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lncRNA‑disease association 
prediction based on matrix 
decomposition of elastic network 
and collaborative filtering
Bo Wang*, RunJie Liu, XiaoDong Zheng, XiaoXin Du & ZhengFei Wang

In recent years, with the continuous development and innovation of high‑throughput biotechnology, 
more and more evidence show that lncRNA plays an essential role in biological life activities and is 
related to the occurrence of various diseases. However, due to the high cost and time‑consuming of 
traditional biological experiments, the number of associations between lncRNAs and diseases that 
rely on experiments to verify is minimal. Computer‑aided study of lncRNA‑disease association is an 
important method to study the development of the lncRNA‑disease association. Using the existing 
data to establish a prediction model and predict the unknown lncRNA‑disease association can make 
the biological experiment targeted and improve its accuracy of the biological experiment. Therefore, 
we need to find an accurate and efficient method to predict the relationship between lncRNA and 
diseases and help biologists complete the diagnosis and treatment of diseases. Most of the current 
lncRNA‑disease association predictions do not consider the model instability caused by the actual 
data. Also, predictive models may produce data that overfit is not considered. This paper proposes 
a lncRNA‑disease association prediction model (ENCFLDA) that combines an elastic network with 
matrix decomposition and collaborative filtering. This method uses the existing lncRNA‑miRNA 
association data and miRNA‑disease association data to predict the association between unknown 
lncRNA and disease, updates the matrix by matrix decomposition combined with the elastic network, 
and then obtains the final prediction matrix by collaborative filtering. This method uses the existing 
lncRNA‑miRNA association data and miRNA‑disease association data to predict the association of 
unknown lncRNAs with diseases. First, since the known lncRNA‑disease association matrix is very 
sparse, the cosine similarity and KNN are used to update the lncRNA‑disease association matrix. The 
matrix is then updated by matrix decomposition combined with an elastic net algorithm, to increase 
the stability of the overall prediction model and eliminate data overfitting. The final prediction matrix 
is then obtained through collaborative filtering based on lncRNA.Through simulation experiments, the 
results show that the AUC value of ENCFLDA can reach 0.9148 under the framework of LOOCV, which 
is higher than the prediction result of the latest model.

The human genome roughly contains more than 20,000 protein-coding genes, which account for about 2% of 
the human  genome1. In addition, more than 98% of the genome cannot be compiled into  proteins1–3, but tens of 
thousands of non-coding genes are also generated. Long non-coding RNA (lncRNA) is a type of non-coding 
RNA with a length greater than 200  nucleotides4 .lncRNA does not code for protein.Still, it plays a role in regu-
lating gene expression at various levels of life activities, including genetic regulation, transcription regulation, 
cell differentiation, etc.5. In addition, the disorders and mutations of lncRNA are related to many complex human 
diseases, such as  diabetes6, cardiovascular  disease7, breast  cancer8, and so on. Accumulating studies have shown 
that lncRNAs can regulate gene expression in many ways, and the variation in gene expression is important in 
complex diseases. Thus lncRNAs are associated with various human diseases. For example, lncRNA PCA3 is 
treated as a potential biomarker of prostate  cancer9. lncRNA ‘BC200’expresses significantly higher in Alzheimer’s 
disease tissue compared to normal  tissues10. The expression of lncRNA ‘BACE1-AS’ drives rapid feed-forward 
regulation of b-secretase in Alzheimer’s  disease11. lncRNA ‘H19’ not only has great effects on primary breast 
 carcinomas12,13 but is also confirmed to be associated with lung  cancer14. With the development of artificial 
intelligence technology and the maturity of big data technology, researchers can analyze and process known data 

OPEN

College of Computer and Control, Qiqihar University, Qiqihar 161006, China. *email: bowangdr@qqhru.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-16594-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12700  | https://doi.org/10.1038/s41598-022-16594-5

www.nature.com/scientificreports/

to predict the potential relationship between lncRNA and diseases. Such methods can help people understand 
human diseases and contribute to the diagnosis and treatment of  diseases15. In recent years, many methods have 
been adopted to predict the potential association between lncRNA and diseases, and good results have been 
achieved. According to different algorithm ideas, these methods can be divided into two categories: data integra-
tion methods based on biological networks and data integration methods based on machine learning models. 
Data fusion methods based on biological networks can be further divided into predicting lncRNA disease poten-
tial association based on lncRNA or disease attributes and predicting lncRNA-disease potential association based 
on multi-source data integration. Among them, in predicting the potential association between lncRNA and 
disease based on lncRNA or disease attributes, Chen et al.16developed the LRLSLDA computational model, which 
is a model for predicting potential disease-related lncRNAs based on a semi-supervised learning framework. 
The model is based on the assumption that similar diseases tend to be associated with lncRNAs with similar 
functions. LRLSLDA combines known disease-lncRNA associations and lncRNA expression profiles to obtain 
an AUC of 0.776 under leave-one-out cross-validation (LOOCV), while also requiring no information on nega-
tive samples, which are often difficult to obtain. But LRLSLDA still has some limitations. For example, there are 
many parameters in the model, and how to choose the parameters has not been fundamentally solved.  Sun17 and 
others believe that lncRNA with similar functions will be associated with similar diseases. On this basis, a method 
based on a global network random walk (RWRlncd) is proposed to predict the association between lncRNA and 
disease. RWRlncd constructs a lncRNA functional similarity network and then uses the restart random walk 
method to predict the association between potential lncRNA and disease. However, this method only considers 
the lncRNA with known association with disease and does not consider the situation that there is no known 
association with any disease.Liu18 predicted the potential lncRNA-disease association by integrating the known 
human disease genes and gene lncRNA co-expression relationship. However, if there is no relevant gene associa-
tion for a disease, the method can not predict the associated lncRNA.Zhou19 assumed that those lncRNA sharing 
significantly enriched interacting miRNA would be associated with similar diseases, and proposed a kind of 
RWRLDA method. RWRLDA integrates three types of networks: miRNA-related lncRNA-lncRNA association 
networks, disease similarity network, and lncRNA-disease association network into heterogeneous networks, 
and uses restart random walk to predict relevant disease information. In predicting the potential association 
between lncRNA and disease based on multi-source data integration,  Chen20 proposed a prediction method 
based on multi-source data integration called KATZLDA. KATZLDA integrates the known lncRNA disease 
association information, lncRNA expression map, lncRNA functional similarity, disease semantic similarity, and 
Gaussian interaction kernel similarity matrix to predict lncRNA-disease association.  Chen21 also proposed an 
improved restart random walk model (IRWRLDA) on lncRNA-disease association. IRWRLDA uses lncRNA-
miRNA interaction information, miRNA-disease association, disease semantic similarity based on MESH terms, 
lncRNA expression map, and known lncRNA-disease association to predict unknown lncRNA disease association 
information.  Lan22 proposes a method using graph attention networks(GANLDA) to extract useful information 
from tumor and disease features to predict lncRNA-disease potential associations. The above methods based on 
biological network and data integration do not consider the structural differences between the lncRNA network 
and disease network, but also ignore the important role of the special structure of the disease network in predict-
ing lncRNA-disease association.  Sheng23 addressed the above problems and proposed a model called VADLP to 
adaptively learn and integrate pairwise topology, node attributes, and deep feature distributions encoded from 
multi-source data to predict disease-related lncRNAs.In the data integration method based on a machine learn-
ing model,  Wang24 proposed the asymmetric non-negative matrix cooperative decomposition method (S-NMTF) 
to realize the clustering of multi-type associated data sources. The data integration framework (DFMF) proposed 
by  Zitnik25 uses the three-factor collaborative matrix decomposition technology to integrate various heterogene-
ous data sources. After decomposition and optimization, the low-rank representation of each biomolecule is 
obtained, and then the lncRNA and disease low-rank representation are used to reconstruct the lncRNA-disease 
association.  Biswas26 developed the lncRNA-disease association prediction model (RIMC) based on matrix 
completion, which integrates a variety of heterogeneous and homogeneous data and uses the non-negative matrix 
decomposition method to predict the interaction between lncRNA and disease. The above methods based on 
matrix decomposition can maintain the internal structure of heterogeneous data sources.  Liu27 established a new 
matrix factorization model to predict lncRNA-miRNA interactions, namely lncRNA-miRNA interaction predic-
tion by logistic matrix factorization and neighborhood regularization (LMFNRLMI). The model utilizes only 
known positive samples to mine potential lncRNA-disease associations.  Zeng28 proposed a hybrid computational 
framework (SDLDA) for lncRNA-disease association prediction. In this computational framework, Zeng uses 
singular value decomposition and deep learning to extract linear and nonlinear features of lncRNAs and diseases, 
respectively. The combination of linear and nonlinear features is mutually reinforcing, which is better than just 
using matrix factorization or deep learning. To overcome the limitations of matrix factorization,  Lan29 developed 
a mixed model (named LDICDL) to predict the association between novel lncRNAs (or diseases) and diseases 
(or lncRNAs). However, due to the incompleteness of biological data and the limitations of model assumptions 
and experimental design, the existing lncRNA disease prediction methods still face many challenges. The above 
methods have their advantages and uniqueness. So far, many achievements have been made in the association 
prediction between lncRNA and disease. However, there arestill some shortcomings. For example, the method 
based on biological network fusion depends on experimental data, and the amount of experimental data is too 
small, which will lead to the deviation of prediction results to a certain extent; The method based on machine 
learning lacks accurate negative samples, so there is an urgent need for reliable and effective methods to extract 
the most likely negative sample data. How to solve these problems and further improve the accuracy of model 
prediction is a challenge for future researchers. They did not take full advantage of known lncRNA signature 
data and disease signature data and did not consider the limitations of missing data and data overfitting on 
accuracy and predictive performance. This paper presents a novel computational framework (ENCFLDA) to 
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predict the association of lncRNAs with the disease. It uses matrix factorization combined with an elastic net 
algorithm for prediction, which can make the prediction model more stable and eliminate the problem of data 
overfitting. Experimental results demonstrate that our method outperforms other state-of-the-art methods.

Results
Evaluation metrics. To evaluate the robustness and prediction performance of ENCFLDA, the AUC value 
calculated by Leaving One Cross Validation (LOOCV) is used as the evaluation index in this section. The model 
is compared with the current more advanced model, that is,  CFNBC30,  NBCLDA31,  LMFP32,  DMFLDA33. We 
take the relationship between each lncRNA and disease as the test set. By comparing the calculated results with 
the given threshold, we can also obtain a series of true positive rate (TPR) and false positive rate (FPR) according 
to the following formula :

The true positive rate (TPR) and false positive rate (FPR) were used to draw the receiver operating character-
istic curve (ROC), and the area under the ROC curve (AUC) was calculated to evaluate the model performance.
AUC = 1 indicates that the model is perfect; 0.5 < AUC < 1 indicates that the model has predictive value; AUC = 0.5 
indicates that the model is random model. Obviously, the closer the AUC value is to 1, indicating that the predic-
tion ability of the model is accurate. The final results are shown in Fig. 1 below. It is easy to see that the model 
ENCFLDA proposed by us can reach the AUC value of 0.9148.

Comparison with other methods. We compare ENCFLDA with four popular computational methods 
(CFNBC, NBCLDA, LMFP, and DMFLDA).We compare the five models based on the LOOCV framework, 
and the ROC comparison diagram is shown in Fig. 1. It is obvious that the AUC of ENCFLDA model is 0.9148, 
which is better than CFNBC(0.8576),NBCLDA(0.8521),LMFP(0.8964),DMFLDA(0.8769).The results show that 
the prediction effect of ENCFLDA model is better than other models. The AUPR comparison chart based on 
LOOCV is shown in Fig. 2.

Analysis of parameters. In this model, we introduce parameters . Its value range is [0,1]. This parameter is 
used to adjust the ratio in the elastic network calculation. We experimented with parameter 0 and incremented 
0.1, and the results are shown in Fig. 3. It is not difficult to see that when = 0, AUC is 0.9100; When = 1, AUC is 
0.8901; when = 0.3, AUC is 0.9148.The results are shown in Fig. 3.

Ablation experiments. We conduct a set of ablation experiments to the contributions of cosine similarity-
based KNN, matrix factorization incorporating elastic networks, and lncRNA-based collaborative filtering algo-
rithms. The experimental results are shown in Table 1. Without KNN based on cosine similarity, the prediction 
performance of AUC and AUPR decreased by 3.05% and 7.39% compared to our final model. Without matrix 
factorization incorporating elastic nets, AUC and AUPR are 2.32% and 6.68% lower than our method. Com-
pared with the model without lncRNA-based collaborative filtering, AUC and AUPR were 1.86% and 5.7% lower 
than our method.Ablation experiments demonstrate the critical and vital contributions of these three modules. 

(1)TPR =
TP

TP + FN

(2)FPR =
FP

FP + TN

Figure 1.  ROC comparison between ENCFLDA and other advanced models based on the same data set.
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The experimental results show that the contribution of KNN based on cosine similarity is the most significant 
among the three modules. One of the possible reasons is that the datasets used in the lncRNA-disease association 
prediction process have the characteristics of single and few features. As the input of lncRNA-disease association 
prediction will lead to inaccurate prediction results or fall into the optimum local problem. The KNN algorithm 
based on cosine similarity completes the missing data. The contribution of matrix factorization incorporating 
elastic nets is the second largest. The model solves the problem of biased prediction caused by the inherent logi-
cal relationship between lncRNAs and diseases. The elastic network algorithm is added to the matrix decomposi-
tion, which effectively improves the prediction of the relationship between unknown lncRNAs and diseases by 
matrix decomposition, and improves the stability of the model.

Figure 2.  AUPR comparison between ENCFLDA model and other advanced models based on the same data 
set.

Figure 3.  ROC under different parameters and Transformation curve of a parameter in the range of [0,1].

Table 1.  The contributions of all components of the proposed method.

KNN based on cosine similarity Matrix decomposition Collaborative filtering AUC AUPR

 × √ √ 0.8843 0.0343

√  × √ 0.8916 0.0414

√ √  × 0.8962 0.0512

√ √ √ 0.9148 0.1082
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Case studies. In this section, we conducted a case study based on the above experiments to further verify 
the prediction performance of ENCFLDA. During the simulation, for each given disease, the potentially rel-
evant lncRNA predicted by ENCFLDA will be classified according to their expected values, and the scores are 
arranged in descending order. In this section, we selected two cases of breast cancer and lung cancer as treat-
ment targets. It is verified by references, as shown in Table 2. In recent years, lung cancer has been the leading 
cause of cancer death worldwide. Histopathologically, lung cancer is mainly divided into non-small cell lung 
cancer (NSCLC) and small cell lung cancer (SCLC)34. Recent studies suggest that lncRNAs play an essential role 
in the occurrence and development of lung  cancer35. Therefore, we will take lung cancer as an example and use 
the ENCFLDA computational model to predict potential lung cancer-related lncRNAs.The results are shown 
in Table 1. It can be seen that 9 of the top 15 potential lung cancer-related lncRNAs predicted by our model 
have been confirmed by authoritative biological experiments. Among them, MALAT1 is highly correlated with 
lung cancer  metastasis36,37, which will promote the movement of lung cancer cells by regulating the expression 
of movement-related  genes38. It can be an essential biomarker for the development of lung cancer  metastasis39.
OIP5-AS1 is strongly expressed in lung cancer tissues and is related to tumor size and tumor growth  rate40. As 
for breast cancer, according to the relevant literature, it is very common in  women41,42. Studies have shown that 
lncRNAs play an important role in the occurrence and development of breast  cancer43,44. Therefore, predicting 
related lncRNAs as breast cancer risk genes, diagnostic markers, and prognostic markers is very important for 
the treatment and diagnosis of breast cancer. The downregulation of H19 will significantly reduce colony forma-
tion and non-anchored growth of breast cancer and lung cancer cells. Next, we took the MALAT1 gene as an 
example for further analysis to verify whether it might be associated with lung cancer. In our study, we divided 
all lung cancer patient samples into high and low expression groups. This phenomenon was observed by survival 
analysis. That, the survival time of lung cancer patients in the MALAT1 gene high expression group was rela-
tively short, as shown in Fig. 4. Furthermore, further results showed that the expression of these genes in cancer 
samples was significantly higher than that in normal samples, as shown in Fig. 4. Based on the above results, 
we finally concluded that the expression of these genes was significantly positively correlated with the survival 
time and clinicopathological characteristics of lung cancer patients. In addition, GSEA enrichment analysis also 
showed that the group with high MALAT1 gene expression was mainly enriched in the process of small cell lung 
cancer, as shown in Fig. 5.

Discussions
In recent years, with the deepening of research, more and more pieces of evidence have shown that lncRNAs play 
an essential role in tumor proliferation, apoptosis, invasion, and prognosis. It requires a lot of human resources 
and material resources. Therefore, integrating the potential data associations of biology and using existing algo-
rithms to develop accurate and efficient computational models to predict potential lncRNA-disease associations 
is the development trend of such research. To predict potential lncRNA-disease associations, we propose a novel 
computational model, termed ENCFLDA. The first step in the model was to integrate existing miRNA-disease 
associations, lncRNA-disease associations, and lncRNA-miRNA associations into a new lncRNA-disease associa-
tion matrix. Then, based on the newly constructed association matrix, the lncRNA-disease association matrix 
was obtained and the weighted network was updated through cosine similarity, and the KNN algorithm. Finally, 
we can use our obtained association matrix to build our model ENCFLDA to predict potential associations 
between lncRNAs and diseases. In addition, case studies of breast and lung cancer have also demonstrated that 
ENCFLDA models have high accuracy in predicting underlying lncRNA disease associations. In recent years, 
many lncRNA-disease prediction models have emerged. Most of these models directly exploit the association 
information between lncRNAs and diseases to predict unknown lncRNA-disease associations. But this approach 

Table 2.  Candidate lncRNAs and TWO rank in the top 15 of the TWO cases and the related literature.

Disease lncRNA Evidence(PMID) Rank

Lung Neoplasms XIST 29130102,31632059 1

Lung Neoplasms MALAT1 23243023 3

Lung Neoplasms KCNQ1OT1 30471108 4

Lung Neoplasms OIP5-AS1 32774481 6

Lung Neoplasms NEAT1 28615056 7

Lung Neoplasms HCG18 32559619 8

Lung Neoplasms DCP1A 32034313 9

Lung Neoplasms SNHG16 31071307 11

Lung Neoplasms FGD5-AS1 31919528 13

Breast Neoplasms OIP5-AS1 32945479 3

Breast Neoplasms SNHG16 32945479 5

Breast Neoplasms SCAMP1 29497041 6

Breast Neoplasms FGD5-AS1 33880593 13

Breast Neoplasms LINC00657 32996041 14

Breast Neoplasms TUG1 28950664 15
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has drawbacks. When we now use lncRNA-disease associations, the matrix is too sparse, resulting in a lack of 
confidence in the computational results and model instability. Therefore, we had to add miRNA nodes to re-
establish some significant associations that were not present in the lncRNA disease dataset and to incorporate 
elastic network algorithms. This way, the problem of missing lncRNA-disease association information can be 
addressed.

Conclusion
In this paper, we introduce a matrix decomposition combined with an elastic network and collaborative filtering 
method (ENCFLDA) to predict the association between lncRNA and disease. The model has a good effect on 
sparse models with few weights. It can not only delete invalid features but also has good stability. Compared with 
other methods, ENCFLDA performs better in AUC in the loocv scheme. Other important reference indicators 
also show the perfect performance of ENCFLDA. To further verify the accuracy of ENCFLDA, we predicted 
two kinds of diseases (lung cancer and breast cancer) according to the prediction results of ENCFLDA. Taking 
the MALAT1 as an example, GSEA enrichment analysis, difference analysis, and other means are used to verify 
the accuracy of the prediction model. The excellent performance of the ENCFLDA method is mainly due to the 
following reasons. Firstly, the ENCFLDA model has a good effect on sparse models with few weights. It can not 

Figure 4.  Differentiated expression and Survival period of genes in the normal and tumor sample.

Figure 5.  Enriched gene sets in small cell lung cancer, the KEGG gene sets, by samples of high gene expression.
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only delete invalid features but also has good stability. Secondly, the single similarity between lncRNA and disease 
is calculated, which provides us with rich biological information. Finally, through the optimization model of 
collaborative filtering, the final lncRNA-disease related prediction matrix is obtained, and the prediction results 
of the matrix are well optimized.

Methods
Dataset preprocessing. First, we downloaded the known lncRNA-disease association datasets from 
MNDRv2.0  database45 (2017 Edition),which contains 1089 lncRNAs and 373 diseases.The available information 
includes 4073 miRNA–disease associations extracted from HMDD database 46(2018 Edition) and 9086 lncRNA–
miRNA interactions obtained from Starbase v2.0  database47 (2015 Edition). Second, we downloaded lung cancer 
gene transcriptome data and clinical data through the TCGA database. The above datasets are all from authori-
tative public databases. The obtained data were preprocessed, and finally the miRNA-disease adjacency matrix 
AMD and the lncRNA-miRNA adjacency matrix ALM were constructed. Among them, when the two data have a 
known relationship, we assign a value of 1, and when the two data have no known relationship, we assign a value 
of 0. The experimental steps are shown in Fig. 6.

Construct adjacency matrix of lncRNA‑disease association matrix. Using the processed lncRNA-
miRNA adjacency matrix ALM and miRNA-disease association adjacency matrix AMD to calculate the lncRNA-
disease association matrix, the method is as follows:

Figure 6.  Flow Chart of ENCFLDA Applied to lncRNA-Disease Association Prediction.
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Cosine similarity for diseases. The cosine similarity for diseases between lncRNA-diseases adjacency 
matrix was calculated:

Cosine similarity for lncRNA. The cosine similarity for lncRNA between lncRNA-diseases adjacency 
matrix was calculated:

Calculation of KNN algorithm based on cosine similarity. Considering that the known lncRNA dis-
ease association is very sparse, this may lead to the existence of some lncRNAs unrelated to any disease, or some 
diseases unrelated to any lncRNA.Consequently, some potential associations between predicted lncRNA and 
disease will be ineffective.Therefore, we will use the weighted KNN to make the matrix less sparse. First, the i-th 
row of matrix ALD is expressed as ALD(li , :) and the j-th column of matrix ALD is expressed as ALD

(

:, dj
)

 . Accord-
ing to the above formula (3), we can obtain the cosine similarity of lncRNA, so that we can update the formula:

According to the above formula (4), we can obtain the cosine similarity of the disease,and then, we can 
update the formula:

Establishment of ENCFLDA prediction model. So far, matrix decomposition technology has been 
widely used in the field of recommendation systems. It can not only reduce the computational complexity through 
matrix decomposition, but also have good performance in solving the problem of matrix scarcity. The purpose of 
matrix decomposition combined with elastic network is to find two low-level potential characteristic matrices, 
and their products are used to fit the original matrix. Therefore, for the weight matrix ALD ∈ Rnl×nd constructed 
above, it is obvious that we can decompose ALD into two different matrices U ∈ Rnl×k and V ∈ Rnd×k . After that, 
the disease-related lncRNA prediction problem can be further expressed by the following formulas (8) and (9):

Elastic network is a linear regression model trained with L1 and L2 norms as a priori regular terms. Elastic 
network is beneficial when many features are interrelated. Lasso is likely to consider only one of these features 
randomly, while elastic networks prefer to choose two.In practice, one advantage of the trade-off between lasso 
and ridge is that it allows the stability of ridge to be inherited during the cycle. The elastic network contains two 
parameters, namely mixed parameter ratio α and penalty parameter � . The elastic network adjusts the convex 
combination of L1 and L2 through mixed parameter ratio α , and selects the variables with the value of penalty 
parameter � , so as to select the variables and maintain the stability of the model.The penalty function can be 
expressed as: �

p
∑

|wt |
q . When q has different values, it represents different penalty terms, and q = 1 represents 

L1 norm, that is, the constraint domain of lasso regression;q = 2 represents L2 norm, that is, the constraint 
domain of ridge regression. It can be seen from the figure below that when the values of q are different, the range 
of constraint domain and the strength of constraint are also different. The scope of its constraint domain can 
be observed through Fig. 7.Obviously, the above formula (8) and formula (9) constitute a convex optimization 
problem, which can be easily solved by some existing optimization algorithms such as gradient descent method.
After we join the elastic network, the loss function will be updated and expressed by formula (10).For conveni-
ence, we let ALD

(

i, j
)

= ψij:

(3)ALD = ALM ∗ AMD
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Let � = �1 + �2 and α = �

�1+�2
 According to the above description, we can get the following formula (11):

From the formula (9), the penalty function of elastic network is:

The value range of mixed parameter ratio α of elastic network is 0 to 1. When α is 0, the elastic network 
regression becomes ridge regression, and when α is 1, the elastic network becomes lasso regression. In this 
experiment = 0.3.According to the properties of elastic network, the formula is rewritten into Lagrange function 
form, which can be rewritten into the following form (13):

Then, according to the random gradient descent method, the parameters need to advance along the fastest 
descent direction. Therefore, the following recurrence formula (14) can be obtained:

Similarly, we can get:

Finally, we use the lncRNA-based collaborative filtering algorithm to calculate the score matrix, and the 
score between the lncRNA-disease predicted by ENCFLDA will depend on the common neighbors between 
the lncRNA and the disease. After previous processing, the association between lncRNA-disease is not sparse. 
Therefore, the similarity matrix Sim

(

i, j
)

 can be calculated as follows:

Then, the obtained similarity matrix can be used to calculate the final score matrix of ENCFLDA, and the 
formula is as follows:

ENCFLDA
(

i, j
)

 is the final association score between lncRNA i and disease j.
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GitHub: https:// github. com/ areja y1998/ ENCFL DA.
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