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Deep null fixing on optimal 
compromise among sum 
and difference patterns of thinned 
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circle representation
Mateo Raíndo‑Vázquez1, Juan Antonio Rodríguez‑González1, María Elena López‑Martín2 & 
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Difference far‑field patterns represent a way for pin‑pointing a target in both azimuth and elevation, 
extremely useful in radar applications. At the present work, an innovative method for synthesizing 
good compromise solutions among sum and difference patterns providing low complexity of the 
antenna feeding network for uniform thinned arrays is addressed. This procedure uses a hybrid 
version of the Simulated Annealing algorithm (hybrid SA) to optimize a cost function of radiation 
characteristics for both sum and difference patterns as peak directivity and side lobe level (SLL) while 
fixing deep nulls. In this framework, examples of half‑wavelength spaced linear arrays from 40 to 120 
elements were analyzed, as well as an extension to planar arrays by means of separable distributions 
was developed. The performance of the method is analyzed with different examples and its potential 
outlined, showing the ability of fixing deep nulls in both sum and difference patterns which share the 
same uniform excitation relative amplitudes.

Difference patterns are radiation far-field patterns with huge potentials on many radar application techniques, 
since these, paired with sum patterns, represent a useful solution to be implemented by search-and-track 
 antennas1(pp. 129–130),2(chapter 2),3. More precisely, the performance of these tracking techniques is based on a first 
estimation, performed by the sum mode (for instance, the two halves of a linear array excited in phase) for 
acquisition and a second stage performing an accurate description of the azimuthal and polar positions by 
means of two spatially orthogonal difference patterns (where the two halves of the same linear array are out of 
phase). This approach is developed by the denominated monopulse radars, since they use a unique pulse (just 
changing phases) for detection purposes, in opposition to other conventional techniques as, for instance, the 
denominated conical scan or sequential lobing 4(pp. 152–159). Classical solutions on the synthesis of difference pat-
terns were developed by  Bayliss5 defining the basis of these problems from a continuous line source point of 
view. This approach represents an extension of the seminal technique envisaged by Taylor on the design of sum 
patterns which presents narrow main beams and symmetric low  sidelobes6. Afterwards, Elliott introduced modi-
fications in this analytical procedure for controlling the sidelobe topography more  accurately7. In a quite recent 
approach and concerning compromise solutions between sum and difference patterns, Álvarez-Folgueiras et al. 
described a methodology for synthesizing low side lobe sum and difference patterns with a common aperture 
 zone8. Beyond the continuous problem and concerning state-of-the-art developments in array antennas, studies 
regarding improvements of such type of radiation patterns were performed using different techniques. In this 
manner, two approaches based on both convex and linear programming for fixed geometry of linear/planar 
arrays were addressed by Bucci et al.9. On the other hand, the use of sub-arrays has received some attention since 
it allows to increase the number of degrees of freedom of the problem by introducing a little variability on the 
excitations of the array and moderately affecting the feeding network complexity. In these works, including the 
boundary condition for improving both sum and difference patterns produced by the same set of excitations 
(i.e., addressing the compromise of both sum and difference patterns) within the synthesis problem, solutions by 
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means of sub-arraying techniques can be discussed. As a first example, for the linear case, McNamara discussed 
the production of the “best compromise” difference pattern from an optimum sum one in terms of side lobe 
level (SLL)10. Improving this strategy, optimization techniques involving a cost function via the minimization 
of the SLL in both sum and difference modes through Simulated Annealing techniques were purposed by Ares 
et al.11,12. In this same line, López et al. developed a joint optimization of subarray configurations and element 
 excitations13, and Caorsi et al. optimized difference patterns of monopulse antennas by considering a hybrid real/
integer differential evolution  algorithm14. On the other hand, Morabito et al. addressed this problem by devel-
oping techniques based on convex  programming15. Alternatively, Mohammed developed a procedure based on 
Iterative Fast Fourier transform (IFFT) resulting in low complexity of the feeding network by sharing element 
excitations in both  modes16. Additionally, a procedure for designing forward-looking monopulse arrays capable 
of reconfiguring the array from the sum to the difference mode by altering the position of a group of parasitic 
elements was proposed by Rocca et al.17. Other approaches, based on time modulation strategies were devel-
oped by Fondevila et al.18. Finally, an approach which addressed the possibilities of optimizing sum-difference 
compromises fixing quasi nulls in their patterns was developed by Rodriguez et al.19. In this case, phase only 
and sub-arraying were considered but it is important to highlight that also here (as well as all the previous cases) 
no uniform amplitudes were considered for excitations. Regarding array thinning techniques and considering 
uniform arrays, Haupt proposed interleaved arrays by developing three different approaches (one full and two 
partially modes of interleaving) by means of genetic algorithms (GA)20. Thus, following the spirit of a very recent 
 publication21 where improvements on the null fixing for pencil beam patterns by means of array thinning in 
uniformly excited arrays were proposed, the present paper introduces an innovative technique for developing 
improvements on compromises between sum and difference far-field patterns.

Previous  methods10–20 either only study the optimization of some of the described characteristics of the pat-
tern (SLL and directivity) or they do not use array thinning in order to simplify the feeding network. Also, none 
of the above-mentioned articles can fix deep, analytical nulling directions in the pattern, with the exception 
 of21, which does not analyze the compromise between sum and difference patterns. Thus, the presented method 
overcomes state-of-the-art techniques, since it represents the first approach of addressing the optimization of 
SLL and directivity of thinned antenna arrays including deep null fixing in the compromise involving sum and 
difference patterns at the same time. As a consequence, implications on radar applications are addressed. Addi-
tionally, studies on the generalization of these linear arrays for the planar case, through the using of the separable 
distributions paradigm, are discussed.

Background theory and methods
Antenna array factor. The expression of a general array factor F(θ ,φ) considering 2N identical oriented 
radiating elements  is1

where k is the wavenumber; In the complex relative excitation of the n-th element; (xn, yn, zn) the position of the 
feed point; while j represents the imaginary unit; and θ and ϕ are the polar and azimuthal angles, respectively.

Linear arrays. Now, without loss of generality, and for analyzing the cases involved in this work, the origin 
of the coordinate system will be positioned at the array center. In such a way, particularizing for an equally 
spaced linear array with the elements at the positions 

(

xn, yn, zn
)

= (0, 0,±nd), being d the spacing between the 
elements, the expression of the array factor is simplified to

producing a ϕ-symmetric pattern.
Regarding the nature of the far field pattern produced by the linear array, two particular cases are interesting 

for developing the array thinning techniques proposed in these studies: cases producing sum and difference far 
field patterns.

For sum patterns, the complex relative excitation of the radiating elements which generate the far field pattern 
has to be symmetrical (i.e., I−n = In ). In such a manner, the array factor becomes

and then, simplifying the expression, the array factor corresponds to

On the other hand, in the case of linear arrays generating difference patterns, the complex relative excitation 
of the elements is anti-symmetrical, thus both halves of the linear array are excited with a symmetrical relative 
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amplitude and in phase opposition (i.e.,  I−n = −In or I−n = Ine
jπ ). Therefore, manipulating the array factor, 

one can find that

and then, simplifying the expression, it can be expressed as

Therefore, as the symmetry/anti-symmetry of the patterns are assumed, only one half of the arrays are con-
sidered for the optimization process.

Finally, it is worth highlighting that, in order to maximize the simplicity of the feeding network, the linear 
arrays here analyzed will present uniform relative amplitudes. In this manner, the array thinning strategy (ele-
ments set to zero or one) will take place.

Peak directivity of linear arrays. The peak directivity of an array can be used as quality parameter. In 
such a way, it provides an idea about the performance of a linear array generating a certain far field pattern. The 
general expression, on linear arrays, can be expressed as (1(pp. 153–154))

where θmax is the maximum radiation angle.
Then, applying the description of sum patterns, the expression of the peak directivity, considering a spac-

ing of d = �/2(being � the wavelength) and the previous description of the array factor (Eq. 4), is simplified to

Alternatively, considering the simplified version of the array factor for difference patterns (Eq. 6), and simi-
larly to the work developed by Hansen concerning continuous aperture  distributions3, the peak directivity of a 
difference far-field pattern produced by an out of phase linear array with a spacing of �/2 , can be expressed as

where θmax , in this case, is the angular position of one of the main beams of the difference pattern.
In light of the present expressions derived from the general formulation of the peak directivity of an antenna, 

it is worth noting that the computation time of an optimization process will be drastically reduced by imple-
menting these two simplified equations, valid for linear arrays of half-wavelength spacing, instead of the above-
mentioned integral of the far-field pattern.

Then, one can define the normalized peak directivity (η) in order to compare different solutions. This param-
eter η is determined by dividing the peak directivity of the pattern by the peak directivity of the uniform case 
(pattern with all the relative excitations set to 1).

Optimization procedure. The optimization procedure proposed in the present work implements a hybrid 
SA  algorithm23, which combines the local optimization method of the downhill simplex with a slowly reducing 
temperature parameter from the Simulated Annealing algorithm, resulting in a global optimization method. The 
proposed procedure codifies the relative amplitudes of the elements of the antenna as a sequence of zeros and 
ones (i.e., modelling an array thinning strategy). This encoding is performed by normalizing every continuous 
value of the relative amplitudes, ranging from zero to one, and setting to bit-zero the values lower than 0.5 and 
to bit-one those equal or greater than 0.5. GA-based alternatives are excluded, since they present greater compu-
tational cost associated (something particularly dramatic for a high number of array elements), as demonstrated 
already  in21.

The sequence of codified relative amplitudes is iteratively modified by the hybrid SA algorithm in order to find 
the combination whose characteristics match the desired ones in both the sum pattern (symmetric phase) and the 
difference pattern (anti-symmetric phase). More precisely, the procedure follows a similar strategy as the already 
described  in21, but generalizing its use to compromise solutions among sum and difference far-field patterns. In 
such terms, a cost function is defined, where each chosen parameter of both the sum and difference radiation 
patterns are implemented. The value of this cost function grows with the deviations of the characteristics of the 
patterns from the desired values. Thus, the algorithm is set to reduce the value of such cost function in order to 
optimize both the SLL and the peak directivity of the far field pattern on both sum and difference modes, while 
fixing some number of deep nulls by means of the Schelkunoff unit circle representation of the array  factor22.

To this aim, a general cost function for the process can be defined as
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where Csum and Cdifference are determined by particularizing a Cpattern for each case, being

where SLLo and SLLd are the obtained and desired SLL, respectively; ηo and ηd are obtained and desired normal-
ized peak directivity on θmax ; H(·) is the Heaviside step function (24(p. 1020)); M corresponds to the number of 
desired nulls to be fixed; θo0,i and θd0,i are the obtained and desired null position by means of their polar angles 
and, finally, c1, c2, and c3 are the different weights of the cost function. The polar angles of these null positions 
were obtained by introducing the Schelkunoff unit circle representation of the roots ( ωn ) of the polynomial 
associated to the relative excitations, as pointed out  in21. In such a way, the angular position of each null of the 
far field pattern θ0,n was calculated after determining the ψo

0  angle of ωn (represented in the complex plane), 
since θo0,i = acos(ψo

0/kd).

Extension to planar arrays. For the case of the extension to planar architectures, the approach here devel-
oped is based on the principle of separable  distributions25. The relative excitations for the planar array are cal-
culated by first laying our already optimized linear arrays in both the x and y axes, and then calculating the 
excitation of any element as the product of the relative excitations of the elements corresponding to the projec-
tions in both axes. In such a way, for each one of the two main axes of the 3D far field pattern, a certain SLL, 
peak directivity and deep null positioning are obtained. So, the array factor considering a separable planar array 
synthesized from two linear symmetrically excited arrays lying on the x − y plane is given by the multiplication 
of the array factors of each one of the corresponding linear arrays. For instance, if the simplifications derived 
previously in (4) for the case of sum patterns are considered, the expression becomes

where Inx and Iny are the relative excitations of the x and the y axes, respectively.
In this case, the pattern is composed by two sum patterns (1(p. 207)), since symmetrical normalized current 

distributions are assumed for each axis.
Alternatively, including a difference pattern in one of the two axes, the tridimensional solutions obtained differ 

in consequence. More precisely, the expressions of patterns generated by planar arrays with an anti-symmetrical 
element relative excitation distribution in one of the two main axes are obtained by homologous manipulations 
and can be simplified as (1(p. 207))

and

respectively. In radar applications, the sum pattern generated in Eq. (12) becomes interesting for acquisition of 
the target, while both Eqs. (13) and (14) difference patterns are used to boresight the element under tracking 
more accurately.

Otherwise, in the case of both difference patterns present in both main axes, a double-difference beam, as 
introduced by  Chesley26, is addressed.

This four-lobed far-field pattern is interesting when dealing with electronic  countermeasures27 for main beam 
jamming and accurately estimating the angle of arrival of  target28.

In the results section, a discussion about the four different 3D patterns obtained by the combination of sym-
metric/antisymmetric–symmetric/antisymmetric relative excitations distributions of the different linear arrays 
present on both main axes are addressed.

The peak directivity of the planar arrays, is calculated by following (1(p. 205))

where, in this case, the angular position of maximum radiation (θ0,ϕ0) of the examples involving difference pat-
terns is the position of the maximum of one of the two main beams (that will be out of broadside direction). As 

(10)C = Csum + Cdifference

(11)Cpattern = c1|SLLo − SLLd |
2H(SLLo − SLLd)+ c2|ηo − ηd |

2H(ηo − ηd)+ c3
∑M

i=1

∣

∣

∣
θo0,i − θd0,i

∣

∣

∣

(12)F(θ ,ϕ) = 4





2Nx
�

nx=1

Inx cos[(nx − 1/2)kdx sinθ cosϕ]



 ·





2Ny
�

ny=1

Iny cos
��

ny − 1/2
�

kdysinθ cosϕ
�



.

(13)F(θ ,ϕ) = 4j





2Nx
�

nx=1

Inx sin[(nx − 1/2)kdxsinθ cosϕ]



 ·





2Ny
�

ny=1

Iny cos
��

ny − 1/2
�

kdy sinθ cosϕ
�





(14)F(θ ,ϕ) = 4j





2Nx
�

nx=1

Inx cos[(nx − 1/2)kdx sinθ cosϕ]



 ·





2Ny
�

ny=1

Iny sin
��

ny − 1/2
�

kdysinθ cosϕ
�





(15)F(θ ,ϕ) = −4





2Nx
�

nx=1

Inx sin[(nx − 1/2)kdxsinθcosϕ]



 ·





2Ny
�

ny=1

Iny sin
��

ny − 1/2
�

kdysinθcosϕ
�





(16)Dmax =
4πF(θ0,ϕ0)F

∗(θ0,ϕ0)
∫ π/2

0

∫ 2π

0
F(θ ,ϕ)F∗(θ ,ϕ)sinθdθdϕ



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12162  | https://doi.org/10.1038/s41598-022-16547-y

www.nature.com/scientificreports/

at this stage just an analysis of the obtained results must be performed, there are no necessities for simplifying 
the expression regarding computation time.

Results
In the present section, an analysis of the compromise for linear arrays which generate both sum and difference 
patterns is addressed. Compromise solutions are interesting for radar applications considering feeding network 
 simplifications11,12, even if they are not optimum if the problem is treated independently. Thus, in order to analyze 
the performance of this procedure, a discussion considering radiation characteristics only, with no restrictions 
of fixing deep nulls, is developed and, afterwards, an analysis of this procedure including null fixing techniques 
is described. All the examples here reported address equally spaced arrays with d = �/2.

Without null fixing strategies. In order to understand the potentials of the present methodology for 
obtaining thinned arrays, a range of different sizes were tried. More precisely, linear arrays between 70 and 120 
elements were introduced in an optimization process obtaining common solutions for both sum and difference 
patterns (see Table 1). Cases with less than 70 elements (60, 50, and 40) did not improve the solution with all the 
elements on.

On the other hand, it is worth highlighting that the performance of the difference patterns obtained in the 
compromises is always worst that the complementary sum patterns of the same solution. This happens due to the 
appearance of the characteristic two main lobes at both side of the null present at θ = 0 degrees. In this manner, 
the value of the peak directivity is reduced to the half of the one of the sum pattern case in natural units. As a 
result, and as the data reported in Table 1 confirm, a reduction of 3 dB is expected.

With null fixing strategies. Considering deep null fixing, 40-element linear arrays were analyzed. In this 
case, optimizations with desired deep null positions at angles between 40 and 60 degrees, in steps of 5 degrees, 
were set (see Table 2). From the data obtained, it can be highlighted that solutions with a better null fixing per-

Table 1.  Results of the optimization of linear arrays with common relative excitations for generating both 
sum and difference patterns, improving SLL and peak directivity ( Dmax ), without applying deep-null fixing 
strategies.

# Elements Far-field pattern type SLL (dB) Dmax (dB)

70
Sum  − 14.80 18.20

Difference  − 12.42 15.25

80
Sum  − 15.40 18.57

Difference  − 14.14 15.57

90
Sum  − 17.45 18.81

Difference  − 14.00 15.64

100
Sum  − 19.13 19.03

Difference  − 14.83 15.75

110
Sum  − 18.99 19.14

Difference  − 14.90 15.81

120
Sum  − 18.95 19.73

Difference  − 14.23 16.46

Table 2.  Results of the optimization of a linear array of 40 elements with common relative excitations for 
generating both sum and difference patterns, improving SLL, peak directivity ( Dmax ) and including a desired 
common deep null.

Desired deep null position (deg.) Far-field pattern type SLL (dB) Dmax (dB) Nulls (deg.)

40
Sum  − 14.60 15.80 39.9

Difference  − 12.08 12.87 40.7

45
Sum  − 14.11 15.56 45.6

Difference  − 10.66 12.63 44.7

50
Sum  − 9.99 15.31 50.4

Difference  − 13.54 13.09 50.4

55
Sum  − 13.74 15.80 54.62

Difference  − 11.47 12.95 55.54

60
Sum  − 16.06 15.56 60.0

Difference  − 13.21 12.51 60.0
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formance show more degradation on the SLL and/or peak directivity of the pattern produced by this linear array. 
As an example, the case of fixing a common null at 60 degrees is reported in Table 3 and the far-field patterns 
generated are shown in Fig. 1. Also, in this case, it exists a different of 3 dB approximately between the results of 
sum and difference patterns obtained for each null fixing, something which is in accordance to the appearance 
of two main lobes in the case of the difference patterns, while the sum pattern only presents one, as previously 
discussed.

Planar arrays with separable distribution. Following the procedure described in the background and 
methods sections, an extension to planar arrays was developed by means of separable distributions. More pre-
cisely, two different cases of null fixing on compromise sum-difference patterns produced by equally spaced 
( dx = dy = �/2 ) linear arrays of 40 elements were used as input of the procedure (i.e., Nx = Ny = 40 ): one 
of them fixing a deep null at 40 degrees, while the other one fixing it at 60 degrees. These cases were extracted 
from the results of the previous section, analyzing null fixing strategies in compromise studies (Table 3) and the 
relative excitations of each linear array are shown in Table 4. In such a way, four cases can be analyzed obtained 
from the combination of symmetric-antisymmetric linear arrays: sum-sum patterns (Fig. 2a), difference-sum 
patterns (Fig. 2b), sum-difference patterns (Fig. 2c), difference-difference patterns (Fig. 2d). In the case of both 
sum patterns a directivity of 35.89 dB was obtained. Alternatively, in the case of difference-sum/sum-difference 
patterns, the peak directivity was 32.67 dB. Finally, the double difference pattern (the combination of two differ-
ence patterns) reached a peak directivity of 29.58 dB.

Table 3.  Right side of the relative excitations vector for the linear arrays for generating a compromise solution 
for sum (two halves in phase) and difference (two halves out of phase) patterns respectively, fixing a deep null 
at 60° degrees. The results associated to this solution are reported in Table 2.

Right side of the linear array for the best compromise sum-difference fixing a 
deep null at 60 degrees

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1

Figure 1.  Normalized far field patterns resulting from the compromise solution reported in Table 2 fixing a 
deep null at 60° and generated by the relative excitations shown in Table 3. (a) Sum pattern solution: two halves 
of the linear array in phase. (b) Difference solution: two halves of the linear array out of phase. The red dots 
indicate the obtained deep null positions.

Table 4.  Relative excitations vector for the linear arrays used in the design of the planar separable distribution 
reported in Fig. 2.

Linear array in ϕ = 0
◦ Linear array in ϕ = 90

◦

 − 1 − 1 − 1 0 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

 − 1 − 1 0 − 1 0 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1
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Discussion
In the present work, an innovative method for fixing deep nulls in compromises of radiation patterns of lin-
ear arrays with symmetrical and anti-symmetrical relative current excitations based on the hybrid SA global 
optimization algorithm was implemented. More precisely, a procedure already developed for sum patterns was 
generalized for dealing with finding the best compromise between sum and difference patterns. In such terms, 
this approach synthesizes a required radiation pattern facilitating the practical realization of the arrays consid-
ering their feeding networks. Thus, array thinning and deep null fixing techniques were developed at the same 
time in the array pattern synthesis for compromises between difference and sum far-field patterns. Regarding 
computational costs, as it can be expected (similarly to the case addressing sum  patterns21), the running time 
differences between the present methodology and GA-based alternatives increase considerably with the number 
of the array elements.

In order to extend this methodology to a planar architecture, separable distributions were used. As a conse-
quence, different types of 3-D far-field patterns were characterized, considering different combinations between 
compromise sum/difference patterns generated from each linear array present on each axis. All of them presented 
fixed nulls in the pattern cuts ϕ = 0◦ and ϕ = 90◦ planes. As it is well-know, this methodology presents some 
limitations since it extends linear array to rectangular grids and boundaries. In light of these considerations, 
an alternative planar extension based on the collapsed distributions  paradigm25,29 can be proposed. In such a 
way, after the generation of some optimized linear arrays guaranteeing some desired characteristics at different 
cuts of the 3D far-field pattern, the principle of collapsed distributions can be implemented in order to obtain 
the required relative excitations (± 1 or 0). These are able to be projected on each cut to generate the equivalent 
linear arrays previously optimized.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Received: 23 March 2022; Accepted: 12 July 2022

Figure 2.  Results for the extension to a planar architecture based on separable distributions. Considering sum/
difference pattern on each axis, four results can be produced: (a) sum pattern (sum–sum combination), (b) 
elevation difference pattern (difference–sum combination), (c) Azimuth difference pattern (sum–difference 
combination), (d) double difference pattern (difference–difference combination). In all the cases, the 3-D 
representation of the far-field pattern uses is expressed in terms of u = sinθcosϕ and v = sinθsinϕ. The white 
arrows included on each tridimensional pattern indicate the obtained deep nulls on each case. The relative phase 
response in each quadrant is included on each case.
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