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Feeder delivery vehicle scheduling 
optimization of high‑speed railway 
express based on trunk and branch 
intermodal transportation
Yao Cui1,2 & Xiaoye Zhou1*

In view of the traditional branch line end express delivery centralized mode cannot adapt to the 
growing demand of high‑speed rail (HSR) express, resulting in poor connection between trunk and 
branch line, high cost and poor timeliness. In this paper, the problem of scheduling optimization of 
branch‑line flexible distribution vehicles relying on intermodal transportation of trunk and branch 
lines is proposed. Considering the number of vehicles, vehicle capacity, customer service time window 
and other constraints, an integer linear programming mathematical model with the minimum total 
cost of vehicle transportation cost, usage cost and time window penalty cost as the optimization 
objective is established. A two‑level nested heuristic algorithm with two‑level coding structure is 
proposed to solve the problem. Finally, a simulation example is given to verify the effectiveness of the 
model and the algorithm. The results show that the vehicle scheduling optimization problem studied 
in this paper can effectively improve the timeliness and accuracy of HSR express delivery, and can 
significantly reduce the total vehicle delivery cost.

The High-Speed Rail (abbreviated hereinafter as HSR) express service is proposed to fulfill the consumer’s 
requirements for timeliness and accuracy of express  delivery1, As the HSR is fast, punctual, safe, and not affected 
by traffic congestion and environmental changes, it can provide small volume, multi-frequency, high timeliness, 
and high value-added services for fragmented cargo.

HSR completes “station to station” express delivery through railway trunk network, and the vehicles at the 
end of branch lines provide “station to door” service through the distribution network of express companies, to 
realize the combined transportation and distribution of HSR and vehicles. Among them, the transfer connection 
is very important to the whole combined transportation and distribution process. When the time and space of the 
connection are mismatched, the vehicles transportation resources are seriously wasted, and the time limitation 
of express delivery is affected. Therefore, it is an urgent problem for express intermodal transport enterprises to 
solve how to effectively connect terminal delivery vehicles with HSR.

By 2021, more than 200 cities in China have opened HSR express services such as same-city express, cross-
city express and same-day express. The passenger and freight synergy mode are used in HSR to transport urgent 
goods, high added value, cold chain, fresh and other goods at existing dispatching scheme and idle transport 
capacity.

By 2021, more than 200 cities in China have opened HSR express services, such as same-city express, cross-city 
express and same-day express. HSR adopts a collaborative passenger and cargo model, using existing scheduling 
solutions and idle capacity to transport urgent cargo, high value-added, cold chain, fresh and others.

At present the distribution mode of HSR express transport still adopts the traditional centralized distribution 
mode, i.e., HSR express transport cargo is stored centrally in the warehouse of HSR station, and then regularly 
centralized distribution by truck. However, this model takes up storage space, cannot respond to customer 
demand in time, and wastes the speed and time advantage of HSR, resulting in its same effect as traditional 
railroad transportation without improving timeliness, although it increases the cost of HSR transportation. The 
other is the customized distribution mode for special cargo, i.e., dispatching trucks immediately after the arrival 
of HSR express cargo. This mode can respond quickly to fulfill the demand of high timeliness, but the increase 
cost of the vehicle is not the result we want.
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Therefore, the design of a flexible HSR express delivery mode has become inevitable, according to the different 
arrival times of HSR express, the cargo is decomposed or integrated in a ladder according to the time window 
demand. Based on existing research and the reality of HSR express, we look for a better intermodal distribution 
mode suitable for modern HSR express, design mathematical models and algorithms, and solve and verify them 
with simulation examples.

Therefore, for the sake of improving the efficiency and reducing the cost of HSR express, a feeder distribution 
model relying on trunk-branch intermodal transportation and an optimal scheduling strategy for feeder distribu-
tion vehicles are proposed in this paper based on the actual situation. This mode is a Vehicle Routing Problem 
with Soft Time Window considering Trunk-branch Transfer Connection Dispatching (VRPSTWTTCD). The 
essential difference from traditional VRPSTW is that it needs to consider the departure time, scale, and route of 
the delivery vehicle by the batch arrival time and quantity of HSR express.

There are few researches on VRPSTW problem of HSR express.  Pazour2 considered the factors of HSR freight 
transport capacity and road transport time, and constructed the design model of highway-railway intermodal 
transport network. Ertem et al.3 put forward the fast transportation by HSR network for small-sized goods and 
mail, and set up the high-speed trains scheduling optimization model. Wang Baohua et al.4 studied the location 
and Transportation Service Network optimization of express freight transportation network based on HSR and 
highway. Zufferey et al.5 set up the transport planning and route selection model of the rail-road intermodal 
transport, and the route follows the truck-rail-truck intermodal transport model, and uses Tabu search algorithm 
to solve the model. Santos et al.6 proposed an innovative mixed-integer programming model based on hub-and-
spoke theory to improve the competitiveness of rail-rail combined transport by optimizing the location of freight 
terminals. Walha et al.7 constructed the optimization model of the distance between truck and freight station and 
the number of trucks used, and proposed a multi-agent based on heuristic. Saeed et al.8 studied the distribution 
center layout and branch line distribution path optimization in multi-modal transport network are studied, and 
an improved genetic algorithm is designed to solve them. Xie Haihong et al.9 put forward the distribution model 
of the Railway Logistics Distribution Center of the highway-railway intermodal transportation, and established 
the route choice model with the lowest logistics cost of the customer as the goal.

In the research of traditional VRP, some scholars have studied the integration of vehicle routing problem 
and vehicle dispatching problem. Ozbaygin et al.10 studied the impact of customer demand dynamics on vehicle 
routing and departure schedule, and designed branch and bound algorithm to solve the problem. Zhang Dezhi 
et al.11 constructed the joint optimization model of vehicle departure time and vehicle routing problem, and 
used two-stage hybrid genetic algorithm to solve the two sub-problems of vehicle departure time and vehicle 
routing problem. Zhou  Lin12 studied the integrated optimization problem of vehicle routing and dispatching, 
and solved it with a hybrid evolutionary search algorithm combining genetic algorithm and local search. Liu, H. 
et al.13 presented an integrated decision-making of multi-vehicle type combined strategy and route optimization 
based on customer demand, and an improved genetic algorithm is designed.

Model building
Problem description. The number of HSR is R , arriving at the station D . The number of distribution vehi-
cles assigned to each train trip varies greatly due to the influence of HSR passenger traffic. The amount of express 
delivery delivered varies greatly with the remaining capacity of each HSR. If customized vehicle is assigned to 
pick up and transport each arrival express, because of the capacity of the vehicle cannot be matched optimally, 
it will result in a high rate of vehicle empty operation, a serious waste of vehicle resources and an increase in 
distribution costs. If centralized distribution is adopted for the arrival express, as the batch of express arrived 
has to wait for centralized and unified distribution, the waiting time is long, and it cannot be delivered in time 
as required by the time limit.

Therefore, it is necessary to determine the number of vehicles for each express delivery on HSR from the 
perspective of vehicle loading rate for all-day express delivery, and to distribute the selected express delivery 
according to the demand of the customer time window. The feeder delivery vehicles depart from the HSR station 
at the same time. When visiting the customer point, the service time is allowed to be advanced and delayed, but 
corresponding punishment must be given. The vehicles return to the station after distribution. For the remaining 
express delivery, unified planning shall be made with the next batch.

The goal of the optimization is how to determine the dispatching plan of the delivery vehicles according to 
the loaded of each train. Considering factors such as the number, capacity of freight vehicles, and the service 
time window of customer, a mathematical model is established to minimize the total cost included by transporta-
tion, Vehicle use cost and penalty cost of the time window. In order to determine the distribution, the scale, the 
departure time, and the running route of express delivery vehicles, and realize the effective connection between 
terminal delivery vehicles and HSR.

Model assumption. 

1. HSR operation plan, remaining capacity, location coordinates of HSR stations and customers, customer 
demand and time window are known.

2. All HSR trains can carry freight, and the freight loaded on each train does not exceed the minimum residual 
capacity of the HSR.

3. Transfer time of HSR express is fixed.
4. The HSR station has sufficient temporary storage service capacity.
5. The vehicle models are the same and the carrying capacity is certain.
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6. Each vehicle can satisfy the needs of multiple customers, and each customer can only be served by one 
vehicle.

7. The time window penalty cost standard for each customer is the same.

Symbolic description. The notations and meanings used in model construction are shown in the Table 1.
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Table 1.  Definitions of notations.

Name Description

I Set of arrival time of HSR

tr Departure time of vehicles tr ∈ I

R Set of trains r ∈ R

G Set of rail station O,D ∈ G

P Set of customers i, j, l ∈ P

K Set of vehicles

qi Demand of customer i

dij Distance from node i  to j

[Ei , Fi] Service time window, earliest starting time and latest starting time

Si Service time for node i

hi Starting service time to node i

tij Travel time from node i  to j

tDi Travel time from Station D to node i

Wv Capacity of the vehicle

C1 Transportation cost per kilometer of vehicle

C2 Use cost of the vehicle

A Waiting cost per hour of vehicle

B Penalty cost per hour of vehicle

Cmax Maximum penalty cost

Nmax Maximum number of vehicles

T Transit time of the vehicle

M A large positive integer

utriv 0–1 decision variable representing whether the client i  is traveled by vehicle v  departed from time tr
zr Decision variable representing the number of vehicles

ytrrv 0–1 variable representing whether the train r  is transferred by vehicle v  departed from time tr

xtrijv 0–1 variable representing whether the path (i, j) is traversed by vehicle v  departed from time tr
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The objective function (1) represents the lowest total cost of transportation and distribution. Constraint (2) 
guarantees that the feeder delivery vehicle visits each customer only once, and the customer demand cannot 
be divided. Constraint (3) prevent the express delivery volume exceed the total loading capacity of the feeder 
delivery vehicle. The flow conservation is defined in (4) indicates that the number of vehicles entering a customer 
point is equal to leaving. Formulas (5) and (6) are defined as the arrival time or service start time from node i 
to node j . Constraint (7) ensures that the actual departure time of vehicles is later than the arrival time of HSR. 
Constraints (8) and (9) represent the limit of the maximum vehicle that can be used and the limit of the maximum 
penalty cost. Constraints (10)–(12) are the integer constraint of the model decision variable 0–1. Constraint (13) 
indicates non-negative constraint on the number of vehicles.

Two‑level nested ant colony optimization algorithm with two‑level coding structure
Ant Colony Optimization (abbreviated hereinafter as ACO) algorithm has been widely used to solve combinato-
rial optimization problems with good robustness and positive  feedback14–16.

In view of the specific points of the problem studied in this paper, based on ACO algorithm, a two-level nested 
ant colony search strategy was designed by nesting and reverse recursion, and the two-level coding structure 
was improved to solve the problem.

Express of each HSR are allocated to vehicles according to the principle of large journey interception algo-
rithm which sorted customers according to the time window, and allocated vehicles according to capacity limit. 
The express exceeding the capacity limit are allocated together with the express of the next batch as the same 
 principle17. In order to avoid local convergence of the algorithm, a mutation disturbance mechanism is designed, 
that two customers are randomly exchanged from the current solution, and re-optimized with the constraint of 
capacity, and set the disturbance frequency as 1/3 of the number of iterations to improve the operation efficiency.

Figure 1 shows that the ant crawling principle of the first level improved ACO algorithm. The number of 
vehicles instead of the location is used as the path node visited by the ant. The ant selects the next visited node 
according to the pheromone concentration, and considers the vehicle loading rate in the pheromone heuristic 
factor.

Coding structure. Firstly, the assigned number of vehicles is considered as the path node visited by the ants, 
replacing the original location  node18. And the nodes are visited according to the arrival times of high-speed 
trains.

Secondly, the digits in upper-tier are defined as the number of assigned vehicles per HSR, 0 represents no 
vehicle is assigned for the current HSR, and in lower-tier are defined as customer serial number and the route of 
each vehicle. The coding structure is as shown in Fig. 2. The number of vehicles allocated to HSR numbered (G1, 
G2, G3, G4…, Gn) are (2, 3, 3, 0…, 5) respectively, and the distribution routes of vehicles of G3 are 0 → 7 → 0; 
0 → 3 → 4 → 1 → 0; 0 → 5 → 6 → 2 → 0.

Selection probability. The path (i, j) represents the number of scheduled vehicles is j − 1 for the train i ; 
and pkij represents the probability of ant k select path (i, j).

Two-dimensional unequal length array is generated by using tuple as the pheromone concentration, rows 
represent the number of delivery vehicles, and the columns is the series number of each HSR. The initial value 
of pheromone concentration set 1 as the Fig. 3 shows.
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Formula (15) is defined as the update of node pheromone concentration, �τ kt−1(i, j) represent pheromone 
increment left by the ant k on path (i, j) in iteration t − 1,and �τ kt−1(i, j) =

Q
Vk

 , Q is enhancement coefficient, Vk 
means the total cost of the ant k after accessing all nodes.

The heuristic factor plays an important role in ant searching to better nodes, which effectively promotes the 
convergence of the algorithm. As showed in formula (16), the vehicle loading rate is used as the heuristic factor 
to replace the original distance.

Figure 1.  Schematic diagram of node selection in the first layer of improved ACO algorithm.

Figure 2.  Schematic diagram of two-level coding structure.

Figure 3.  Pheromone concentration tuple structure.
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Improvement on tabu table of ACO algorithm. 

Traditional ACO algorithm records the visited nodes according to tabu table, which prevents 
the repeated selection from getting stuck in an endless cycle. This section designs double tabu 
table structure: the global tabu table and the reverse recursive local tabu table. Pseudocode 1 
demonstrates the process of tabu table. The global tabu table is used to record the infeasible 
solution which not satisfies the constraint conditions, and to prevent the algorithm from get‑
ting stuck in the endless cycle and local optimization. The reverse recursive local tabu table 
is used to correct the repeated unfeasible solutions in this iteration. When the route is in the 
global tabu table, do the correction operation by the recursive procedure.

Pseudocode 1 Reverse recursive correction of the tabu table
1: procedure Route Recursive (current route r )
2: Node n = get the last node from r ;
3: if r not in global tabu table then
4: result = r ;
5: else
6: put n into local tabu table;
7: n = find next node by probability;
8: corrected route = r change the last node n;
9: result = Recursive (corrected route);
10: end if
11: return result ;
12: end procedure

Algorithm description. Pseudocode 2 details the steps involved in the two-level nesting algorithm. Step1, 
initializes global tabu table, population size, iteration times and sets the pheromone concentration tuple. Setp2, 
calculates the node selection probability of the ant m by formula (14), and initializes the local tabu table. Setp3, 
generates solution route by the selection probability. Step4, invokes the reverse recursive procedure to correct 
the solution shown in Pseudocode 1. Judging whether the current solution satisfies the constraint condition and 
outputs the solution.
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Pseudocode 2

1: initializing global tabu table _tabu g =∅ ;

2: initializing ant population and iteration times M = 50; NC = 100;
3: for 1:i NC=
4: for 1:j M=
5: initializing local tabu table _tabu l =∅ ;
6: selection probability ( ) ( _ ( ,1) ^ )*( ( ,1) ^ );p j tabu l j Alpha Eta j Beta=
7: roulette wheel ( ) ( ( / ( )) );route j find cumsum p sum p rand=

8: invoking reverse recursive procedure ( )route j =Recursive ( ( )route j );

9: if ( )route j satisfies the constraint condition then
10: output ( )route j and call the second level ACO algorithm;
11: else
12: _ ( ) ( );tabu g j route j
13: end if
14: 1;j j
15: end
16: 1;i i=    +

>

17: end 

The complexity of the algorithm is affected by the iterations NC , population size M , client count N , and the 
number of high-speed trains R.

Spatial complexity analysis. The memory space occupied by the upper-tie ACO algorithm is M × R , and 

the lower is 
R
∑

i=1

M × Ni , so the space complexity is O
(

R × N ×M2
)

.

Time complexity analysis. The time complexity of the upper-tie ant colony algorithm includes the time 
complexity of the selection probability O(N) and the time complexity of the traversal node O(R) , so the time 
complexity is O(N ×M × NC)+ O(R ×M × NC) . And the lower-tie complexity includes the time complexity 
of choosing probability O(N) , the time complexity of traversing nodes O

(

N(N−1)
2

)

 , so the time complexity is 
O
(

N(N−1)
2

×M × NC
)

.
In summary, the total time complexity is

The results show that the time complexity of the nested algorithm is O
(

n7
)

 . It is related to the number of 
customer nodes, and closely related to the number of trains of HSR. With the increase of the number of trains 
and the number of customer nodes, the problem scale increases to the 7th power.

Simulation experimentation and analysis
In this section, we use three simulation examples to validate the performance of the modal and algorithm. The 
first one calculates the results of the model optimization in this paper and compares it with centralized delivery 
and customized delivery. The second tests the efficiency of the algorithm for different scales. At last, compares the 
results with tabu search and genetic algorithm. The steps of the simulation experiment are overviewed as follows.

1. Data generation Randomly generate simulation data with reference to the characteristics of the actual user 
requirements.

2. Data parsing Analyze and classify the simulation data.
3. Parameter setting Configure the experimental environment and the basic parameters of the ACO algorithm.
4. Model calculation Based on the same environment and data, the model designed in this paper and the tra-

ditional model are calculated and output.
5. Result analysis The experimental results are compared and analyzed, and conclusions are drawn.

O
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2
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×[O(N ×M × NC)+ O(R ×M × NC)] ≈ O
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Simulation experiment. We go get a total of 8 high-speed trains from 7:00 to 14:00, 40 customer points, 
and randomly generate their time windows, demand, and geographical locations, all of which go through a uni-
form distribution. The HSR station is used as the center of the interchange with coordinates of (43.59, 82.85). The 
maximum residual capacity and the arriving time of each train are obtained founded on the analysis of historical 
passenger traffic data.

The maximum number of vehicles available for distribution is 30, the fixed use cost of vehicles is 30 per 
vehicle, the driving cost of vehicles is 2 per kilometer, and the average speed of vehicles is 15 km/h, early time 
window penalty costs 10 per hour, late time window penalty costs 20 per hour. Setting the distribution vehicle 
rated capacity is 1 ton by limiting traffic in the city.

As shown in Table 2, the source of the simulation experiment data and the description of the fields are as 
follows:

Column 1, 2 indicates the number of HSR trains and the arriving time, which is obtained from the actual 
train schedule. Column 3 indicates the maximum cargo loading capacity that can be allowed for each high-speed 
train under the condition that passenger transportation is fulfilled. Column 4 indicates the total freight volume 
of the current HSR train, i.e., the total customer demand of the current train, which should be less than or equal 

Table 2.  Known simulation information of HSR and customers.

Train Arrival time Max capacity/t Total demand /t Client point Location (X, Y) Demand/t Time window

G1 7:02 2.1 2.03

1 49.26, 72.04 0.36 8:00–9:00

2 30.01, 89.19 0.06 9:00–10:00

3 44.74, 87.58 0.21 9:30–10:30

4 35.07, 71.34 0.1 7:30–8:30

5 30.35, 90.88 0.75 9:30–10:30

6 57.12, 80.27 0.05 8:30–9:30

7 42.41, 90.01 0.09 7:30–8:30

8 48.97, 79.60 0.06 7:30–8:30

9 47.45, 80.68 0.3 7:30–8:30

10 30.66, 87.11 0.05 8:30–9:30

G2 7:20 0.4 0.31 11 35.61, 73.22 0.31 8:00–9:00

G3 7:27 1.4 1.37

12 32.94, 74.50 0.68 8:30–9:30

13 35.60, 79.25 0.47 8:30–9:30

14 43.31, 88.80 0.21 8:00–9:00

15 35.70, 74.49 0.01 9:00–10:00

G4 9:16 0.4 0.34
16 56.45, 78.16 0.24 11:30–12:30

17 31.62, 82.30 0.1 11:30–12:30

G5 10:27 2.5 2.35

18 30.57, 89.16 0.18 12:00–13:00

19 38.06, 77.04 0.56 11:00–12:00

20 46.32, 77.84 0.18 11:00–12:00

21 44.77, 89.05 0.07 11:00–12:00

22 47.17, 84.94 0.9 11:00–12:00

23 59.50, 91.94 0.46 12:00–13:00

G6 10:50 4.4 4.12

24 46.76, 86.55 0.18 11:00–12:00

25 33.70, 73.56 0.91 11:30–12:30

26 49.43, 77.16 0.74 11:30–12:30

27 51.36, 80.73 0.6 11:30–12:30

28 45.05, 84.62 0.3 11:00–12:00

29 32.97, 82.70 0.89 11:30–12:30

30 49.60, 77.80 0.2 11:30–12:30

31 34.34, 76.87 0.3 15:00–16:00

G7 13:24 3.0 2.84

32 48.77, 90.78 0.52 14:00–15:00

33 35.18, 81.72 0.91 14:00–15:00

34 46.23, 71.22 0.13 14:00–15:00

35 37.68, 71.84 0.44 14:30–15:30

36 33.55, 92.18 0.33 14:30–15:30

37 58.96, 88.28 0.51 15:30–16:30

G8 13:55 2.3 2.1

38 40.65, 91.85 0.34 14:30–15:30

39 32.38, 85.89 1.0 14:30–15:30

40 52.44, 72.84 0.76 14:30–15:30
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to the maximum freight loading capacity, otherwise the exceeding part needs to be allocated to the next train 
for transportation. Columns 5–8 indicate the location coordinates, demand, and time window of customers 
respectively, which are randomly generated by the program and satisfy with uniform distribution.

Parameters of the Algorithm are set as follows: population size M = 50 , maximum iteration times 
NCmax = 100 , pheromone concentration weights α = 1 , heuristic factor weight β = 0.8 , pheromone concen-
tration volatile coefficient ρ = 0.75 , pheromone concentration enhancement coefficient Q = 100 , programmed 
with MATLAB R2016a, and run on a microcomputer with quad-Core processor (2.0 GHZ) and 16 GB memory.

By means of a perturbation mechanism and an improved algorithm, the optimal solution for express and 
vehicle scheduling of HSR is obtained. Figures 4 and 5 shows the operation results of vehicle routing optimization 
algorithm, and compared with the results of centralized delivery and customized delivery in Table 3.

From the experimental results, the departure time of vehicles in flexible distribution mode varies with the 
arrival of HSR expresses dynamically. Each row in Table 3 corresponds to one HSR trip. The starting time of 
the delivery vehicle of G1 HSR express is 7:12, the number of optimally dispatched vehicles is 3, and the vehicle 
paths are 0 → 9 → 8 → 1 → 6 → 3 → 0, 0 → 7 → 5 → 2 → 10 → 0, and 0 → 4 → 0. 0 indicates the distribution center 
(HSR station), and the digits are customer numbers.

Although G2 HSR express cargo exists for 11, the optimized number of vehicles is 0. This means G2’s cargo 
will be integrated with the next train if the time window is fulfilled. Therefore, according to the situation of HSR 
express, the departure time and the number of flexible delivery vehicles can be obtained.

In the results of the experiment, for the vehicle loading rate, the centralized distribution model is the highest 
of 90.59%, the customized distribution model is the worst of 57.04%, and the flexible distribution model is in 
between of 81.05%.

In terms of the number of vehicles, the centralized delivery mode has the least number of vehicles of 17, the 
customized delivery mode has the most of 27, and the flexible delivery mode is in between of 19.

In terms of the number of deliveries outside the time window, the flexible delivery mode is the best at 1, earlier 
than the earliest time window, the centralized delivery mode is the worst at 21, with 3 early arrivals and 18 late 
arrivals, and the customized delivery mode, 8 early arrivals.

Therefore, the total delivery cost of the flexible delivery mode is 1050.8921, which is better than the other 
two modes. Mainly because the flexible distribution mode is processed by the integration of HSR express, which 
can generate the minimum penalty cost within the time window that is, as well as can improve the loading rate 
of the vehicle and reduce the cost of using the vehicle.

Comparison with different scales. In this section, the problem scale is raised to 15 HSR and 60 clients, 
20 HSR and 80 clients, 25 HSR and 100 clients respectively. The results calculated by the improved algorithm are 
given in Table 4. The performance and applicability of the improved algorithm can be analyzed from the optimal, 
inferior, and average values calculated by the algorithm, the running time of the algorithm, the searching success 
rate, and the average number of iterations.

In Table 4, the first column is the scale of the experimental data (the number of high-speed trains and the 
number of customers), and when the problem size is 20–80, the difference between the optimal value of 2151.6597 

Figure 4.  Distribution route optimization of vehicle for HSR G1, G3, G5.
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Figure 5.  Distribution route optimization of vehicle for HSR G6, G7, G8.

Table 3.  Running detail results of simulation experiment and comparison with centralized delivery and 
customized delivery.

Mode Start time Vehicle number Path Loading rate (%) Outside time window Total cost

Flexible delivery

7:12 3
0 → 9 → 8 → 1 → 6 → 3 → 0
0 → 7 → 5 → 2 → 10 → 0
0 → 4 → 0

81.05 1-early 1050.8921

7:30 0

7:37 2 0 → 14 → 13 → 15 → 0
0 → 11 → 12 → 0

9:26 0

10:37 3
0 → 20 → 16 → 23 → 0
0 → 19 → 17 → 18 → 0
0 → 22 → 21 → 0

11:00 5
0 → 28 → 24 → 30 → 0
0 → 27 → 0, 0 → 26 → 0
0 → 29 → 0, 0 → 25 → 0

13:34 3
0 → 34 → 35 → 31 → 0
0 → 32 → 36 → 0
0 → 33 → 0

14:05 3 0 → 38 → 37 → 0
0 → 39 → 0, 0 → 40 → 0

Centralized delivery 17 90.59 3-early
18-late 1878.1323

Customized delivery 27 57.04 8-early 1425.4848

Table 4.  Comparison and analysis of running results of different scales.

Scale trains-customers

Simulation results

Best value Worst value Mean value Run time Success rate (%) Average iterations

8–40 1050.8921 1485.2726 1195.3229 232.5147 39.5 16.43

15–60 1592.3795 1902.2751 1702.9482 249.4358 35.1 19.56

20–80 2151.6597 3514.1372 2576.6132 395.7993 29.6 28.25

25–100 3015.8478 5192.7466 4375.4614 917.7431 17.3 45.41
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and the worst value of 3514.1372 increases, and the average value of 2576.6132 deviates more in the direction 
of the worst value, and the success rate of the algorithm to find the optimal solution decreases to 29.6%, and the 
running time of the program is 395 s. The average number of iterations is 28.25. When the size of the problem 
continues to increase, the success rate of searching for the optimal solution decreases significantly, and the com-
putation time and the number of iterations also increase significantly, mainly because of the time complexity of 
the nested algorithm for O

(

n7
)

.
In summary, the improved algorithm is appropriate for solving the problem of scheduling HSR express pickup 

vehicles of medium and below scale, and has a strong global search capability. HSR express transportation is 
exactly the small and medium scale transportation, which is in line with the reality.

Comparison with other algorithms. In this section, we compare improved algorithm with advanced 
artificial intelligence algorithms, the Tabu Search algorithm (TS) and Genetic algorithm (GA). The results are 
computed with these three algorithms separately and recorded to compare and analyze the algorithms in terms 
of their search ability (optimal value, worst value, and average value), the running time of the algorithms, the 
search success rate, and the average number of iterations. Figure 6 shows the improved algorithm has better 
convergence, and the mean iteration times is 16.43.

From Table 5, the improved algorithm of this paper and Genetic algorithm can get the optimal solution, for 
1050.8921, while the Tabu Search algorithm is poorer, for 1148.1342, and falls into a local optimum.

Figure 6.  Convergence diagram of three algorithm.

Table 5.  Algorithm performance comparison analysis.

Algorithm Best value Worst value Mean value Run time Success rate (%) Mean iterations

Improved algorithm 1050.8921 1485.2726 1195.3229 232.5147 39.5 16.43

TS 1148.1342 1729.5436 1577.3823 180.9335 10.4 18.37

GA 1050.8921 1562.3413 1226.6167 358.2718 20.5 43.72
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The worst value of the improved algorithm in this paper is smaller than the other two algorithms, and the 
average value is closer to the optimal value, indicates that the improved algorithm in this paper has better con-
vergence characteristics.

Tabu search algorithm run time is the shortest, using only 180 s, the average number of iterations is also the 
smallest, for 18.37, but the success rate of the search is low, only 10.4%, and local convergence, cannot meet the 
expectations.

Through comparative analysis, the improve algorithm of this paper converges quickly, with rapid running 
time and high searching success rate, and can obtain a better optimal solution, which proves that the algorithm 
has obvious advantages over the other two heuristic algorithms in terms of convergence, applicability, and imple-
mentation efficiency. Reasons for this are that the improved algorithm in this paper adopts the global taboo table 
and reverse recursive taboo table search strategies to preprocess the upper ACO algorithm to minimize the search 
space while covering the feasible solutions. Thus, the efficiency and accuracy of the whole algorithm are improved.

Conclusion
In this paper, the optimization problem of vehicle scheduling for feeder delivery of HSR express is studied, and 
a vehicle scheduling optimization model is established. Taking the number of vehicles instead of the location as 
the path node visited by ants, and the percentage of the remaining capacity of vehicles is added to the heuristic 
factor instead of distance. The optimal distribution scheme of HSR express and the vehicle scheduling scheme 
of feeder distribution are obtained.

The simulation results show that, compared with the traditional two modes of customized vehicle distribu-
tion and centralized distribution, the vehicle scheduling optimization problem studied in this paper can provide 
accurate distribution services, and greatly reduce the total cost of HSR express transportation and distribution. 
The improved algorithm designed in this paper can obtain a better solution and achieve rapid convergence.

However, the remaining capacity of HSR is greatly affected by passenger flow, and the information of HSR 
express is generated in real time. Therefore, considering the influence of dynamic HSR express loading scheme 
on intermodal vehicle scheduling will be the next research direction.

Data availability
All data generated or analyzed during this study are included in this article.

Received: 13 January 2022; Accepted: 12 July 2022

References
 1. Cheng, Z., Zhaoyu, Y. & Meiling, L. Motivation and measures for accelerating railway freight’s transformation toward modern 

logistician the new era. J. Beijing Jiaotong Univ. 18(1), 10–18 (2019).
 2. Pazour, J. A., Meller, R. D. & Pohl, L. M. A model to design a national high-speed rail network for freight distribution. Transp. Res. 

Part A Policy Pract. 44(3), 119–135 (2010).
 3. Ertem, M. & Ozcan, M. Freight transportation using high-speed train systems. Int. J. Transp. Res. 8(5), 250–258 (2016).
 4. Baohua, W. & Shiwei, H. Resource planning optimization model and algorithm for multi-modal express shipment network. J. 

China Railw. Soc. 39(2), 10–16 (2017).
 5. Zufferey, N. & Verma, M. Tabu search for shipping dangerous goods in a rail-truck network. Res. Logist. Prod. 1(1), 127–137 (2011).
 6. Santos, B. F., Limbourg, S. & Carreira, J. S. The impact of transport policies on railroad intermodal freight competitiveness—The 

case of Belgium. Transp. Res. Part D 34(1), 230–244 (2015).
 7. Walha, F. et al. A rail-road PI-hub allocation problem. Comput. Ind. 81(C), 138–151 (2016).
 8. Saeed, F., Alireza, E. & Isa, N. K. A model for distribution centers location-routing problem on a multimodal transportation 

network with a meta-heuristic solving approach. Orig. Res. 14(1), 327–342 (2018).
 9. Haihong, X. & Ying, L. Distribution project optimization of united transportation of railway and highway. J. Traffic Transp. Eng. 

11(6), 89–93 (2011).
 10. Ozbaygin, G. & Savelsbergh, M. An iterative optimization framework for the dynamic vehicle routing problem with roaming 

delivery locations. Transp. Res. Part B Methodol. 128(1), 207–235 (2019).
 11. Dezhi, Z. et al. Research on joint optimization for vehicle schedule and route problem with time-varying speeds. J. Railw. Sci. Eng. 

14(3), 642–648 (2017).
 12. Lin, Z. Integrated optimization research on vehicle routing and scheduling in city logistics with time-dependent and  CO2 emissions 

considerations. Comput. Eng. Appl. 55(8), 264–270 (2019).
 13. Liu, H. et al. Customer demand-driven low-carbon vehicles combined strategy and route optimization integrated decision. Sci. 

Rep. 11, 18483 (2021).
 14. Choi, J., Xuelei, J. & Jeon, W. Optimizing the construction job site vehicle scheduling problem. Sustainability 10(5), 1381 (2018).
 15. Yigit, T., Unsal, O. & Deperlioglu, O. Using the metaheuristic methods for real-time optimization of dynamic school bus routing 

problem and an application. Int. J. Bio-inspired Comput. 11(2), 123–133 (2017).
 16. Yanqiu, L. et al. Research on recycling path optimization problem with feasibility of path and concentrated treatment mode. Manag. 

Sci. China 24(12), 98–107 (2016).
 17. Xianlong, G., Yu, H. & Baichuan, T. Multi-stage combined city logistics distribution problem considering the traffic restrictions. 

J. Control Decis. 32(5), 789–796 (2017).
 18. Xiaoye, Z. et al. Logistics distribution routing optimization based on subway-freight truck intermodal transportation. J. Transp. 

Syst. Eng. Inf. Technol. 20(3), 111–117 (2020).

Author contributions
Y.C. contributed to the construction of model, simulation experiment and program design and implementation. 
X.Z. contributed to the supervision, revision, review and analysis of experimental data and knowledge content. 
All authors reviewed the manuscript.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12823  | https://doi.org/10.1038/s41598-022-16560-1

www.nature.com/scientificreports/

Funding
This research was funded by Liaoning Social Science Planning Foundation (No. L18AGL005).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Feeder delivery vehicle scheduling optimization of high-speed railway express based on trunk and branch intermodal transportation
	Model building
	Problem description. 
	Model assumption. 
	Symbolic description. 

	Two-level nested ant colony optimization algorithm with two-level coding structure
	Coding structure. 
	Selection probability. 
	Improvement on tabu table of ACO algorithm. 
	Algorithm description. 
	Spatial complexity analysis. 
	Time complexity analysis. 

	Simulation experimentation and analysis
	Simulation experiment. 
	Comparison with different scales. 
	Comparison with other algorithms. 

	Conclusion
	References


