, 0) is asymptotically reached. The vertical trajectory 
describes the evolution within the strict quarantine where x(t) remains constant, given that σ(t) = σs = 0 in that 
period. The optimum time t∗ that leads to the maximum of x∞ corresponds to the time for which y(t) drops to 
the lowest level curve in the interval [t, t + η] (pink curve). For τ = 6 < 7.29 = τ  (Fig. 4 top panels) we see that 
the maximum of x∞ is reached starting the strict quarantine at t∗ = t = 252.71 , where the effective reproduction 
number is R

σf

t
= R

σf

t+η
= 1 , and thus there is no new outbreak when the strict quarantine is released ( dydt |t+η = 0 ). 

In this case the entire quarantine period η = τ is used. For τ < τ = 12 < τ̃ = 21.22 (Fig. 4 middle panels) the 
optimum initial time is t∗ = T − τ = 248 < t , obtained by still using the entire strict quarantine period but start-
ing earlier than t . Finally, for τ = 26 > τ̃ (Fig. 4 bottom panels) the optimum is t∗ = t̃ = 238.78 > T − τ = 234 , 
where it turns more effective to use the strict quarantine for a shorter time T − t∗ < τ . Notice that implementing 
a shorter but later strict quarantine is more efficient than using a longer and earlier strict quarantine, as we can 
see by comparing σ(t) for η = 26 and η = 21.22 in the bottom panels for the τ = 26 case.

Case κ = 0 , σ
m
= σ

f
 and σ

s
> 0 (Theorem 2). We now analyze the case κ = 0 , σm = σf = 1.5 and 

σs = 0.3 > 0 , with T = 260 . This corresponds to a strict quarantine that is softer than in the previous case 
σs = 0 , and during which there are infections. Initially is y0 = 10−6 and x0 = 1− 10−6 . We can see from Theo-
rem 2 that the optimum initial time of the strict quarantine t∗ for w(0) > 0 is

(8)t∗ =











t for 0 ≤ τ ≤ τ , where R
σf
T−τ ≤ 1 and η = τ ,

T − τ for τ ≤ τ ≤ τ̃ , where 1 < R
σf
T−τ ≤ 1

1−e−γ τ and η = T − τ ,

t̃ for τ > τ̃ , where R
σf
T−τ > 1

1−e−γ τ , and η = T − t̃.

(9)R
σf

t
= 1 and R

σf

t̃
=

1

1− e−γ (T−t̃)
.
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Figure 3.  (a) Optimal initial time t∗ vs strict quarantine length τ for κ = 0 and x0 > 1/σf  . (b) Graphical 
determination of the times τ  and τ̃ that define the three regions for the different behaviours of t∗ . The 
parameters are γ = 0.1, σm = σf = 1.5, σs = 0 and T = 260 . The initial condition corresponds to 
x(0) = 1− 10−6, y(0) = 10−6 ( R0 = σf x(0) > 1 ). The optimum times of the first and last regions are 
t ≃ 252.71 and t̃ ≃ 238.78 , respectively, determined by τ ≃ 7.29 and τ̃ ≃ 21.22.
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Figure 4.  Case κ = 0 , σm = σf  and σs = 0 (Corollary 1). System’s trajectory in the x − y phase space (right 
panels), for γ = 0.1 , κ = 0 , σm = σf = 1.5 , σs = 0 and T = 260 , and the three values of τ indicated in the 
legends corresponding to the different regimes of the optimum time t∗ (pink lines). Left panels show the time 
evolution of σ for three different initial times t of the strict quarantine in each case. The optimum times are 
t∗ = t ≃ 252.71 for τ = 6 (top panels), t∗ = T − τ = 248 for τ = 12 (middle panels) and t∗ = t̃ ≃ 238.78 for 
τ = 26 (bottom panels).
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where t ∈ [0,T − τ ] is the unique value, depending on τ ∈ [0, τ ] , such that w(t) = 0 . On the other hand, 
t̃ ∈ [T − τ ,T] is the unique value, independent from τ ∈ [τ̃ ,T] , such that w(t̃) = 1

γ yt̃,T−t̃ (t̃)
 . The dependence and 

independence of w(t) on τ for t ∈ [0,T − τ ] and t ∈ [T − τ ,T] , respectively, can be seen from the definition of 
w(t) in Eq. (42).

In Fig. 5a we compare numerical results (circles) with results from Eq. (10) (squares, Theorem 2), where we see 
a very good agreement. At t∗ , x∞ reaches a maximum. Unlike the σs = 0 case, for σs = 0.3 > 0 the optimal time 
t∗ in the 0 ≤ τ ≤ τ ≃ 8.01 interval depends on τ , that is, t∗ = t(τ ) , while for τ > τ̃ ≃ 23.87 is t∗ = t̃ ≃ 236.13 
independent of τ . Figure 5b,c show that the optimal times t  and t̃ are estimated, respectively, as the values of 
t = T − τ for which the curve w(T − τ) crosses the horizontal line 0 and the curve 1/

[

γ yt,T−t(T − τ)
]

.
Figure 6 is analogous to Fig. 4 for the σs = 0 case, and depicts the three different behaviours of t∗ . Curves are 

similar to those of σs = 0 , where the main difference is that for σs = 0.3 > 0 the trajectory of the system within 
the strict quarantine in the x − y space is described by a diagonal line (see inset of top-right panel), given that σs 
is larger than zero and thus x(t) decreases in this period. At the optimum time t∗ , y(t) drops to the lowest level 
curve in the interval [t, t + η] (pink curves).

General case κ > 0 and 0 < σ
s
< σ

m
< σ

f
 (Theorem 3). In this section we analyze the most general 

case κ = 10−5 > 0 , with a mild quarantine ( σm = 1.5 ) together with a strict quarantine ( σs = 0.3 < σm ) during 
the control interval t ∈ [0,T] , and with σ(t) = σf = 2.2 > σm for the case of no restrictions after the control 
period t > T . We take T = 320 , and the rest of the parameters are the same as those in the previous studied 
cases. Then, from Theorem 3 the optimum initial time t∗ is given by

where t ∈ [0,T − τ ] is a unique value that depends on τ ∈ [0, τ ] and satisfies w(t) = 0 , while t̃ ∈ [T − τ ,T] 
is a unique value independent of τ ∈ [τ̃ ,T] that satisfies w(t̃) = α(t̃) . Here α(t) is given by Eq. (36), whereas 
the dependence and independence of w(t) on τ for t ∈ [0,T − τ ] and t ∈ [T − τ ,T] , respectively, is seen in the 
definition of w(t) in Eq. (35).

Given that we consider here κ > 0 , J reaches a maximum at the optimum time t∗ (see Eq. (12)). Figure 7a 
shows the behaviour of t∗ as a function of τ , where we observe a very good agreement between numerical results 
(circles) and Theorem 3 (squares). We also see that t∗ depends slightly on τ in the 0 ≤ τ ≤ τ ≃ 9.65 interval, 
while t∗ = t̃ ≃ 291.46 for τ > τ̃ ≃ 28.54 . The optimal times t and t̃ are estimated as the values of t = T − τ for 
which the curve w(T − τ) crosses the horizontal line 0 and the curve α(T − τ) , respectively (Fig. 7b,c).

In the right panels of Fig. 8 we show the system’s evolution in the x − y space for three different values of τ 
corresponding to the different behaviour of t∗ . Unlike the previously studied cases where σm = σf  (Figs. 4 and 
6), here we observe that the curves (x(t), y(t)) may exhibit up to three different regimes within the control period 

(10)t∗ =











t for 0 ≤ τ ≤ τ , where w(0) ≥ 0,w(T − τ) ≤ 0 and η = τ ,

T − τ for τ ≤ τ ≤ τ̃ , where 0 < w(T − τ) ≤ 1
γ yT−τ ,τ (T−τ)

and η = T − τ ,

t̃ for τ > τ̃ , where w(T − τ) > 1
γ yT−τ ,τ (T−τ)

, and η = T − t̃,

(11)t∗ =







t for 0 ≤ τ ≤ τ , where w(0) ≥ 0,w(T − τ) ≤ 0 and η = τ ,
T − τ for τ ≤ τ ≤ τ̃ , where 0 < w(T − τ) ≤ α(T − τ) and η = T − τ ,
t̃ for τ > τ̃ , where w(T − τ) > α(T − τ), and η = T − t̃,
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Figure 5.  (a) Optimal initial time t∗ vs strict quarantine length τ for κ = 0 and w(0) > 0 . (b) and (c) 
Graphical determination of the times τ  and τ̃ , respectively, which define the three regions for the different 
behaviours of t∗ . The parameters are γ = 0.1, σf = 1.5, σs = 0.3,T = 260 . The initial condition corresponds to 
x(0) = 1− 10−6, y(0) = 10−6 . The optimum time for the region τ > τ̃ ≃ 23.87 is t̃ ≃ 236.13 , while t∗ has a 
slight dependence on τ for τ ≤ τ ≃ 8.01.
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Figure 6.  Case κ = 0 , σm = σf  and σs > 0 (Theorem 2). System’s trajectory in the x − y phase space (right 
panels), for γ = 0.1 , κ = 0 , σm = σf = 1.5 , σs = 0.3 and T = 260 , and the three values of τ indicated in the 
legends corresponding to the different regimes of the optimum time t∗ (pink lines). Left panels show the time 
evolution of σ for three different initial times t of the strict quarantine in each case. The optimum times are 
t∗ = t ≃ 252.51 for τ = 2 (top panels), t∗ = T − τ = 244 for τ = 16 (middle panels) and t∗ = t̃ ≃ 236.13 for 
τ = 30 (bottom panels).
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T, which is due to the fact that σ jumps three times in that interval: from σm to σs at time t, from σs to σm at 
t + τ and from σm to σf  at T. This can be clearly seen in the t∗ = 310.35 curve for τ = 5 < τ  (inset of top-right 
panel of Fig. 8). For τ in the other two regions ( τ = 18 and 34), the strict quarantine ends at T for t∗ , and thus 
σ jumps twice and (x(t), y(y)) exhibits two regimes in [0, T] (insets of middle-right and bottom-right panels). 
As in the previously studied cases, y(t) drops to the lowest level curve in the interval [t, t + η] for the optimum 
time t∗ (pink curves).

Discussion and conclusions
In this paper, we have studied an optimal control problem on a SIR dynamics, with a control on the reproduction 
number σ(t) and a limitation in the duration of the intervention T and strict quarantine. Based on the Pontry-
agin’s maximum principle, we have given first order necessary conditions with an overall cost of the epidemic 
that takes into account both the maximization of the susceptible population in the long term (equivalently, a 
minimization of the ever infected population) and a penalization of the lockdown associated to a social and 
economic cost of the epidemic. We also point out that we have employed a novel proof to establish our analytical 
results. Moreover, some numerical examples have been provided to show the validity of our theoretical results.

Given a fixed time of intervention T where control strategies can be applied, and a strict quarantine period 
τ < T that represents the maximum time lapse for the stronger intervention, we proved that the optimal strat-
egy is bang-bang when the term representing the socioeconomic cost of the objective functional is linear with 
respect to the control σ . More precisely, the optimal solution consists of switching at most twice between a mild 
( σ = σm ) and a strict ( σ = σs < σm ) quarantine, where the latter lasts at most a time period τ.

Although some studies have supported the idea that a too soon or too late intervention may not minimize 
the total mortality, we found a broader scenario. This is because the optimal solution takes the value σ = σs 
corresponding to the lockdown on an interval [t∗, t∗ + η] ⊆ [0,T] , with t∗ and η ≤ τ depending on the initial 
fractions of susceptible and infected individuals x0 and y0 , respectively, and the parameters γ , τ , σf , σs, σm and 
T. In fact, we showed that, in some cases, the optimal strategy consists of taking t∗ = 0 or t∗ + η∗ = T (see 
Theorem 2 items 1 and 3-4 respectively). However, for an initial condition that corresponds to a real-life case 
scenario in which the percentage of the population that is infected is small when non-pharmaceutical interven-
tions start, we obtained that the optimal strategy consists on delaying the beginning of the lockdown (items 2-4 
from Theorem 2). For the case τ ≪ T and x0 < 1/R0 , this optimum consists in applying a mild mitigation policy 
( σ = σm ) at the beginning of the intervention, followed by a strong suppression policy ( σ = σs ) and then a mild 
mitigation again (mild–strict–mild strategy). Here the optimum time t∗ to start the strict quarantine corresponds 
to one that leaves the effective reproduction number σ(t∗ + τ)x(t∗ + τ) at or just below the threshold value 1.0 
when the strict quarantine is released, preventing a new outbreak. For the case τ � T the optimum corresponds 
to a mild–strict mitigation strategy, with a strict quarantine that starts late and lasts for a period shorter than 
τ . Surprisingly, it turns more effective to implement a short strict quarantine that starts late than a long strict 
quarantine that starts early.

We remark that these are optimal strategies within the basic SIR model defined in Eq. (2), which describe in an 
oversimplified manner the spread of an epidemic on an infinitely large population of individuals with homogene-
ous recovery, contagion and contact rates, where stochastic fluctuations due to finite-size effects are neglected. 
Then, stochastic fluctuations in the SIR model on finite populations may play a major role at the beginning of 
the epidemics if the fraction of infected individuals is relatively small, and thus starting with a strict quarantine 
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Figure 7.  (a) Optimal initial time t∗ vs strict quarantine length τ for κ = 10−5 and w(0) > 0 . (b) and (c) 
Graphical determination of the times τ  and τ̃ , respectively, which define the three regions for the different 
behaviours of t∗ . The parameters are γ = 0.1 , σf = 2.2 , σs = 0.3 , σm = 1.5 and T = 320 . The initial condition 
corresponds to x(0) = 1− 10−6, y(0) = 10−6 . The optimum time for the region τ > τ̃ ≃ 28.54 is t̃ ≃ 291.46 , 
while t∗ has a slight dependence on τ for τ ≤ τ ≃ 9.65.
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Figure 8.  Case κ > 0 and 0 < σs < σm < σf  (Theorem 3). System’s trajectory in the x − y phase space (right 
panels), for γ = 0.1 , κ = 10−5 , σs = 0.3 , σm = 1.5 , σf = 2.2 and T = 320 , and the three values of τ indicated 
in the legends corresponding to the different regimes of the optimum time t∗ (pink lines). Left panels show the 
time evolution of σ for three different initial times t of the strict quarantine in each case. The optimum times are 
t∗ = t ≃ 310.35 for τ = 5 (top panels), t∗ = T − τ = 302 for τ = 18 (middle panels) and t∗ = t̃ ≃ 291.46 for 
τ = 34 (bottom panels).
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may prove more effective if we want to drive the epidemic to extinction. However, we expect that the results 
presented in this article hold in the limit of very large populations.

We have also studied the possibility of implementing intermittent quarantines, and the possibility of applying 
suppression measures first, followed by mitigation measures. In both cases, if the total duration of measures is 
limited, we have shown that they are not optimal in order to maximize the fraction of susceptible individuals at 
the end of the pandemic.

A major concern with respect to the current COVID-19 crisis is the possibility of an overload of available 
treatment resources. Since the hospitalized individuals are a fraction of the infected population, a natural objec-
tive is to keep the number of infected individuals below some threshold for all times. In a future work we intend 
to extend our analytic results including a running state constraint that takes this restriction into account. It might 
also be interesting to study the agent-based version of the SIR model, which naturally accounts for finite-size 
fluctuations, in order to investigate the role played by stochastic fluctuations in the different optimal strategies 
described above. It would be worthwhile to explore how the results are affected by the heterogeneity in recovery 
and infection parameters related to age and social stratum. Finally, we also aim to study the role of an underly-
ing network of contacts, and changes in contact rates due to individual measures triggered by fear of contagion.

Methods
Formalization of the optimal control problem. As said in “Results” section, we assume that the func-
tion L [integrand of C(σ ) ] depends linearly on the control σ(t) . This is a simplified first approach which provides 
further insight into the structure of the optimal policy. In fact, under this linearity assumption we will prove that 
the optimal control must be bang–bang (Lemma 2), that is, the strict quarantine is turned on and off. Thus, we 
consider that L(σ (t)) = κσ(t) with κ ≥ 0 . In this case the functional J reads

Moreover, we consider a restriction on the admissible controls σ that assumes that the control can take the 
value σs for at most τ time, and also takes into account a maximum economic cost that the policy maker can 
afford. In regard to the latter, we consider a maximum cost for imposing the strict lock down for the entire period 
τ . Smaller values of σ represent stricter measures and thus a larger socioeconomical cost. Therefore, we impose 
an inferior bound to the average of σ on [0, T], meaning an upper bound for the socioeconomic cost. Thus, we 
consider the restriction

Note that any control σ ∈ [σs , σm] satisfying Eq. (13) takes the value σs for a period no longer than τ . In fact, 
if σ is a control that takes the value σs for a longer period of time than τ , for instance τ̃ > τ , then we would have 
that 

∫ T
0 σ(t)dt ≤ σs τ̃ + σm(T − τ̃ ) < σsτ + σm(T − τ) contradicting the inequality from Eq. (13).

We are now in conditions to formalize the problem of finding the optimal control that maximizes the func-
tional J. Given (x0, y0) ∈ D , T , τ fixed satisfying 0 < τ < T , 0 ≤ σs < σm ≤ σf  , we then consider the following 
optimal control problem with an objective function J : 

In what follows we compute the partial derivatives of x∞(x(t), y(t), σ) with respect to x(t) and y(t) in the same 
way that it is done  in23. We begin reviewing the solution of the SIR model without control Eq. (1) as done  by23. 
It can be  shown1 that x(t) satisfies x(t)eσ z(t) = x0e

σ z0 which combined with the identity z(t) = 1− x(t)− y(t) 
implies that

is constant in time for any solution of Eq. (1). The trajectories in Fig. 1 are also contour lines of µ . Since 
y∞ = 0 , we then have that x∞ = x0e

σ(x∞−x0−y0) = µ(x0, y0, σ)e
σx∞ . Then w = −σx∞ satisfies the equation 

wew = −σµ(x0, y0, σ) and therefore w = W0(−σµ(x0, y0, σ)) where W0 is the principal branch of Lambert’s 
W−function37, and thus for any (x, y) ∈ D

(12)J(x, y, σ) = x∞(x(T), y(T), σf )+ κ

∫ T

0
σ(t)dt.

(13)
∫ T

0
σ ∗(t)dt ≥ σsτ + σm(T − τ).

(14a)max J(x, y, σ) := x∞(x(T), y(T), σf )+

∫ T

0
L(σ (t))dt

(14b)s.t. x′ = −γ σ(t)xy, x(0) = x0, t ∈ [0,T],

(14c)y′ = γ σ(t)xy − γ y, y(0) = y0, t ∈ [0,T],

(14d)σs ≤ σ(t) ≤ σm

(14e)
∫ T

0
σ(t)dt ≥ σsτ + σm(T − τ)

µ(x(t), y(t), σ) := x(t)e−σ(x(t)+y(t))
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From this expression we can compute the partial derivatives of x∞(x(t), y(t), σ) with respect to x(t) and y(t) 
in the same way that it is done  in23. 

In order to solve problem Eq. (14) by means of the Pontryagin’s Maximum Principle, we add a new state vari-
able given by v(t) =

∫ t
0 σ(s)ds and consider σ : [0,T] → [σs , σm] in the class of Lebesgue-measurable functions 

(so that we have an existence result for optimal solution). Thus, we can study the equivalent optimal control 
problem: 

We will refer to a 4-tuple (x, y, v, σ) as an admissible process of the underlying control system if the con-
trol σ is a measurable function and the state (x, y, v) is an absolutely continuous vector function satisfying 
Eqs. (16b)–(16f). The optimal control problem consists in finding an optimal admissible process (x∗, y∗, v∗, σ ∗) 
that maximizes the cost J. In this case, we refer to the control σ ∗ as optimal control.

Next, we give a result on existence of solution for the optimal control problem Eq. (16).

Proposition 1 The optimal control problem Eq. (16) admits a solution.

Proof Since L(σ ) = κσ is continuous, convex and satisfies that there exists a constant α0 such that for all 
σ ∈ [σs , σm] it holds L(σ ) ≥ α0 , the proof follows directly from Theorem 23.1124. Using that the control space 
is closed, solutions of the system of Eqs. (16b), (16c) satisfy that 0 ≤ x + y ≤ 1 and the application x∞(x, y) is 
continuous, it is straightforward to prove conditions (a) to (f) from Theorem 23.11. Moreover, taking σ(t) ≡ σm , 
we see that the unique solution of the system of Eqs. (16b)–(16d) together with σ gives an admissible process for 
which J is finite completing the hypothesis of Theorem 23.11.   �

The optimal control is bang-bang. In what follows, we derive the necessary conditions for problem 
Eq. (16) where J is given by Eq. (12). We consider the Hamiltonian H

where �0 ≥ 0 , � ∈ R
3 . The necessary conditions for a maximum process (x∗, y∗, v∗, σ ∗) on [0, T] are the 

 following24,25: There exists a real number �0 ≥ 0 , the adjoint variable � : [0,T] → R
3 which is absolutely con-

tinuous, and β ∈ R such that (�0, �(t),β)  = 0 for every t and the following conditions hold: 

1. The adjoint variables �1(t), �2(t) satisfy a.e. t ∈ [0,T]

 with final time conditions (using the abbreviation x∞ for x∞(x(T), y(T), σf ) ) 

x∞(x, y, σ) = −
1

σ
W0(σµ(x, y, σ)).

(15a)
∂x∞(x(t), y(t), σ)

∂x(t)
=

1− σx(t)

x(t)

x∞(x(t), y(t), σ)

1− σx∞(x(t), y(t), σ)
,

(15b)
∂x∞(x(t), y(t), σ)

∂y(t)
= −

σx∞(x(t), y(t), σ)

1− σx∞(x(t), y(t), σ)
.

(16a)max J(x, y, v, σ) := x∞(x(T), y(T), σf )+

∫ T

0
L(σ (t))dt

(16b)s.t. x′(t) = −γ σ(t)x(t)y(t), x(0) = x0, t ∈ [0,T],

(16c)y′(t) = γ σ(t)x(t)y(t)− γ y(t), y(0) = y0, t ∈ [0,T],

(16d)v′(t) = σ(t), v(0) = 0, t ∈ [0,T],

(16e)σ(t) ∈ [σs , σm], a.e. t ∈ [0,T]

(16f)v(T) ≥ σmT + (σs − σm)τ .

(17)H(x, y, v, σ , �) = �0L(σ )− �1(γ σxy)+ �2(γ σxy − γ y)+ �3σ

(18a)�
′
1(t) = (�1(t)− �2(t))γ σ (t)y(t),

(18b)�
′
2(t) = (�1(t)− �2(t))γ σ (t)x(t)+ γ �2(t),

(19a)�1(T) = �0
∂x∞

∂x(T)
= �0

1− σf x(T)

x(T)

x∞

1− σf x∞
,
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 and the adjoint variable �3 satisfies 

 obtaining �3(t) = β for all t ∈ [0,T].
2. For a.e. t ∈ [0,T]

 Using that L(σ ) = κσ and defining 

 we obtain for a.e. t ∈ [0,T] , 

3. There exists a constant C such that for a.e. t ∈ [0,T]

 thus, for all t ∈ [0,T]

We have the following result:

Lemma 1 The optimal control problem is normal (that is, the multiplier �0  = 0).

Proof Assume �0 = 0 . From Eqs. (18a), (18b) with final time conditions �1(T) = �2(T) = 0 , �1(t) = �2(t) = 0 
for all t ∈ [0,T] . Since the multipliers (�0, �(t),β)  = 0 , then �3(t) ≡ β > 0 yielding φ(t) ≡ κ + β > 0 . There-
fore, from the optimality condition given in Eq. (23), σ ∗(t) = σm a.e. t ∈ [0,T] contradicting the comple-
mentarity condition v(T) = σm(T − τ)+ σsτ given in Eq. (21). Thus, we can assume �0 = 1 , and the proof is 
finished.   �

Lemma 2 Let L(σ (t)) = κσ(t) with κ ≥ 0 and let σ ∗ be an optimal control of problem Eq. (16) . Then σ ∗(t) is a 
bang-bang control.

Proof Assume φ(t) = 0 on an interval [a, b] ⊂ [0,T] , then computing its derivative we obtain

Thus, from Eq. (18a) �1(t) = �2(t) = 0 for all t ∈ (a, b) and therefore for all t ∈ [0,T] , contradicting the end 
point conditions. Then, there cannot be singular arcs and the control σ ∗ is given by:

  �

Lemma 3 Let (x0, y0) be given and (x, y, v, σ) an admissible process. Then for t ≥ 0

and therefore

Proof See23.
In the next lemma we will see that the switching function changes sign at most two times, concluding that an 

optimal control σ ∗ jumps at most twice.   �

Lemma 4 The switching function φ given in Eq. (22) changes sign at most twice.

(19b)�2(T) = �0
∂x∞

∂y(T)
= −�0

σf x∞

1− σf x∞
,

(20)�
′
3(t) = 0,

(21)�3(T) = β ≥ 0 and �3(T)(v(T)− σm(T − τ)− σsτ) = 0

�0L(σ
∗(t))+ σ ∗(t)

(

γ x∗(t)y∗(t)(�2(t)− �1(t))+ β
)

= max
σ :σs≤σ≤σm

�0L(σ )+ σ
(

γ x∗(t)y∗(t)(�2(t)− �1(t))+ β
)

.

(22)φ(t) = �0κ + β + γ x∗(t)y∗(t)(�2(t)− �1(t)),

(23)σ ∗(t)φ(t) = max
σ :σs≤σ≤σm

σφ(t).

�0L(σ
∗(t))+ σ ∗(t)

(

γ x∗(t)y∗(t)(�2(t)− �1(t))+ β
)

− γ �2(t)y
∗(t) = C,

(24)σ ∗(t)φ(t)− γ �2(t)y
∗(t) = C.

0 = −γ x∗(t)y∗(t)�1(t) for all t ∈ (a, b).

(25)σ ∗(t) =

{

σm if φ(t) > 0

σs if φ(t) < 0.

x∞(x(t), y(t), σf ) ≥ x∞(x0, y0, σf ),

(26)x∞(x0, y0, σf ) ≤ x∞(x(T), y(T), σf ) < 1/σf .



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12583  | https://doi.org/10.1038/s41598-022-16619-z

www.nature.com/scientificreports/

Proof The proof follows by analysing the phase diagram of �1, �2 . We begin by noting that a solution (�1, �2) 
of the system of Eqs. (18a), (18b) cannot cross both semilines �1 = �2 > 0 and �1 = �2 < 0 . This is a con-
sequence of condition Eq. (24). In fact, assume there exist s1, s2 ∈ [0,T] such that �1(s1) = �2(s1) > 0 and 
�1(s2) = �2(s2) < 0 . Evaluating Eq. (22) on t = si for i = 1, 2 we have that φ(si) = κ + �3(T) ≥ 0 and from 
Eq. (24), �2(si) = − C

γ y∗(si)
 if κ + �3(T) = 0 or, using Eq. (25), �2(si) = σm(κ+�3(T))−C

γ y∗(si)
 if κ + �3(T) > 0 , both 

cases contradicting that �2(s1) and �2(s2) had opposite signs.
Since we have end time conditions on T we go backwards from (�1(T), �2(T)) with �1(T) > 0 and �2(T) < 0 . 

From Eq. (18a), for �1 < �2 , �′1 < 0 , thus �1 is decreasing and for the semiplane �1 > �2 we have that �1 is increas-
ing. Also, from Eq. (18b), for �1 = �2 > 0 we have that �2 is increasing and for �1 = �2 < 0 , �2 is decreasing. 
Finally, from Eqs. (18a) and (18b), for �2 = 0 and �1 > 0 , both �1 and �2 are increasing.

Thus, since the end time conditions are on the region of the phase diagram with �1 > �2 and �2 < 0 we have 
that the solution backwards in time moves to the left where �1 decreases and �2 keeps being negative. At some 
point in time it could cross the semiline �1 = �2 < 0 (note that there cannot be touch points). If the solution 
crosses this line it cannot cross the semiline �1 = �2 > 0 for a previous time and thus it stays on the region 
�1 < �2 for all previous times.

From the definition of φ Eq. (22), for �1 < �2 , we have φ > 0 . For �1 = �2 , φ = κ + �3(T) ≥ 0 and for 
�1 > �2 , φ could become negative. Since φ′(t) = γ x∗(t)y∗(t)�1(t) , we see that for t ∈ [0,T] such that (�1(t), �2(t)) 
is on the region �1 > �2 the function φ decreases for such t ′s with �1(t) < 0 and increases for �1(t) > 0 . Also, 
let s0, s1 ∈ [0,T] such that s0 < s1 , �1(s0) = �2(s0) < 0 and �2(s1) < �1(s1) = 0 , then φ(s0) = κ + �3(T) , φ 

reaches the minimum value on [t0,T] at s1 and φ(T) = κ + �3(T)−
γ y∗(T)x∞
1−σf x∞

< φ(s0).

Thus, we conclude that φ has at most two zeros on [0, T] and the proof is finished.   �

Theorem 1 Let (x∗, y∗, v∗, σ ∗) be an optimal process, then:

with 0 ≤ η ≤ τ.

Proof Since the optimal control must be bang-bang satisfying Eq. (25), from Lemma 4 it has at most two jumps 
and from Eq. (13), it takes the value σs at most for τ time. Thus the proof is completed.

As a consequence of Theorem 1 we have that if (x∗, y∗, v∗, σ ∗) is an optimal process, then the optimal control 
σ ∗ is a piecewise constant function having at most two jumps and therefore its unique associated state (x∗, y∗, v∗) 
is a piecewise continuously differentiable function.
Characterization of the optimal control. In this section we will give the main Theorem of the article, 
that characterizes the switching times t1 and t1 + η (where t1 is the beginning of the lockdown and η is its dura-
tion) for an optimal control.

Let us consider the compact set (see Fig. 9)

Given (t1, η) ∈ R , for simplicity of notation, we will denote t0 = 0, t2 = t1 + η , t3 = T.
Moreover, given (t1, η) ∈ R , we will denote the solution of equation Eqs. (16b), (16c) for s ≥ t by

(27)σ ∗(t) =

{

σm for 0 ≤ t < t1
σs for t1 ≤ t < t1 + η

σm for t1 + η ≤ t ≤ T

R =
{

(t1, η) ∈ R
2 : 0 ≤ η ≤ τ , 0 ≤ t1 ≤ T − η

}

.

(28)�(s, t, x, y, σ), with σ ∈ {σs , σm} and initial data (x, y) ∈ D at time t,

(T − τ, τ)

T − τ T

τ

R

t1

η

Figure 9.  Graphic of set R.
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and (x1, y1) = �(t1, t0, x0, y0, σm) , (x2, y2) = �(t2, t1, x1, y1, σs) . Then, if we call (xt1,η , yt1,η) , the solution of equa-
tion Eqs. (16b), (16c) associated to the control σ given by equation Eq. (27) with initial data (x(0), y(0)) = (x0, y0) , 
we have that

From Theorem 1 we need to determine the maximum of the function

on the compact set R.
In order to do that, we need to compute the derivatives of J.
After some computations (see Eqs. (73) and (76) from Appendix) we obtain that

and

where x∞,t1,η = x∞(xt1,η(T), yt1,η(T), σf ) . Note that for (t1, η) ∈ R , ∂J
∂η
(t1, η) > 0 if and only if

In the results given in the next sections we will assume that ∂J
∂η
(t1, η) > 0 for all (t1, η) ∈ R and therefore in 

the following remark we analyse the derivatives of J restricted to the superior border of R (see Eq. (37) and (38)) 
which will be used later.

Remark 2 Assume that ∂J
∂η
(t1, η) > 0 for all (t1, η) ∈ R , then the maximum value of J on R must be attained at 

the superior border

Thus, in this case, for (t1, τ) with t1 ∈ [0,T − τ) we have t2 = t1 + τ and for (t1,T − t1) with t1 ∈ [T − τ ,T] 
we have t2 = T , and the control is as in Fig. 10

Following, we define a continuous function w for t ∈ [0,T] which is the second factor in equation Eq. (31) 
and thus gives information on the monotonicity of J (see also Eqs. (40) and (41) below).

(29)(xt1,η(s), yt1,η(s)) =

{

�(s, t0, x0, y0, σm) for 0 ≤ s ≤ t1
�(s, t1, x1, y1, σs) for t1 < s ≤ t2
�(s, t2, x2, y2, σm) for t2 < s ≤ T .

(30)J(t1, η) = x∞(xt1,η(T), yt1,η(T), σf )+ κ(σsη + σm(T − η))

(31)

∂J

∂t1
(t1, η) =

[

γ 2(σm − σs)yt1,η(T)yt1,η(t1)x∞,t1,η

(1− σf x∞,t1,η)

]

·

[
∫ t2

t1

σf xt1,η(r)− 1

yt1,η(r)
dr − γ y2

∫ T

t2

σf xt1,η(r)− 1

yt1,η(r)
dr

∫ t2

t1

σmxt1,η(r)− 1

yt1,η(r)
dr

]

(32)

∂J

∂η
(t1, η) =

γ x∞,t1,η

1− σf x∞,t1,η
yt1,η(t2)(σm − σs)

(

1− (σf − σm)yt1,η(T)γ

∫ T

t2

xt1,η(r)

yt1,η(r)
dr

)

− κ(σm − σs)

=
γ x∞,t1,η

1− σf x∞,t1,η
(σm − σs)yt1,η(T)

(

1− γ yt1,η(t2)

∫ T

t2

σf xt1,η(r)− 1

yt1,η(r)
dr

)

− κ(σm − σs)

(33)
x∞,t1,η

1− σf x∞,t1,η
γ yt1,η(T)

(

1− γ yt1,η(t2)

∫ T

t2

σf xt1,η(r)− 1

yt1,η(r)
dr

)

> κ .

(34)P = {(t1, τ), t1 ∈ [0,T − τ ]} ∪ {(t1,T − t1), t1 ∈ [T − τ ,T]}.

(35)

w(t) =











� t+τ

t

σf xt,τ (r)−1

yt,τ (r)
dr − γ yt,τ (t + τ)

� T
t+τ

σf xt,τ (r)−1

yt,τ (r)
dr

� t+τ

t
σmxt,τ (r)−1

yt,τ (r)
dr for 0 ≤ t ≤ T − τ

� T
t

σf xt,T−t (r)−1

yt,T−t (r)
dr for T − τ < t ≤ T ,

t1 T − τ t2 T

σs

σm )

[ )

[

t1

σt1,τ

T − τ t1 T

σs

σm )

[

t1

σt1,T−t1

Figure 10.  Control for (t1, η) ∈ P. In (a) we have a mild-strict-mild quarantine in the intervention interval 
[0, T]. In (b) we have a mild-strict quarantine in the intervention interval [0, T].
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and for t ∈ [T − τ ,T] , we define

Then we have that for (t1, η) ∈ P

and for (t1,T − t1) ∈ P with t1 ∈ [T − τ ,T]

We consider J̃ the continuous function defined as the restriction of J(t1, η) to P, that is

From Eq. (37) we have that

and from Eqs. (37) and (38), we get

for t1 ∈ (T − τ ,T].

In the next subsection, we prove the main result of this article (Theorem 2) for the case σm = σf  , σs ≥ 0 and 
κ = 0 . Then, we derive the result for σs = 0 (Corollary 1) in order to compare our result with the one obtained 
 in23.

Case σm = σf  and κ = 0.. For σm = σf  , from Eq. (74) with i = 2 , we obtain

In addition, from Eqs. (32) and (74) and using κ = 0 we have that

for all (t1, η) ∈ R.
In this case, the sign and zeros of w(t) for t ∈ [0,T − τ ] are the same as those for the function

where z(t) can be interpreted as the average on the time window [t, t + τ ] of the difference between the effective 
reproduction number σf xt,τ (r) and the threshold 1.0, weighted by the inverse of yt,τ . Looking at the phase dia-
gram of Fig. 1 we see that the trajectories travel through the contour line µ(x0, y0, σm) until the strict lockdown 
is activated, and then descends for the time the lock down lasts (always less than τ ) to another contour line of µ 
with σm . For κ = 0 , the zero of w(t) ( t∗ ) captures the moment when this travel to a lower contour line is faster, 
in the sense that leaves the trajectory on the lowest possible contour line at the end of the strict lockdown and, 
therefore, at the maximum of x∞ . The function z(t) can also be seen as an external parameter that becomes zero 
at the optimal time t∗ for which J reaches its maximum, i.e., z(t∗) = 0 . In the next remark we discuss the sign of 
z(t) for t ∈ [0,T − τ ] when σm = σf .

Remark 3 Given (x0, y0) ∈ D with x0 > 1/σf  , assume there exists s1 ∈ [0,T − τ ] such that the solution 
�1(s1, 0, x0, y0, σm) = 1/σf  , that is xs1,τ (s1) = 1/σf  (red line in Fig. 11). Then, for t ∈ [s1,T − τ ] , xt,τ (t) ≤ 1/σf  

(36)α(t) =
1

γ yt,T−t(t)

(

1− κ
1− σf x∞,t,T−t

γ yt,T−t(T)x∞,t,T−t

)

.

(37)
∂J

∂t1
(t1, η) =

x∞,t1,η

(1− σf x∞,t1,η)
γ 2(σm − σs)yt1,η(T)yt1,η(t1)w(t1),

(38)

∂J

∂η
(t1,T − t1) =

x∞,t1,η

1− σf x∞,t1,η
γ (σm − σs)yt1,η(T)− κ(σm − σs)

=
x∞,t1,η

1− σf x∞,t1,η
γ 2(σm − σs)yt1,η(T)yt1,η(t1)α(t1).

(39)J̃(t1) =

{

J(t1, τ) for t1 ∈ [0,T − τ ],

J(t1,T − t1) for t1 ∈ [T − τ ,T].

(40)J̃ ′(t1) = γ 2(σm − σs)
x∞,t1,τ

(1− σf x∞,t1,τ )
yt1,τ (t1)yt1,τ (T)w(t1) for t1 ∈ [0,T − τ),

(41)
J̃ ′(t1) =

dJ

dt1
(t1,T − t1)−

dJ

dη
(t1,T − t1)

= γ 2(σm − σs)
x∞,t1,T−t1

1− σf x∞,t1,T−t1

yt1,T−t1(t1)yt1,T−t1(T)(w(t1)− α(t1))

(42)w(t) =











yt,τ (t + τ)

yt,τ (T)

� t+τ

t

σf xt,τ (r)−1

yt,τ (r)
dr for 0 ≤ t ≤ T − τ

� T
t

σf xt,T−t (r)−1

yt,T−t (r)
dr for T − τ < t ≤ T .

(43)
∂J

∂η
(t1, η) =

x∞,t1,η

1− σf x∞,t1,η
γ (σf − σs)yt1,η(t1 + η) > 0

(44)z(t) =

∫ t+τ

t

σf xt,τ (r)− 1

yt,τ (r)
dr,
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and therefore xt,τ (r) < 1/σf  for r ∈ (t, t + τ ] implying z(t) < 0 . Additionally, assume there exists s0 ∈ [0,T − τ ] 
such that xs0,τ (s0 + τ) = 1/σf  (blue line). In this case, it is clear that s0 < s1 and also that for all t ∈ (s0, s1) 
there exists a unique st ∈ [t, t + τ ] such that xt,τ (st) = 1/σf  . Moreover we can conclude that for t ∈ [0, s0] , 
xt,τ (r) ≥ 1/σf  for all r ∈ (t, t + τ) and therefore z(t) > 0 . If s1 defined before does not exist, that is xs,τ (s) > 1/σf  
for all s ∈ [0,T − τ ] , then we take s1 = T − τ . Likewise, if s0 does not exist, that is for all s ∈ [0,T − τ ] , 
xs(s + τ) < 1/σf  , then we take s0 = 0 and conclude that in either case, the sign of z(t) for t ≥ 0 , is determined 
in the complement of [s0, s1].

In the next lemma we prove that z is a decreasing function on the interval (s0, s1) introduced in Remark 3.

Lemma 5 Let s0, s1 ∈ [0,T − τ ] be given by Remark 3. Then the function z defined in Eq. (44) is decreasing on 
(s0, s1). Moreover, z(t) > 0 for t < s0 , z(t) < 0 for t > s1 and consequently w changes sign at most once on [0,T − τ ].

Proof Since the duration of the strict quarantine is τ fixed, for simplicity of notation in this proof we neglect the 
subindex τ from solutions x and y. Given t ∈ (s0, s1) , we define the auxiliary functions 

By computing the derivative for s ∈ (t, t + τ) we obtain 

 and we have that

Note that both g ′t  and i′t  have the opposite sign of (σf xt(s)+ σf yt(s)− 1) .  First, assume 
σf xt(s)+ σf yt(s)− 1 > 0 for all s ∈ (t, t + τ) , then from Eq. (46a), gt is a decreasing function. Moreover, since 
σsxt(t + τ)− 1 < 0 and σf xt(t + τ)− 1 < 0 for t ∈ (s0, s1) , we deduce that gt(s) > gt(t + τ) > 0 . In addition, 
from Eq. (45c) we obtain it is positive.

On the other side, from the fact that x + y is a decreasing function, if we assume that there exists 
s3 ∈ [t, t + τ ] such that σf xt(s3)+ σf yt(s3) = 1 we have that for s < s3 , σf xt(s)+ σf yt(s)− 1 > 0 and for 

(45a)gt(s) = σf σsxt(s)yt(s)+ (σf xt(s)− 1)(σsxt(s)− 1),

(45b)ft(s) =
σf xt(s)− 1

yt(s)
,

(45c)it(s) =
xt(s)

yt(s)
(σf xt(s)+ σf yt(s)− 1)+ γ gt(s)

∫ s

t

xt(r)

yt(r)
dr.

(46a)g ′t (s) = −γ σ 2
s xt(s)yt(s)(σf xt(s)+ σf yt(s)− 1),

(46b)f ′t (s) = −γ
gt(s)

yt(s)
,

(46c)i′t(s) = −γ σsxt(s)

(

γ σsyt(s)

∫ s

t

xt(r)

yt(r)
dr + 1

)

(σf xt(s)+ σf yt(s)− 1),

(47)

z′(t) =ft(t + τ)− ft(t)

+ γ (σs − σf )y1

∫ t+τ

t

[

xt(s)

y2t (s)
(σf xt(s)+ σf yt(s)− 1)+ γ

(
∫ s

t

xt(r)

yt(r)
dr

)

gt(s)

yt(s)

]

ds

=ft(t + τ)− ft(t)+ γ (σs − σf )y1

∫ t+τ

t

it(s)

yt(s)
ds

11
σf

(x0, y0)

x(s0)

ys1(s1)

ys0(s0 + τ )

yst(st)

x

y

Figure 11.  Trajectories (xt,τ , yt,τ ) for t ∈ [s0, s1] when σm = σf .
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s > s3 , σf xt(s)+ σf yt(s)− 1 < 0 . Therefore, gt and it attains a global minimum on [t, t + τ ] at s3 and thus 
gt(s) ≥ gt(s3) = σf yt(s3) > 0 and it(s) ≥ it(s3) = γ gt(s3)

∫ s3
t

xt (r)
yt (r)

dr > 0 for all s ∈ [t, t + τ ] . Furhtermore, 
from Eq. (46b) we have that ft(s) is also a decreasing function.

Thus, we have proved that for t ∈ (s0, s1) , ft(s) is decreasing on (t, t + τ) and it(s) > 0 for all s ∈ [t, t + τ ] , 
yielding from Eq. (47) that z′(t) < 0 for all t ∈ (s0, s1) . Finally, from Remark 3 we deduce that z changes sign at 
most once on [0,T − τ ] (see Fig. 12) concluding that w changes sign at most once on [0,T − τ ].

From Eq. (40), we see that the monotonicity of J on [0,T − τ ] depends on the sign of w. For all the foregoing, 
if J attains its maximum at t1 = t∗ ∈ [0,T − τ ] , we can interpret w(t) as an external parameter that shifts the 
extremal point of J from t∗ to zero.

In the next theorem we assume that x0 < 1/σs . This condition is always satisfied for σs < 1 .   �

Theorem 2 Let 0 ≤ σs < σm = σf  with σs < 1 , κ = 0 and w be given by Eq. (42). Then the optimal control is 
unique and is given by

where 

1. For w(0) ≤ 0 : t∗ = 0 and η = τ.
2. For w(0) > 0 and w(T − τ) ≤ 0 : t∗ = t and η = τ where t is the unique value on [0,T − τ ] such that w(t) = 0

.
3. For 0 < w(T − τ) ≤

1

γ yT−τ ,τ (T − τ)
 : t∗ = T − τ and η = τ.

4. For w(T − τ) >
1

γ yT−τ ,τ (T − τ)
 : t∗ = t̃ where ̃t is the unique value on [T − τ ,T] such that w(t̃) =

1

γ yt̃,T−t̃(t̃)
 

and η = T − t̃.

Proof From Eq. (43) and Remark 2 the maximum value of J on R must be attained at the superior border P 
defined in Eq. (34). Therefore, from Eqs. (40) and (41) we have

and using that for κ = 0 , α(t1) =
1

γ yt1,T−t1(t1)
 , then

for t1 ∈ (T − τ ,T] . Note that from Eq. (75) with i = 1 and j = 0 , for t ∈ [T − τ ,T] it holds the identity

where

(48)σ ∗(s) =







σf for 0 ≤ s < t∗,
σs for t∗ ≤ s < t∗ + η,
σf for t∗ + η ≤ s < T ,

(49)J̃ ′(t1) = γ 2(σf − σs)
x∞,t1,τ

(1− σf x∞,t1,τ )
yt1,τ (t1)yt1,τ (T)w(t1) for t1 ∈ [0,T − τ),

(50)J̃ ′(t1) = γ 2(σf − σs)
x∞,t1,T−t1

1− σf x∞,t1,T−t1

yt1,T−t1(t1)yt1,T−t1(T)

(

w(t1)−
1

γ yt1,T−t1(t1)

)

(51)γ yt1,T−t1(T)

(

w(t1)−
1

γ yt1,T−t1(t1)

)

= γ (σf − σs)h(t1)− 1

(52)h(t) = yt,T−t(T)

∫ T

t

xt,T−t(s)

yt,T−t(s)
ds

s
0 s0 s1 T − τ

z > 0

z

z < 0

Figure 12.  Behaviour of z(t) when σf = σm.
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is a decreasing function in [T − τ ,T] . In fact, using that u1(s) is a positive function [see Eqs. (68)) and (62a)] it 
is easy to see that

and therefore, h′(t1) < 0 for t1 ∈ (T − τ ,T) . From Eqs. (50) and (51) we also have that for t1 ∈ [T − τ ,T]

  �

We consider the following cases: 

1. If w(0) ≤ 0 , then from Lemma 5, w(t1) < 0 for all t1 ∈ (0,T − τ ] . Thus, from Eq. (49) we have 

 Moreover, using that w(T − τ) < 0 , the positivity of γ yT−τ ,τ (T − τ) and Eq.  (51), we obtain that 
h(T − τ) <

1

γ (σf − σs)
 and being h a decreasing function, from Eq. (53) we deduce that 

 Therefore t∗ = 0.
2. Since w(0) > 0 and w(T − τ) ≤ 0 , from Lemma 5 there exists an unique t ∈ (0,T − τ ] such that w(t) = 0 , 

w(t1) > 0 for all t1 ∈ [0, t) and w(t1) < 0 for all t1 ∈ (t,T].
  Moreover, since w(T − τ) ≤ 0 , in the same way as for the previous item, we have 

 and from Eq. (49), we obtain 

 concluding that t∗ = t.
3. Since 

 from Lemma 5, w(t1) > 0 for all t1 ∈ [0,T − τ ] . On the other side, since w(T − τ) <
1

γ yT−τ ,τ (T − τ)
 , from 

Eq. (52) we have that h(T − τ) ≤ 1
γ (σf−σs)

 and using that h is a continuous and decreasing function, we 
obtain that h(t1) < 1

γ (σf−σs)
 for all t1 ∈ (T − τ ,T] . Thus, 

 Therefore, t∗ = T − τ and η = τ.
4. Since 

from Lemma 5, we have w(t1) > 0 for all t1 ∈ [0,T − τ ] . On the other side, since w(T − τ) >
1

γ yT−τ ,τ (T − τ)
 , 

then h(T − τ) > 1
γ (σf−σs)

 and using that h(T) = 0 and h is a continuous and decreasing function, there exists 
a unique t̃  such that h(t̃) = 1

γ (σf−σs)
 , h(t) > 1

γ (σf−σs)
 for t ∈ [T − τ , t̃) and h(t) < 1

γ (σf−σs)
 for t ∈ (t̃,T] . 

Therefore, 

 Consequently, t∗ = t̃ and η = T − t̃.

Case σs = 0 , σm = σf  and κ = 0.. Let w(t) defined as in Eq. (35). Note that for σs = 0 and σm = σf  , from 
Eq. (75) with i = j = 2 , we obtain

d

dt1

(

yt1(T)

yt1(s)

)

< 0

(53)J̃ ′(t1) = γ (σf − σs)
x∞,t1,T−t1

1− σf x∞,t1,T−t1

yt1,T−t1(t1)
(

γ (σf − σs)h(t1)− 1
)

J̃ ′(t1) ≤ 0 for all t1 ∈ [0,T − τ).

J̃ ′(t1) < 0 for all t1 ∈ (T − τ ,T].

J̃ ′(t1) < 0 for all t1 ∈ (T − τ ,T]

J̃ ′(t1) ≥ 0 for t1 < t and J̃ ′(t1) < 0 for t1 > t,

0 < w(T − τ) <
1

γ yT−τ ,τ (T − τ)
,

J̃ ′(t1) > 0 for t1 ∈ [0,T − τ) and J̃ ′(t1) < 0 for t1 ∈ (T − τ ,T].

w(T − τ) >
1

γ yT−τ ,τ (T − τ)
> 0,

J̃ ′(t1) > 0 for t1 ∈ [0, t̃) and J̃ ′(t1) < 0 for t1 ∈ (t̃,T].

(54)w(t) =



















yt,τ (t + τ)(σf xt,τ (t)− 1)

γ yt,τ (T)yt,τ (t)
(eγ τ − 1) for 0 ≤ t ≤ T − τ

σf xt,T−t(t)− 1

γ yt,T−t(t)
(eγ (T−t) − 1) for T − τ < t ≤ T .
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It is easy to observe that in this case the sign of w(t) on [0,T − τ ] is given by (σf xt,τ (t)− 1) . Moreover, w 
changes sign at most once on [0,T − τ ] , going from positive to negative values.

Corollary 1 Let σs = 0 , σm = σf > 0 and k = 0. Then, the optimal control is unique and is given by

where 

1. For x0 ≤ 1
σf

 : t∗ = 0 and η = τ.
2. For x0 > 1

σf
 and xT−τ ,τ (T − τ) ≤ 1

σf
 : t∗ = t  and η = τ, where t  is the unique value on [0,T − τ ] such that 

xt,τ (t) =
1

σf
.

3. For 
1

σf
< xT−τ ,τ (T − τ) ≤

1

σf (1− e−γ τ )
 : t∗ = T − τ and η = τ.

4. For xT−τ ,τ (T − τ) >
1

σf (1− e−γ τ )
 : t∗ = t̃ and η = T − t̃, where t̃ is the unique value on [T − τ ,T] such that 

xt̃,T−t̃(t̃) =
1

σf

(

1− e−γ (T−t̃)
).

Proof The proof follows from Theorem 2 using the fact that

and

Note that in this case if we take τ = T , the corollary is reduced to only two possible cases: x0 ≤
1

σf (1− e−γT )
 

or x0 >
1

σf (1− e−γT )
 , obtaining the same result as  Ketcheson23 in Theorem 3.   �

General case. In this section we study the behaviour of optimal solutions for the general case when 
0 ≤ σs < σm ≤ σf  and κ > 0 , that is, objective function J includes the term that accounts the running cost of the 
control and allows us to account for factors like the economic cost of intervention or heightened risks caused by 
hospital overflow.

Lemma 6 Assume κ >
x∞,t1,ηγ yt1,η(T)

1− σf x∞,t1,η

(

1− γ y2
∫ T
t2

σf xt,η(r)−1

yt,η(r)
dr
)

 for all (t1, η) ∈ R, then the optimal control is 

given by σ ∗ ≡ σm.

Proof From Eq. (32), we have that ∂J
∂η
(t1, η) < 0 and therefore the maximum value of J on R is attained at the 

inferior border of R where η = 0 and J(t1, 0) is constant.
In the next theorem we give a general result including both the economic cost of intervention ( κ > 0 ) and a 

mitigation phase different from the no intervention one, that is σm < σf  . In the next section we give numerical 
simulations supporting this result. When σ = σf  and κ = 0 we recover Theorem 2.   �

Theorem 3 Let 0 ≤ σs < σm ≤ σf  with σs < 1 , κ satisfying Eq. (33) for all (t1, η) ∈ R and let w and α defined as 
in Eqs. (35) and  (36) respectively , then the optimal control is unique and is given by

where 

1. For w(0) ≤ 0 : t∗ = 0 and η = τ.
2. For w(0) > 0 and w(T − τ) ≤ 0 : t∗ = t and η = τ where t is the unique value on [0,T − τ ] such that w(t) = 0

.
3. For 0 < w(T − τ) ≤ α(T − τ) : t∗ = T − τ and η = τ.

σ ∗(s) =







σf for 0 ≤ s < t∗,
0 for t∗ ≤ s < t∗ + η,
σf for t∗ + η ≤ s ≤ T ,

sign (w(t)) = sign (σf xt,τ (t)− 1), for t ∈ [0,T − τ ],

w(T − τ) =
1

γ yT−τ ,τ (T − τ)
(σf xT−τ ,τ (T − τ)− 1)(eγ τ − 1).

(55)σ ∗(s) =

{

σm for 0 ≤ s < t∗,
σs for t∗ ≤ s < t∗ + η,
σm for t∗ + η ≤ s < T ,
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4. For w(T − τ) > α(T − τ) : t∗ = t̃ where t̃  is the unique value on [T − τ ,T] such that w(t̃) = α(t̃) and 
η = T − t̃.

Data availability
All relevant data are within the paper.

Appendix
We  b e g i n  b y  c o m p u t i n g  t h e  d e r i v a t i v e s  o f  xt1,η(T) = �1(T , t1 + η, x2, y2, σm) a n d 
yt1,η(T) = �2(T , t1 + η, x2, y2, σm) with respect to t1.

We recall two properties for the solutions of ordinary differential equations. First, the relation between the 
derivative with respect to initial time and the derivatives with respect to initial data give us the equation

for � defined in Eq. (28), with s ≥ t , σ ∈ {σs , σm} , initial data (x, y) ∈ D at time t and j = 1, 2.
Second, the dependence of the solution �(s, t, x, y, σ) with respect to initial data x, y is given by the follow-

ing known equations. For simplicity of notation, when there is no risk of confusion, we will denote �(s) for 
�(s, t, x, y, σ),

with initial data

Then we call σ1 = σs , σ2 = σm and for i = 1, 2 , 

 for s ∈ [ti , ti+1] , and we have the system of equations on ui and vi

with initial data

Therefore, after some computations and using Eqs. (56) and (59) we obtain for s ∈ (t1, t1 + η)

 and for s ∈ (t1 + η,T]

(56)
∂�j(s, t, x, y, σ)

∂t
=

∂�j(s, t, x, y, σ)

∂x
γ σxy −

∂�j(s, t, x, y, σ)

∂y
γ y(σx − 1)

(57)

(

∂�1
∂x

∂�1
∂y

∂�2
∂x

∂�2
∂y

)′

(s) =

(

−γ σ�2(s) − γ σ�1(s)
γ σ�2(s) γ (σ�1(s)− 1)

)

.

(

∂�1
∂x

∂�1
∂y

∂�2
∂x

∂�2
∂y

)

(s).

(58)

(

∂�1
∂x

∂�1
∂y

∂�2
∂x

∂�2
∂y

)

(t) = Id.

(59a)ui(s) = u(s, ti , xi , yi , σi) =
∂�1

∂xi
(s, ti , xi , yi , σi)−

∂�1

∂yi
(s, ti , xi , yi , σi),

(59b)vi(s) = v(s, ti , xi , yi , σi) =
∂�2

∂xi
(s, ti , xi , yi , σi)−

∂�2

∂yi
(s, ti , xi , yi , σi),

(60)
(

u′i(s)
v′i(s)

)

=

(

−γ σi�2(s) − γ σi�1(s)
γ σi�2(s) γ (σi�1(s)− 1)

)

.

(

ui(s)
vi(s)

)

.

(61)
(

ui(ti)
vi(ti)

)

=

(

1
−1

)

.

(62a)
dxt1,η

dt1
(s) = −γ (σm − σs)x1y1u1(s),

(62b)
dyt1,η

dt1
(s) = −γ (σm − σs)x1y1v1(s),

(63a)

dxt1,η

dt1
(s) = γ (σm − σs)x2y2u2(s)

− γ (σm − σs)x1y1

(

∂�1(s, t2, x2, y2, σm)

∂x2
u1(t2)+

∂�1(s, t2, x2, y2, σm)

∂y2
v1(t2)

)

,

(63b)

dyt1,η

dt1
(s) = γ (σm − σs)x2y2v2(s)

− γ (σm − σs)x1y1

(

∂�2(s, t2, x2, y2, σm)

∂x2
u1(t2)+

∂�2(s, t2, x2, y2, σm)

∂y2
v1(t2)

)

.
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Moreover, using that for any (xi , yi) ∈ D , �(s, ti , xi , yi , σi) , satisfies for s ∈ [ti , ti+1]

we compute the derivatives with respect to xi and yi and using �1(s) = �1(s, ti , xi , yi , σi) , we obtain for s ∈ [ti , ti+1]

Then, substracting the last two equations

for s ∈ [ti , ti+1] and therefore using Eq. (67), from Eq. (60) we have that ui satisfies the ordinary differential 
equation

In the rest of this section, for simplicity of notation we will denote x and y for xt1,η and yt1,η , defined in Eq. (29), 
respectively.

Thus, for s ∈ [ti , ti+1] when i = 1, 2 , we obtain

Also, from Eqs. (60) and (66) we can prove for �(T) = �(T , t2, x2, y2, σm) that 

Analogously, 

We can now compute the derivatives of J(t1, η) given by Eq. (30). From Eq. (15),

and, from Eq. (63)

(64)�1(s, ti , xi , yi , σi)e
−σi(�1(s,ti ,xi ,yi ,σi)+�2(s,ti ,xi ,yi ,σi)) = xie

−σi(xi+yi),

(65)
∂�1

∂xi
(s)− σi�1(s)

(

∂�1

∂xi
(s)+

∂�2

∂xi
(s)

)

= (1− σixi)
�1(s)

xi
,

(66)
∂�1

∂yi
(s)− σi�1(s)

(

∂�1

∂yi
(s)+

∂�2

∂yi
(s)

)

= −σi�1(s).

(67)ui(s)− σi�1(s, ti , xi , yi , σi)(ui(s)+ vi(s)) =
�1(s, ti , xi , yi , σi)

xi

u′i(s) = γ
(

σi�1(s, ti , xi , yi , σi)− σi�2(s, ti , xi , yi , σi)− 1
)

ui(s)+ γ
�1(s, ti , xi , yi , σi)

xi
,

ui(ti) = 1.

(68)
ui(s) =

x(s)y(s)

xiyi
+ γ

x(s)y(s)

xi

∫ s

ti

1

y(r)
dr

=
x(s)

xi
+ γ σi

x(s)y(s)

xi

∫ s

ti

x(r)

y(r)
dr,

(69)vi(s) = −
x(s)

xi
+

(1− σix(s))y(s)

xi
γ

∫ s

ti

x(r)

y(r)
dr,

(70)ui(s)+ vi(s) =
y(s)

xi
γ

∫ s

ti

x(r)

y(r)
dr.

(71a)
∂�1

∂x2
(T)+

∂�2

∂x2
(T) =

y(T)

y2
+ (1− σmx2)(u2(T)+ v2(T)),

(71b)
∂�1

∂y2
(T)+

∂�2

∂y2
(T) =

y(T)

y2
− σmx2x2(u2(T)+ v2(T)).

(72a)
dxt1,η

dη
(T) = γ (σm − σs)x2y2u2(T),

(72b)
dyt1,η

dη
(T) = γ (σm − σs)x2y2v2(T).

(73)

∂J

∂t1
(t1, η) =

dx∞(xt1,η(T), yt1,η(T), σf )

dt1

=
x∞,t1,η

1− σf x∞,t1,η

(

1− σf xt1,η(T)

xt1,η(T)

dxt1,η(T)

dt1
− σf

dyt1,η(T)

dt1

)

=
x∞,t1,η

(1− σf x∞,t1,η)xt1,η(T)

(

(1− σf xt1,η(T))
dxt1,η(T)

dt1
− σf xt1,η(T)

dyt1,η(T)

dt1

)

,
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using Eqs. (65), (66), (67) and (71) we obtain

Also, using that for i = 1, 2

we have that

Therefore, from Eqs. (70) and (75)

Then, replacing in Eq. (73) we obtain

Note that for σm = σf  we have from Eq. (74) for i = 2 that

and then,

On the other hand,

where x∞,t,η = x∞(xt,η(T), yt,η(T), σf ).
From Eqs. (59a), (59b) and (72), we obtain

(1− σf xt1,η(T))
dxt1,η(T)

dt1
− σf xt1,η(T)

dyt1,η(T)

dt1

= γ (σm − σs)x2y2
(

(1− σf xt1,η(T))u2(T)− σf xt1,η(T)v2(T)
)

− γ (σm − σs)x1y1

(

u1(t2)

(

(1− σf xt1,η(T))
∂�1(T , t2, x2, y2, σm)

∂x2
+ σf xt1,η(T)

∂�2(T , t2, x2, y2, σm)

∂x2

)

+v1(t2)

(

(1− σf xt1,η(T))
∂�1(T , t2, x2, y2, σm)

∂y2
+ σf xt1,η(T)

∂�2(T , t2, x2, y2, σm)

∂y2

))

,

(1− σf xt1,η(T))
dxt1,η(T)

dt1
− σf xt1,η(T)

dyt1,η(T)

dt1

= γ (σm − σs)xt1,η(T)
[

(1+ (σm − σf )(u2(T)+ v2(T)))(y2 − y1 + (σm − σs)x1y1(u1(t2)+ v1(t2)))

−(σm − σf )x1y1
yt1,η(T)

y2
(u1(t2)+ v1(t2))

]

.

(74)
1

yi
−

1

yi+1
= −

∫ ti+1

ti

(

1

y

)′

(r)dr = γ

∫ ti+1

ti

σix(r)− 1

y(r)
dr,

(75)yi+1 − yi + γ yiyi+1(σj − σi)

∫ ti+1

ti

x(r)

y(r)
dr = γ yiyi+1

∫ ti+1

ti

σjx(r)− 1

y(r)
dr.

(76)

(1− σf xt1,η(T))
dxt1,η(T)

dt1
− σf xt1,η(T)

dyt1,η(T)

dt1
γ 2(σm − σs)xt1,η(T)yt1,η(T)y1

=

(

1− γ y2

∫ T

t2

σf x(r)− 1

y(r)
dr

)
∫ t2

t1

σmx(r)− 1

y(r)
dr − (σm − σf )

∫ t2

t1

x(r)

y(r)
dr

=

∫ t2

t1

σf x(r)− 1

y(r)
dr − γ y2

∫ T

t2

σf x(r)− 1

y(r)
dr

∫ t2

t1

σmx(r)− 1

y(r)
dr.

(77)

∂J

∂t1
(t1, η) =

γ 2(σm − σs)yt1,η(T)y1x∞,t1,η

1− σf x∞,t1,η
.

[
∫ t2

t1

σf x(r)− 1

y(r)
dr − γ y2

∫ T

t2

σf x(r)− 1

y(r)
dr

∫ t2

t1

σmx(r)− 1

y(r)
dr

]

.

(1− σf xt1,η(T))
dxt1,η(T)

dt1
− σf xt1,η(T)

dyt1,η(T)

dt1
= γ 2(σm − σs)xt1,η(T)y1y2

∫ t2

t1

σmx(r)− 1

y(r)
dr,

(78)
∂J

∂t1
(t1, η) =

x∞,t1,ηγ
2(σm − σs)y1y2

1− σf x∞,t1,η

∫ t2

t1

σmx(r)− 1

y(r)
dr.

(79)

∂J

∂η
(t1, η) =

dx∞(xt1,η(T), yt1,η(T), σf )

dη
− κ(σm − σs)

=
x∞,t1,η

(1− σf x∞,t1,η)xt1,η(T)

(

(1− σf xt1,η(T))
dxt1,η(T)

dη
− xt1,η(T)σf

dyt1,η(T)

dη

)

− κ(σm − σs),
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and using Eqs. (67), (70) and (75)

Thus, we have
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