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Development of deep learning 
chest X‑ray model for cardiac dose 
prediction in left‑sided breast 
cancer radiotherapy
Yutaro Koide*, Takahiro Aoyama, Hidetoshi Shimizu, Tomoki Kitagawa, Risei Miyauchi, 
Hiroyuki Tachibana & Takeshi Kodaira

Deep inspiration breath‑hold (DIBH) is widely used to reduce the cardiac dose in left‑sided breast 
cancer radiotherapy. This study aimed to develop a deep learning chest X‑ray model for cardiac dose 
prediction to select patients with a potentially high risk of cardiac irradiation and need for DIBH 
radiotherapy. We used 103 pairs of anteroposterior and lateral chest X‑ray data of left‑sided breast 
cancer patients (training cohort: n = 59, validation cohort: n = 19, test cohort: n = 25). All patients 
underwent breast‑conserving surgery followed by DIBH radiotherapy: the treatment plan consisted 
of three‑dimensional, two opposing tangential radiation fields. The prescription dose of the planning 
target volume was 42.56 Gy in 16 fractions. A convolutional neural network‑based regression model 
was developed to predict the mean heart dose (∆MHD) reduction between free‑breathing  (MHDFB) 
and DIBH. The model performance is evaluated as a binary classifier by setting the cutoff value of 
∆MHD > 1 Gy. The patient characteristics were as follows: the median (IQR) age was 52 (47–61) years, 
 MHDFB was 1.75 (1.14–2.47) Gy, and ∆MHD was 1.00 (0.52–1.64) Gy. The classification performance of 
the developed model showed a sensitivity of 85.7%, specificity of 90.9%, a positive predictive value of 
92.3%, a negative predictive value of 83.3%, and a diagnostic accuracy of 88.0%. The AUC value of the 
ROC curve was 0.864. The proposed model could predict ∆MHD in breast radiotherapy, suggesting the 
potential of a classifier in which patients are more desirable for DIBH.

Abbreviations
DIBH  Deep inspiration breath-hold
MHD  Mean heart dose
FB  Free-breathing
RT  Radiotherapy
BMI  Body mass index
MHDFB  MHD in FB
MHDDIBH  MHD in DIBH
ML  Machine learning
CTV  Clinical target volume
PTV  Planning target volume
MLC  Multileaf collimator
CNN  Convolutional neural network
ReLU  Rectified linear units
R2  Coefficient of determination
RMSE  Root mean squared error
MAE  Mean absolute error

Late cardiac toxicity after breast irradiation is a major adverse event in left-sided breast radiotherapy (RT)1–6. 
Darby et al. showed the relationship between the mean heart dose (MHD) and the frequency of major coronary 
 events5. Deep inspiration breath-hold (DIBH) effectively reduces MHD compared to free-breathing (FB)  RT7–12. 
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Rochet et al. reported in their study that the reduction of MHD was > 0.9 Gy in 75% of patients and < 0.9 Gy in 
25%13. Past studies have attempted to predict MHD using some parameters acquired in the simulation  CT14–27. 
Most studies used such CT-based parameters, but some used non-CT parameters (e.g., BMI, pulmonary function 
test)14,28–34. Although non-CT parameters may have advantages over CT parameters in terms of earlier availability 
and reduced patient radiation exposure, no reports have high prediction accuracy using non-CT parameters. 
We previously investigated non-radiological parameters for preoperative prediction of MHD. Vital capacity 
was a significant predictor of MHD in DIBH  (MHDDIBH), but it still did not work as an accurate  prediction34.

The machine learning (ML) technique has been widely used in the medical  field35,36. Many studies have used 
the ML approach with radiological images, and recently chest X-rays have been actively studied as a diagnostic 
ML tool in Covid-1937,38. Chest X-rays are the most frequently taken and easily available radiological images. 
Therefore, we wondered if the ML chest X-ray model could predict the cardiac dose of the breast RT, it might be 
easier and earlier to select which patients have significant benefit from DIBH.

The purpose of this study is to predict MHD in FB  (MHDFB) and MHD reduction between DIBH and FB 
(∆MHD) using a machine learning method with preoperative chest X-rays.

Methods
Patient selection. This study is a prediction model development study approved by our institutional review 
board. All participants provided written informed consent and all methods were performed in accordance with 
the relevant guidelines and regulations. The eligibility criteria are as follows: histologically proven diagnosis of 
invasive ductal carcinoma or carcinoma in situ of the left breast, patients who underwent DIBH-RT after breast-
conserving surgery from June 2018 to October 2021. Patients who did not receive preoperative chest X-rays 
were excluded. All data were retrospectively collected randomly split into two cohorts (training cohort: n = 78, 
test cohort: n = 25).

Planning CT simulation. The DIBH-RT method of this study has implemented a technique of Bart-
lett et al.10. Described as our previous study, we trained patients to inhale, exhale, and hold deep breaths. The 
breath-hold training time was initially 5–10 s and increased to 20  s26,34. The simulation and training took about 
20–30 min per patient. After confirming the respiratory motion, all patients underwent two planning CT simu-
lations (FB and DIBH) in the supine position on a wing board with the arms stretched overhead. We used the 
Aquilion LB CT system (Canon Medical Systems, Tochigi, Japan) with a slice thickness of 3 mm.

Treatment planning. We perform the contouring and planning on FB- and DIBH-CT using RayStation 
version 9 (RaySearch Laboratories AB, Stockholm, Sweden). The calculation algorithm is Collapsed Cone ver-
sion 5.1. The planning target volume (PTV), including CTV with a 5-mm margin, was prescribed 42.56 Gy in 
16 fractions with the Varian TrueBeam system (Varian Medical Systems, Palo Alto, USA)26,34. The clinical target 
volume (CTV) and the heart were delineated following the consensus guideline and atlas validation  study39,40. 
The CTV was cropped withing 5 mm of the skin contour. Treatment plans consist of three-dimensional confor-
mal radiotherapy using two opposing tangential beams and a field-in-field technique.

Development of the chest X‑ray model. Figure 1 shows a pipeline outlining the modeling procedure 
and evaluation.

As the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD) guideline described, the data is split into the following groups; Model development group (Training: 
N = 59, Validation: N = 19), and Test group (Test: N = 25)41. Although the optimal ratio for the number of patients 
in each group has not been established, 60/20/20 and 70/15/15 are frequently used empirically; The ratio of each 
group in this study was determined based on several previous  studies27,42. A regression model was trained with 
the training group, and the predicted MHD was validated against the validation group. Input values and size 
were searched from the parameters in previous studies and finally determined to achieve the best prediction 
results in the validation  group26,27,30,34,42. Table 1 shows the convolutional neural network (CNN) architecture 
with the determined parameters.

The architecture has three inputs: an anteroposterior chest X-ray image (1, 64, 64) as input 1, a lateral chest 
X-ray image (1, 64, 64) as input 2, and a patient’s age (y), height (cm), and weight (kg) as input 3. First, we 
multiply the input1 and two tensors at the element level (i.e., multiplying each pixel of images). Then, convolu-
tion is performed twice for the multiplied data (1, 64, 64), followed by Rectified Linear Units (ReLU) and batch 
normalization. The resulting tensors were then fully connected and concatenated with input 3. Then performed 
another full-connection process, The predicted MHD was produced as an absolute value of the final output. 
Finally, predicted MHD is trained using the mean squared error as the loss function with 100 epochs.

Model evaluation and statistical analyses. The primary prediction outcome is ∆MHD. The model is 
trained to achieve a high prediction accuracy of ∆MHD in the training cohort. The prediction performance of 
the developed model is evaluated in an independent test cohort. As our previous  study26, we use the model as a 
binary classifier to determine if a patient would potentially receive ∆MHD > 1 Gy or not. The model performance 
is also evaluated as a regression model by calculating the median and interquartile range of absolute residuals, 
the coefficient of determination  (R2), root mean squared error (RMSE), and mean absolute error (MAE). The 
secondary outcome is defined as the prediction accuracy of  MHDFB. The prediction performance is evaluated 
in the same way as the primary outcome, but the cutoff value of classification is set as  MHDFB > 2 Gy following 
some previous  reports6,43,44.
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Statistical analysis was performed using R version 3.6.1 (The R Foundation for Statistical Computing, Vienna, 
Austria). The required sample size of test data is based on ∆MHD: we set the cutoff value of < 1 Gy as the clas-
sification point. According to our training data, 50% of patients had > 1 Gy. We estimated at least ten events (i.e., 
20 patients) are required. P < 0.05 (two-sided) was considered statistically significant.

Ethics approval and consent to participate. The Institutional Review Board (IRB) of Aichi Cancer 
Center Hospital approved our study (approve number: 2019-1-211).

Results
Dataset. One hundred and three patients were included in this study. Table  2 shows the patient charac-
teristics of the training and test cohort. Each characteristic difference was not statistically significant between 
the cohorts. In the test cohort, median ∆MHD and  MHDFB were 1.24 (range 0.080–2.71) Gy and 1.97 (range 
0.52–3.80) Gy, respectively. Fourteen patients (56%) had ∆MHD ≥ 1 Gy.

Figure 1.  A pipeline of modeling procedure and model evaluation. T training, V validation, CNN convolutional 
neural network, MHD mean heart dose.

Table 1.  The detailed structure of CNN used in this study. CNN convolutional neural network, Mul multiply, 
Conv convolution, Batch_norm batch normalization, ReLU rectified linear unit.

Layer Output Shape Connected to

Input1: X1
Input2:X2

1, 64, 64
1, 64, 64

Mul ( X2× X1) 1, 64, 64 Input1, 2

Conv_1
Batch_norm_1
ReLU_1

16, 30, 30 Mul ( X2× X1)

Conv_2
Batch_norm_2
ReLU_2

16, 30, 30 ReLU_1

Dropout 16, 30, 30 ReLU_2

Full_connection_1
Batch_norm_3 100 Dropout

Full_connection_2 100 Batch_norm_3

Concatenate 103 Input3: X3
Full_connection_2

Full_connection_3
ReLU_3 100 Concatenate

Full_connection_4 1 ReLU_3
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Model performance: MHD prediction results. As a binary classifier of ∆MHD > 1  Gy, the model 
showed a high classification performance: a sensitivity of 85.7%, a specificity of 90.9%, a positive predictive 
value of 92.3%, a negative predictive value of 83.3%, and diagnostic accuracy of 88.0%. Figure 2 shows the ROC 
curve, and the AUC value is 0.864 (95% CI 0.701–1.00). The point at 1.02 Gy was the best classification point in 
which the sum values of the sensitivity and specificity were maximized.

The developed model shows that the median predicted ∆MHD was 1.02 (range 0.06–2.43, IQR 0.63–2.11) 
Gy. Compared to the observed ∆MHD, the absolute prediction difference was 0.39 (range 0.004–1.55, IQR: 
0.22–0.72) Gy. The Pearson correlation coefficient between observed and predicted ∆MHD was 0.55 (P = 0.028). 
 R2, RMSE, and MAE were 0.30, 0.73, 0.56, respectively.

Although the accuracy was not as ΔMHD, MHDFB could also be predicted from the model: the median abso-
lute error was 0.72 Gy (range 0.058–2.73 Gy, IQR 0.43–1.42 Gy), the correlation coefficient was 0.46 (P = 0.02), 
and the sensitivity and specificity were 0.58 and 0.77, respectively.

Discussion
Recent studies have attempted to predict MHD to select patients with potential cardiac toxicity risks and reduce 
MHD by performing  DIBH14–26. In most cases, prediction models used the maximum heart distance or cardiac 
contact distance in the CT simulations as  predictors14–20,24. The coronary artery calcium scores (CAC) in CT 
improved the Framingham risk score prediction for coronary artery disease (CAD)45,46. According to Mast et al., 
DIBH increases LAD CAC less than FB, potentially preventing radiation-induced coronary artery  disease47. Our 
previous study demonstrated that a synthetic DIBH-CT model with a deep learning approach achieved more 
accurate ΔMHD prediction than other  models26. However, such models in past studies have a significant limita-
tion: the prediction is only performed after simulation CT.

We next investigated non-radiological parameters for preoperative prediction of  MHD34. The result showed 
that Vital capacity was the only significant predictor of  MHDDIBH, but it could not work as a predictor of ΔMHD 
nor  MHDFB as other parameters. To the best of our knowledge, no other studies have found non-CT parameters 
promising as predictors of ΔMHD nor  MHDFB. Therefore, this study attempted to predict ΔMHD nor  MHDFB 
using a deep learning technique based on preoperative chest X-rays. The prediction results showed a high 

Table 2.  Patient characteristics. BCS breast-conserving surgery, SLNB sentinel lymph node biopsy, ALND 
axillary lymph node dissection, IQR interquartile range.

Characteristic Training cohort (N = 78) Test cohort (N = 25)

Age: median (IQR), years 52 (47–58) 58 (46–63)

Height: median (IQR), m 1.57 (1.54–1.60) 1.55 (1.52–1.61)

Weight: median (IQR), kg 54.0 (47.5–62.0) 51.3 (46.1–58.3)

The interval between chest X-ray and radiotherapy, median (IQR), days 82 (66–102) 104 (77–133)

Tumor site

Inner-upper (A) 16 4

Inner-lower (B) 6 3

Outer-upper (C) 43 15

Outer-lower (D) 13 3

Center (E) 2 0

TNM

Tis 12 2

T1N0 49 17

T2N0 10 3

T1–2N1 7 2

Other 0 1

Molecular subtypes

Luminal (HR-positive and HER2 negative) 56 15

HER2 (HR negative and HER2 positive) 8 3

Luminal HER2 (HR and HER2 positive) 6 3

Triple-negative (HR and HER2 negative) 6 3

Unknown or other 2 1

Neoadjuvant chemotherapy, Y/N 13/65 6/19

Surgery

BCS alone 2 2

BCS + SLNB (No ALND) 70 20

BCS + ALND 4 1

Other 2 2

Adjuvant chemotherapy, Y/N 7/71 3/22
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performance as a binary classifier in the cutoff of ΔMHD > 1 Gy. Our model has also worked for  MHDFB predic-
tion in the same method. The strong points of this model are the early timing of the prediction and the required 
radiological images required only chest X-rays, which can be acquired easier and earlier than simulation CT 
in many patients. Ninety-two percent of our patients underwent preoperative chest X-rays, with a median of 
90 days before radiotherapy.

In the present study,  MHDFB and ΔMHD were used as predictive outcomes, following previous  studies14,26,28–34. 
The primary outcome was defined as ΔMHD, used in multiple  studies14,26,30–33. We set the cutoff for classification 
as ΔMHD > 1 Gy based on the report of increased cardiotoxicity per 1 Gy by Darby et al.: a linear relationship 
between MHD and the frequency of major coronary events that increases at a rate of 7.4% per Gy, but no signifi-
cant difference was found for MHD < 2  Gy5. Otherwise, the Early Breast Cancer Trialists’ Collaborative Group 
report and the UK consensus statements for postoperative breast radiotherapy recommend the MHD < 2 Gy, so 
it may be possible to set the classification criteria with  MHDFB as the primary predictive  outcome6,43,44.

There are several limitations of this study. First, our study used a single institutional dataset, consisting mainly 
of those who underwent BCS followed by DIBH-RT. Therefore, whether the study results can be extrapolated 
to patients undergoing chest wall or lymph node irradiation is uncertain. Second, our approach focused on the 
chest X-ray parameters and may omit the clinical aspects of DIBH training during simulation: even if the pre-
diction recommends the cardiac sparing RT, our model does not predict whether the patient can tolerate DIBH. 
Finally, the CNN architecture used in this study requires both anteroposterior and lateral chest X-ray images. 
Future studies are needed to build a model using only anteroposterior images and perform external validation 
at multicenter for model versatility.

Conclusion
In conclusion, our deep learning chest X-ray model can predict MHD and play an essential role in classifying 
patients’ potentially desirable DIBH. However, further study is needed to validate our prediction model externally.

Data availability
Research data are stored in an institutional repository and anonymized numerical data will be shared upon 
request to the corresponding author. Research image data are not available at this time.
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