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Examining the COVID‑19 case 
growth rate due to visitor vs. local 
mobility in the United States using 
machine learning
Satya Katragadda, Ravi Teja Bhupatiraju, Vijay Raghavan, Ziad Ashkar & 
Raju Gottumukkala*

Travel patterns and mobility affect the spread of infectious diseases like COVID‑19. However, we 
do not know to what extent local vs. visitor mobility affects the growth in the number of cases. This 
study evaluates the impact of state‑level local vs. visitor mobility in understanding the growth with 
respect to the number of cases for COVID spread in the United States between March 1, 2020, and 
December 31, 2020. Two metrics, namely local and visitor transmission risk, were extracted from 
mobility data to capture the transmission potential of COVID‑19 through mobility. A combination of 
the three factors: the current number of cases, local transmission risk, and the visitor transmission 
risk, are used to model the future number of cases using various machine learning models. The factors 
that contribute to better forecast performance are the ones that impact the number of cases. The 
statistical significance of the forecasts is also evaluated using the Diebold–Mariano test. Finally, the 
performance of models is compared for three waves across all 50 states. The results show that visitor 
mobility significantly impacts the case growth by improving the prediction accuracy by 33.78%. We 
also observe that the impact of visitor mobility is more pronounced during the first peak, i.e., March–
June 2020.

COVID-19 has spread rapidly around the world, nearing 389 million confirmed cases and more than 5.71 million 
deaths reported globally as of February 04, 2022 (John Hopkins University, 2020).

Many countries have tackled the spread of the pandemic through aggressive vaccination efforts, and other 
containment measures have limited the spread of the pandemic. However, it is important to understand the fac-
tors contributing to the spread of the virus. One crucial question that is still not answered is the degree of risk 
contribution of external visitors and if that is different than people traveling locally.

Earlier studies have examined travel patterns of populations to predict the spread of COVID-191–7. Research-
ers used anonymized mobile phone data to track the commute and mobility patterns of the  public8–10. Badr et al. 
found a strong correlation between the case growth rate of COVID-19 and the change in mobility patterns during 
the early phase of the pandemic, i.e., January 24th, 2020, to April 17, 2020, in the top 20 counties in the United 
States with the highest number of  cases11. Other researchers also studied the relationship between the number of 
cases and the mobility patterns, including the stay-at-home  orders12–20. Noland evaluated the impact of internal 
mobility on the case growth in a local  region21. A more recent study looked at the impact of lockdowns on the 
mobility of the local  population22.

Visitor mobility, specifically, has also been studied in different contexts. For instance, prior studies analyzed 
visitor traffic to various destinations to estimate potential COVID-19 risk  exposure23–25. However, no studies 
examined the difference between travel patterns of local traffic and inbound traffic. Linka et al. used a global 
network mobility model with a local epidemiology model to simulate and predict the COVID-19 outbreak across 
 Europe19. The authors show that mobility networks of air travel can predict the global diffusion patterns of a 
pandemic and that unconstrained mobility accelerated the spread of COVID-19 in Europe, using an incubation 
period of 2–6 days and an infectious period of 3–18 days. Other studies from Wuhan used real-time mobility 
data combined with the detailed travel history to explain the spread of COVID across  China26. The analysis 
showed that the outbound traffic from Wuhan could explain the number of COVID-19 cases in China. Their 
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analysis also showed that travel restrictions for inbound traffic and the local mitigation strategies reduced the 
transmission of the virus.

In a study evaluating the effect of mobility restriction in limiting COVID-19 spread, using zip code data for 
Atlanta, Boston, Chicago, New York (NYC), and Philadelphia, the authors estimated that total COVID-19 cases 
per capita decreased on average by approximately 20% for every 10% fall in mobility between February and 
May  202017. In another study, the correlation between the COVID-19 growth rate and travel distance decay rate 
and dwell time at home change rate was − 0.586 (95% CI − 0.742 to − 0.370) and 0.526 (95% CI 0.293–0.700), 
respectively. Increases in state-specific doubling time of total cases ranged from 6.86 to 30.29 days after social 
distancing orders were put in  place4. Another analysis across counties in the US showed that the adoption of 
government-imposed social distancing measures reduced the daily growth rate of confirmed COVID-19 cases by 
5.4 percentage points after 1–5 days, 6.8 percentage points after 6–10 days, 8.2 percentage points after 11–15 days, 
and 9.1 percentage points after 16–20  days13. IA recent European study showed that internal mobility is more 
important than mobility across provinces to control COVID-19, and the typical lagged positive effect of reduced 
human mobility in reducing excess deaths is around 14–20 days. Similarly, Linka et al. evaluated the impact of 
global mobility using air travel and local mobility across various countries in the European Union. Their results 
show a maximal correlation between driving mobility and disease dynamics with a time lag of 14.6 ± 5.6 days.

Similarly, in the United States, various states, counties, and cities imposed restrictions on travel locally and 
from people traveling outside. For example, early in the pandemic, non-essential businesses were closed to curb 
the spread of the virus. Later in the pandemic, restrictions were imposed for visitors traveling from high-risk 
regions. For example, the United States restricted travel from various countries with a high number of COVID 
cases. Similarly, states like Illinois and New York mandated vaccination proofs for travelers from states with 
an increased number of cases during the Delta variant. A question that has not been explored is whether the 
impact of visitor mobility is different than local mobility and which of the either contributes more to the spread 
of the virus.

In this study, we examine the impact on the daily number of COVID cases resulting from local mobility and 
visitor mobility for all the states in the United States. In the United States, most public health decisions are made 
at the State level. In practice, the impact of mobility across state borders is limited (i.e., the number of people 
crossing state boundaries) compared to mobility between counties, especially in counties in the same metro 
region. Also, given the number of counties in the United States and their variability in size, population, and 
socioeconomic factors, it is challenging to arrive at generalizable conclusions. Therefore, we consider the state-
level granularity for this analysis. We consider two different variables to capture the infection propagation risk 
from infected people traveling and transmitting the virus within and across state boundaries, namely the local 
transmission risk (due to local mobility) and the visitor transmission risk (due to visitor mobility). We evaluate 
the impact of these variables to predict the case growth using various machine learning models. Assuming all 
the other variables like social distancing measure, mask mandates, and the local number of cases are similar, we 
evaluate which combination of the cases, local, and visitor mobility are more accurate at predicting the future 
number of cases. The more accurate the models are, the higher the impact of the variables included in the model 
on the target variable (the case growth)27. This study analyzes the mobility data both within and among all 50 
states and the number of new cases per day in the United States.

Methods
Data collection. Infection data. The confirmed cases data was retrieved from the Corona Data Scraper 
open-source  project28, which provides county-level data on the number of new cases per day. We aggregated the 
number of daily new cases to a state-level between March 1, 2020, and December 31, 2020.

Mobility data. State-level mobility datasets and metrics were provided by  SafeGraph29. SafeGraph provides 
aggregated trip information obtained from anonymized mobile device locations at a census tract level. The intra-
state (or local) trips represent the trips taken by individuals starting and ending within the same state (i.e., state 
boundary). The inter-state (or visitor) trips are those where the origin and destination are in different states (i.e., 
origin in one state and destination in a different state). This data was collected for all the trips made between 
March 1, 2020, and December 31, 2020.

Approach. To measure the impact of mobility (both local and visitor), we model the number of cases at a 
particular location based on the historical number of cases and the transmission of infection based on mobil-
ity. The risk of mobility associated with COVID transmission is calculated as a product of traffic flow and the 
number of cases per capita at  origin30. Therefore, the local and visitor transmission risk reflects the number of 
infected individuals traveling from origin to destination, assuming uniform transmission. It has been established 
in the literature that a higher accuracy when a new feature is introduced into a machine learning model indicates 
that the particular feature is an important predictor for the target  variable27. For a state i, we introduce three 
features, the current number of cases ( Ci ), local transmission risk ( LTi ), and visitor transmission risk ( VTi ), to 
predict the future number of cases in a particular state. Higher forecasting accuracy when using visitor transmis-
sion risk means that it impacts the number of future cases. The prediction model is built using both linear and 
non-linear regression-based machine learning approaches and a combination of the three features noted earlier. 
More information about the features and the machine learning methods is provided below:

Number of cases. The aggregated new cases from the previous 14 days are used to forecast the number of cases 
for the next 14 days; earlier studies have shown that the virus incubation period is about 14  days31.
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Local transmission risk. The local transmission risk represents the transmission potential of the virus based on 
the recent number of cases per capita (which represents local case incidence) and the mobility both at the local 
level. The local transmission coefficient LT for a spatial region i is calculated using the formula:

where Mi,i represents the number of trips where the origin and destination of the trips fall within the region i. 
The cases per 100,000 people at location i, which we denote as Ci.

Visitor transmission risk. The visitor transmission risk represents the transmission potential of the virus based 
on the recent number of cases per capita at the visitor origin. The visitor transmission risk VT at a location i can 
be calculated using:

where Mj,i represents the number of trips that originate at j and end at location i and j  = i . The cases per capita 
at location j are represented by Cj . These three measures are illustrated in Fig. 1.

(1)LTi = Mi,i × Ci

(2)VTi =

n
∑

j=0

Mj,i × Cj

Figure 1.  The timeseries of the cases per capita, local transmission risk, and visitor transmission risk for various 
states in the United States.
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Relationship between number of cases and transmission risk. The relationship between the number of cases and 
mobility is formulated using the below regression equations, where number of cases is the dependent variable, 
and the mobility related risks are the independent variables.

where Ci−14 , LTi−14 , VTi−14 refer to the inputs (or independent variables) to the model, the current number of 
cases, local transmission risk, and the visitor transmission risk lagged by 14 days, respectively. The dependent or 
the predicted variable is the current number of cases. The three parameters θCi−14

, θLTi−14
, θVTi−14

 are parameters 
to be estimated. The function h is deduced using a machine learning approach, and the impact of historical cases 
and no transmission risk, historical cases and local transmission risk, historical cases and visitor transmission 
risk, and finally, historical cases, local and visitor transmission risk, are used to understand the impact on the 
future number of cases. Comparing the accuracy of different models and evaluating the statistical significance 
provides insights into which variables have a higher impact on the case growth.

Machine learning methods. Earlier work on studying mobility and its impact on the number of COVID 
cases identifies the relationship as non-linear18. Machine learning models can capture both linear and non-linear 
relationships between different variables. The abundance of the COVID data-case data and mobility patterns, 
enables us to identify complex relationship patterns. This study used popular machine learning methods: Linear 
Regression, Support Vector Regression, K-Nearest Neighbor Regression, Multilayer Perceptron, Random For-
est Regression, and eXtreme Gradient Boost (XGBoost) Regression to forecast the number of cases. The linear 
regression model is linear, the other models are non-linear, where the Support Vector Regression is a support 
vector machine based approach, K-Nearest Neighbor is a similarity based approach, Multilayer perceptron is 
a neural network based approach, and finally, the random forest and XGBoost are decision tree based. These 
models consider the historical number of cases, local transmission risk, and visitor transmission risk when fore-
casting the future number of cases.

Evaluation criteria. The predictive performance of the proposed approach for each of the stations is com-
pared using the following two metrics: mean absolute percentage error (MAPE) measures the average percent of 
absolute deviation between actual and forecasted values.

Root mean squared error (RMSE) captures the square root of the average of squares of the difference between 
actual and forecasted values.

where N is the number of test samples, A is the actual value, and P is its predicted value. For each technique, we 
evaluate the accuracy of prediction with and without the visitor transmission risk.

Diebold–Mariano test (DM-test) is used to evaluate the significance of the predictions of the two  models32. 
The models use the forecasted number of cases generated with and without using the visitor transmission for 
each of the three machine learning approaches. The null hypothesis of the DM-test is that the two forecasts 
have similar forecast accuracy. The alternative or rejection of the null hypothesis is that the two forecasts have 
significantly different forecasting accuracy, i.e., the forecasts are not similar using the two models.

The results for each of the models are evaluated using 10-fold cross-validation at a state level to ensure that 
the data is not overfitting. The data for each state is extracted and split into 10 equal subsets. The data is trained 
using the 9 subsets and evaluated on the 10 for each of the subsets. The reported results are the average MAPE 
and RMSE for all the 10 folds.

Results
Tables 1 and 2 compare the machine learning forecasts with and without the inclusion of visitor mobility and 
local mobility. We compare the performance of the three machine learning models (XGBoost, Linear Regression, 
and Random Forecast) using the MAPE and RMSE. The results show that the MAPE of the forecasted cases 
is higher when both the local and visitor transmission risk is taken into account for the top 4 of the 6 models, 
and the RMSE of the forecasted number of cases is higher for all the models. We also evaluated the forecasting 
capacity of the models when the mask mandates and the social distancing guidelines were also used as features 
in the machine learning models to forecast the number of cases; we did not notice a significant improvement in 
the forecasting capability. In addition, a DM test was performed to evaluate the significance of forecasts when 
visitor mobility is included in the model.

Table 1 shows the MAPE of machine learning models for the complete duration (i.e., March 2020–December 
2020). We observe that the MAPE of the best performing model (i.e., XGBoost) has a MAPE of 16.8% when 
using visitor mobility compared to 22.2% when just the local transmission risk is taken into account. The linear 
regression model performs better when using local transmission risk than combined local and visitor trans-
mission risk. However, Table 2 shows that the RMSE is lower when using the combination of local and visitor 
transmission risk than local transmission risk. In addition, the RMSE is lower when local and visitor mobility 
is used for all three models.

(3)Ci = h[Ci−14, LTi−14, VTi−14, θCi−14
, θLTi−14

, θVTi−14
] + Ei

(4)MAPE =
1

N

∑ |A− P|

A
× 100

(5)RMSE =

√

1

N

∑

(A− P)2
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The significance of the results is evaluated using the Diebold–Mariano score that evaluates the null hypothesis 
that both the forecasts are the same. The p value shows that the null hypothesis is rejected, and the difference 
in forecasts is statistically significant. The DM scores for the XGBoost, linear regression, and random forest are 
8.7 (p = 0.2), 2.66 (p = 0.04), and 8.26 (p = 0.04) respectively. The MAPE and RMSE on the state-level data in 
Table 5 show that the inclusion of external mobility leads to better forecasts for all 50 states in the United States.

We make similar observations when the data is separated into three waves (Tables 3, 4) to show the perfor-
mance of the model using the top two machine learning approaches along with linear regression as a baseline. 
The MAPE and RMSE for all the three approaches report lower MAPE and RMSE when visitor transmission 
risk is included in the model generation compared to just the local mobility risk. The inclusion of the visitor 
transmission risk improves the MAPE of the forecast by about 57.19% on average across all states for the three 
waves. During the first wave, the external mobility decreases MAPE by 110%, with the percentage error at 17.14 
± 0.28% and 30.81 ± 0.48% with external and only local transmission coefficients, respectively. Similarly, the 
improvement for MAPE for the second and third waves is 34.23% and 26.17%, respectively.

Table 5 shows the importance of each feature when forecasting the number of future cases using a random 
forest regressor. The importance of each feature is calculated using an estimator based on the increase in error 

Table 1.  Comparison of MAPE to forecast the number of cases with and without visitor transmission risk for 
various machine learning models. Best scenario for each machine learning approach is highlighted in [bold].

Model No mobility Local transmission risk only
Visitor transmission risk 
only

Local and visitor 
transmission risk

Linear regression 0.512 ± 0.212 0.464 ± 0.188 0.535 ± 0.268 0.497 ± 0.227

KNN regression 0.341 ± 0.301 0.338 ± 0.143 0.329 ± 0.214 0.317 ± 0.149

Support vector regression 0.758 ± 0.279 0.752 ± 0.253 0.771 ± 0.324 0.779 ± 0.316

Multilayer perceptron 0.398 ± 0.126 0.385 ± 0.114 0.374 ± 0.13 0.356 ± 0.109

Random forest regression 0.334 ± 0.123 0.327 ± 0.121 0.309 ± 0.106 0.305 ± 0.105

XGBoost 0.243 ± 0.117 0.222 ± 0.098 0.17 ± 0.067 0.168 ± 0.067

Table 2.  Comparison of RMSE to forecast the number of cases with and without visitor transmission risk for 
various machine learning models. Best scenario for each machine learning approach is highlighted in [bold].

Model No mobility Local transmission risk only Visitor transmission risk only Local and visitor risk

Linear regression 0.108 ± 0.027 0.105 ± 0.026 0.102 ± 0.025 0.099 ± 0.026

KNN regression 0.089 ± 0.032 0.084 ± 0.027 0.08 ± 0.031 0.071 ± 0.027

Support vector regression 0.1 ± 0.028 0.096 ± 0.027 0.092 ± 0.025 0.089 ± 0.024

Multilayer perceptron 0.083 ± 0.34 0.079 ± 0.031 0.07 ± 0.025 0.068 ± 0.023

Random forest regression 0.075 ± 0.036 0.074 ± 0.034 0.063 ± 0.026 0.062 ± 0.255

XGBoost 0.083 ± 0.045 0.075 ± 0.038 0.055 ± 0.023 0.055 ± 0.024

Table 3.  Comparison of forecasting performance using MAPE with and without local and visitor transmission 
risk for three waves using various machine learning models. Best scenario for each machine learning approach 
is highlighted in [bold].

Model No mobility Local transmission risk only Visitor transmission  risk only
Local and visitor transmission 
risk

First wave (March–June)

XGBoost 0.376 0.308 0.169 0.174

Linear regression 1.064 1.029 1.094 0.938

Random forest 0.422 0.409 0.329 0.327

Second wave (July–September)

XGBoost 1.038 0.999 0.885 0.834

Linear regression 1.411 1.35 1.251 1.208

Random forest 1.023 1.007 0.887 0.875

Third wave (October–December)

XGBoost 0.469 0.492 0.352 0.341

Linear regression 1.401 1.369 1.174 1.142

Random forest 0.498 0.508 0.369 0.359
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when the particular feature is not considered. The results show that the current number of cases has the highest 
impact on the number of cases. However, the visitor transmission potential is more important than the local 
transmission risk for all the waves of the pandemic. The visitor transmission risk is considered twice as important 
as the local transmission risk.

These results show that the non-linear models can accurately predict the number of new cases in the future 
with high accuracy when considering the visitor mobility risk along with the local mobility risk and the current 
number of cases. With the rest of the factors like social distancing, mask mandates, and vaccination status con-
stant, visitor mobility is a significant factor in determining the number of cases. We also note that the impact of 
local and visitor mobility risk is not consistent across the three waves of the pandemic. During the first and the 
third waves, mobility has a higher impact on the number of cases compared to the second wave. The forecasting 
performance for each state using XGBoost for the three waves of the pandemic in 2020 is presented in Table 6.

Discussion of results
Figure 2 shows the cumulative number of cases per capita, local transmission risk, and visitor transmission risk 
for each of the states in the United States for the entire pandemic and the three phases of the pandemic. We 
observe that certain states have a lower local transmission risk and a higher visitor transmission risk. For example, 
during the second phase of the pandemic, in states like Illinois and Georgia, the local transmission risk is much 
lower than the transmission risk posed by travelers from other states to Illinois. Similarly, for states like New 
York in phase 1, the local transmission risk is higher than the visitor transmission risk. There are also variations 
between the interplay of local and visitor transmission risks for different phases of the pandemic. The first phase 
is primarily driven by local mobility, and the other two phases are a combination of local and visitor mobility.

While it is apparent that the majority of the visitor transmission risk is due to travelers crossing state bounda-
ries from neighboring cities, there is also considerable transmission risk due to long-distance travel. For example, 
for Louisiana, the majority of the risk for its second peak is contributed by Mississippi, Texas, and Florida, which 
is higher than the Arkansas that borders the state in the north. The states of Mississippi and Florida contributed 
more to the second peak, whereas travelers from Texas contributed to the second and third phases of the pan-
demic. For the states like North Dakota, most of the visitor transmission risk is attributed to their neighboring 
states. New York, on the other hand, has a huge increase in visitor transmission risk from Florida during the 
late winter when the state of Florida opened up to travelers compared to the rest of the country. These trends 
are presented in Figs. 3, 4 and 5.

Figure 6 also shows how the pandemic spread across the United States during the first year of the pandemic. 
The first set of states that saw a significant increase in the number of cases are primarily located in the northeast 

Table 4.  Comparison of forecasting performance using RMSE with and without local and visitor transmission 
risk for three waves using various machine learning models. Best scenario for each machine learning approach 
is highlighted in [bold].

Model No mobility Local transmission risk only Visitor transmission risk only
Local and visitor transmission 
risk

First wave (March–June)

XGBoost 0.145 0.113 0.074 0.072

Linear regression 0.161 0.143 0.145 0.128

Random forest 0.123 0.113 0.083 0.082

Second wave (July–September)

XGBoost 0.223 0.201 0.164 0.158

Linear regression 0.207 0.199 0.185 0.18

Random forest 0.188 0.183 0.154 0.153

Third wave (October–December)

XGBoost 0.118 0.109 0.08 0.08

Linear regression 0.183 0.183 0.165 0.164

Random forest 0.102 0.101 0.08 0.08

Table 5.  The importance of various features to calculate the future number of cases using a random forest 
regression.

Feature All waves First wave Second wave Third wave

Number of cases 0.646 0.611 0.652 0.731

Visitor transmission risk 0.249 0.303 0.237 0.241

Local transmission risk 0.105 0.086 0.111 0.028
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Table 6.  The accuracy for each state for case forecasting using visitor and local, and just local transmission 
risk using XGBoost.

FIPS

All waves First wave Second wave Third wave

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

Visitor + 
local Local

Visitor + 
local Local

Visitor + 
local Local

Visitor + 
local Local

Visitor + 
local Local

Visitor + 
local Local

Visitor + 
local Local

Visitor + 
local Local

1 0.14 0.17 0.06 0.07 0.08 0.12 0.03 0.04 1.7 1.78 0.24 0.33 0.64 0.63 0.09 0.1

2 0.18 0.22 0.05 0.06 0.25 0.64 0.04 0.1 0.42 0.43 0.14 0.14 0.28 0.22 0.09 0.11

4 0.26 0.4 0.07 0.14 0.06 0.09 0.02 0.03 0.33 0.28 0.07 0.08 0.13 0.11 0.03 0.02

5 0.1 0.11 0.03 0.03 0.09 0.16 0.03 0.04 1.3 1.83 0.21 0.28 0.42 0.38 0.07 0.07

6 0.13 0.19 0.03 0.05 0.05 0.05 0.02 0.02 0.37 0.62 0.17 0.28 0.22 0.2 0.04 0.02

8 0.14 0.2 0.04 0.07 0.1 0.15 0.05 0.08 1.04 1.28 0.2 0.23 0.23 0.25 0.09 0.14

9 0.35 0.4 0.08 0.09 0.56 0.49 0.22 0.21 0.85 0.9 0.1 0.12 0.14 0.11 0.06 0.06

10 0.2 0.23 0.04 0.05 0.27 0.33 0.15 0.17 0.83 0.88 0.16 0.21 0.33 0.37 0.04 0.04

12 0.27 0.3 0.12 0.14 0.13 0.13 0.03 0.02 0.4 0.56 0.16 0.26 0.22 0.31 0.04 0.04

13 0.14 0.19 0.06 0.08 0.08 0.12 0.03 0.05 1.34 1.81 0.17 0.29 0.46 1.05 0.08 0.12

15 0.31 0.52 0.06 0.13 0.81 1.97 0.13 0.3 0.22 0.44 0.06 0.25 0.73 1.71 0.11 0.26

16 0.19 0.27 0.05 0.06 0.2 0.5 0.05 0.11 1.93 2.05 0.28 0.31 0.19 0.2 0.06 0.07

17 0.12 0.21 0.04 0.06 0.08 0.28 0.05 0.17 0.25 0.11 0.06 0.07 0.23 0.21 0.09 0.1

18 0.09 0.13 0.03 0.03 0.07 0.09 0.04 0.05 0.45 0.25 0.13 0.13 0.15 0.11 0.06 0.05

19 0.16 0.24 0.05 0.13 0.13 0.13 0.1 0.09 1.56 1.98 0.27 0.28 0.46 0.82 0.14 0.33

20 0.13 0.2 0.04 0.04 0.17 0.4 0.08 0.2 1.66 1.36 0.23 0.21 0.33 0.22 0.08 0.06

21 0.09 0.09 0.03 0.03 0.08 0.14 0.05 0.1 0.42 0.2 0.09 0.08 0.2 0.15 0.07 0.06

22 0.3 0.34 0.14 0.16 0.15 0.31 0.06 0.14 0.73 0.81 0.26 0.29 1.7 1.76 0.17 0.19

23 0.14 0.21 0.05 0.06 0.15 0.27 0.09 0.1 0.7 0.82 0.14 0.23 0.36 0.66 0.09 0.1

24 0.16 0.21 0.06 0.08 0.13 0.19 0.08 0.12 0.94 0.99 0.26 0.29 0.2 0.11 0.04 0.03

25 0.26 0.35 0.06 0.09 0.43 0.54 0.18 0.2 0.58 0.52 0.14 0.17 0.18 0.14 0.06 0.08

26 0.13 0.23 0.06 0.08 0.14 0.29 0.06 0.14 0.24 0.27 0.08 0.09 0.3 0.31 0.13 0.17

27 0.16 0.19 0.07 0.1 0.11 0.15 0.08 0.12 0.51 0.47 0.17 0.17 0.46 0.47 0.17 0.22

28 0.14 0.21 0.07 0.1 0.08 0.18 0.05 0.11 1.43 1.87 0.14 0.31 0.31 0.29 0.07 0.08

29 0.09 0.09 0.04 0.04 0.11 0.13 0.05 0.05 0.22 0.18 0.06 0.08 0.35 0.3 0.11 0.11

30 0.16 0.25 0.04 0.1 0.43 1.73 0.04 0.13 0.32 0.32 0.08 0.07 0.59 1.66 0.11 0.29

31 0.15 0.18 0.08 0.09 0.12 0.15 0.07 0.1 0.32 0.3 0.07 0.07 0.47 0.41 0.23 0.24

32 0.21 0.21 0.07 0.07 0.09 0.1 0.03 0.03 0.96 0.95 0.24 0.28 0.16 0.12 0.05 0.03

33 0.15 0.16 0.03 0.03 0.18 0.18 0.09 0.08 0.46 0.76 0.11 0.15 0.13 0.14 0.04 0.04

34 0.26 0.42 0.11 0.15 0.41 0.54 0.23 0.27 1.13 1.56 0.13 0.18 0.2 0.12 0.04 0.02

35 0.19 0.22 0.04 0.05 0.08 0.16 0.04 0.11 1.32 1.52 0.24 0.26 0.17 0.13 0.07 0.09

36 0.2 0.42 0.06 0.17 0.19 0.61 0.07 0.27 0.41 0.68 0.07 0.1 0.16 0.1 0.03 0.02

37 0.09 0.09 0.03 0.03 0.05 0.05 0.02 0.02 2.09 2.04 0.32 0.32 0.22 0.21 0.05 0.05

38 0.17 0.26 0.05 0.14 0.16 0.21 0.1 0.11 0.13 0.12 0.04 0.04 0.99 3.34 0.13 0.33

39 0.11 0.12 0.03 0.03 0.07 0.17 0.04 0.12 1.1 1.69 0.2 0.23 0.13 0.1 0.04 0.04

40 0.11 0.13 0.05 0.05 0.11 0.16 0.04 0.06 0.43 0.66 0.14 0.25 0.8 0.66 0.13 0.15

41 0.11 0.12 0.03 0.03 0.12 0.16 0.04 0.06 2.05 1.83 0.33 0.34 0.24 0.19 0.05 0.05

42 0.15 0.16 0.02 0.02 0.17 0.22 0.13 0.17 0.82 1.34 0.12 0.17 0.12 0.1 0.03 0.03

44 0.32 0.32 0.06 0.06 0.42 0.47 0.21 0.24 0.26 0.35 0.11 0.11 0.13 0.1 0.05 0.05

45 0.16 0.18 0.08 0.1 0.07 0.1 0.02 0.02 0.7 1.07 0.17 0.26 0.49 0.65 0.08 0.1

46 0.13 0.2 0.04 0.1 0.11 0.15 0.06 0.08 0.31 0.34 0.08 0.08 0.71 2.13 0.11 0.28

47 0.13 0.14 0.05 0.05 0.08 0.13 0.03 0.04 0.97 1.26 0.18 0.3 0.29 0.35 0.09 0.1

48 0.15 0.18 0.07 0.08 0.08 0.09 0.02 0.02 1.2 1.28 0.24 0.31 0.61 0.84 0.08 0.1

49 0.1 0.15 0.03 0.05 0.08 0.1 0.03 0.04 0.78 2.97 0.09 0.26 0.19 0.19 0.08 0.09

50 0.32 0.44 0.04 0.08 0.36 0.86 0.1 0.27 1.07 1.2 0.2 0.21 0.13 0.14 0.04 0.05

51 0.1 0.13 0.03 0.04 0.12 0.15 0.07 0.1 0.44 0.51 0.16 0.22 0.2 0.17 0.04 0.04

53 0.16 0.19 0.06 0.06 0.1 0.17 0.04 0.09 1.65 1.49 0.27 0.27 0.2 0.14 0.06 0.05

54 0.12 0.14 0.02 0.02 0.26 0.46 0.11 0.16 0.52 0.92 0.1 0.16 0.15 0.12 0.03 0.03

55 0.11 0.17 0.04 0.1 0.13 0.17 0.08 0.1 1.03 1.22 0.11 0.12 0.47 0.88 0.09 0.29

56 0.19 0.21 0.09 0.1 0.2 0.27 0.11 0.15 0.81 0.86 0.1 0.12 0.44 0.5 0.19 0.25
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United States (New England and the tri-state area). Based on Fig. 4, this risk is imported from the neighboring 
states, i.e., New Jersey and Connecticut, in the case of New York. While all the states restricted travel during this 
time period, we noticed that interstate travel still contributed a significant risk across these states compared to 
the rest of the states in the country. During the second wave of the pandemic during the summer, the majority 
of the states in the southern United States and the West Coast were impacted. The mobility of the individuals 
is comparatively higher than during the first wave. We also observe that these states had relaxed travel restric-
tions compared to the states that had a peak during the first wave. Finally, the states that had an increase in the 
number of cases during the third wave did not have an earlier peak and had a significant increase in mobility, 
both locally and from outside the states. We would also point out that these states had a higher number of cases 

Figure 4.  Visitor transmission risk and mobility patterns to the state of New York from other states in the 
United States. Map generated using  urbnmapr33.

Figure 5.  Visitor transmission risk and mobility patterns to the state of North Dakota from other states in the 
United States. Map generated using  urbnmapr33.

Figure 3.  Visitor transmission risk and mobility patterns to the state of Louisiana from other states in the 
United States. Map generated using  urbnmapr33.
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in waves 1 and 2, and also had a greater increase in the number of cases in December. The states highlighted in 
wave 3 had an early rise in cases compared to the rest of the country.

Limitations and future work
In this study, we explored the impact of local and visitor mobility on the transmission of COVID-19 in all 50 
states in the United States. However, here are some areas where this work can be potentially extended. First, the 
primary objective of this work is to evaluate the impact of internal and external mobility, and their effects on 
disease incidence. This study does not consider the many mitigating factors imposed by local authorities to curb 
the spread of the virus; these include: mask usage, lockdowns, social distancing guidelines, and public compli-
ance with health regulations that could have had an effect on the number of cases. The impact of these measures 
are studied in other works on  COVID34. Second, the models have been generated on the data aggregated at a 
daily level of granularity. There have been several issues with the data reported by state and local authorities, that 
include less testing over the weekend and bulk reporting of missed cases. We handle this problem by smoothen-
ing the data over 7 days. Third, the mobility data considers the number of individuals traveling from one state 
to another but does not capture the distance traveled by individuals during the trip. Incorporating the distance 
traveled might help enhance the relationship between the number of cases and the mobility of individuals. 
Fourth, the goal of our excercise is to evaluate the impact of local and visitor mobility on the number of cases; 
the provided solution is not a forecasting solution to predict the future number of COVID cases. There have been 
various studies that developed models that take into account: the number of cases, mobility, socio-demographic 
information, serological impacts etc. to predict the number of cases. The COVID Hub Ensemble model had a 
MAPE of 11.8% for a 2 week ahead forecast during the first year of the pandemic, DeepCOVID model from 
Rodriguez et al. had an accuracy of 9.2% during the same time period, compared to 16.8% in our  analysis35,36. 
Finally, we consider the state as a single unit to measure the mobility and the number of cases. We do not consider 
the population density at origin and destination and the number of people traveling to a particular city in a state. 
For example, the first wave (March–June) was dominated by cases from metropolitan areas, whereas the cases 
during the third wave were primarily in the rural areas of the state. In the future, we would like to extend this 
model to various metropolitan areas in the county for analysis at a more refined level of granularity.

Conclusions
In this paper, we evaluated the impact of the disease transmission risk due to visitor and local mobility on the 
number of cases at a state level for all 50 states in the United States. We observed that visitor mobility is an impor-
tant factor in explaining case growth. The prediction accuracy improved by 33.78% for the whole duration of 
the pandemic in 2020 (March–December) when visitor mobility was used in the forecasting model. The impact 
of transmission risk due to external mobility is observed across all three phases of the pandemic in the United 
States. We observe the influence of mobility is much stronger in the first phase of the pandemic compared to the 
second or third phase. These observations are consistent with some of the earlier  studies4,11 where mobility was 
observed to be an important predictor of case growth in the first phase of the pandemic.

Data availability
The analysis code for this paper is available on GitHub at https:// github. com/ ravit eja- bhupa tiraju/ Covid Diffe 
renti alMob ility Analy sis.

Figure 6.  The waves of the pandemic across the United States. Map generated using  urbnmapr33.

https://github.com/raviteja-bhupatiraju/CovidDifferentialMobilityAnalysis
https://github.com/raviteja-bhupatiraju/CovidDifferentialMobilityAnalysis
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