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Predicting mortality 
among ischemic stroke patients 
using pathways‑derived polygenic 
risk scores
Jiang Li 1, Durgesh Chaudhary2, Christoph J. Griessenauer2,4, David J. Carey1, 
Ramin Zand2* & Vida Abedi1,3*

We aim to determine whether ischemic stroke(IS)‑related PRSs are also associated with and further 
predict 3‑year all‑cause mortality. 1756 IS patients with European ancestry were randomly split 
into training (n = 1226) and testing (n = 530) groups with 3‑year post‑event observations. Univariate 
Cox proportional hazards regression model (CoxPH) was used for primary screening of individual 
prognostic PRSs. Only the significantly associated PRSs and clinical risk factors with the same 
direction for a causal relationship with IS were used to construct a multivariate CoxPH. Feature 
selection was conducted by the LASSO method. After feature selection, a prediction model with 11 
disease‑associated pathway‑specific PRSs outperformed the base model, as demonstrated by a higher 
concordance index (0.751, 95%CI [0.693–0.809] versus 0.729, 95%CI [0.676–0.782]) in the testing 
sample. A PRS derived from endothelial cell apoptosis showed independent predictability in the 
multivariate CoxPH (Hazard Ratio = 1.193 [1.027–1.385], p = 0.021). These PRSs fine‑tuned the model 
by better stratifying high, intermediate, and low‑risk groups. Several pathway‑specific PRSs were 
associated with clinical risk factors in an age‑dependent manner and further confirmed some known 
etiologies of IS and all‑cause mortality. In conclusion, Pathway‑specific PRSs for IS are associated 
with all‑cause mortality, and the integrated multivariate risk model provides prognostic value in this 
context.
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HR  Hazards ratio
HWE  Hardy–Weinberg Equilibrium
ICD  International Classification of Disease
IS  Ischemic stroke
LAS  Large-artery strokes
LASSO  Least absolute shrinkage and selection operator
LD  Linkage disequilibrium
MAF  Minor allele frequency
ML  Machine learning
NIHSS  National Institutes of Health Stroke Scale
OR  Odds ratio
QTL  Quantitative trait loci
PCA  Principal Component Analysis
PRS  Polygenic risk score
SNP  Single nucleotide polymorphism
SVS  Small vessel stroke
TNF  Tumor necrosis factor
T2D  Type II diabetes
TOAST  Trial of ORG 10,172 in acute stroke treatment

A recent report from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has shown a 
substantial increase in the annual number of strokes and secondary  deaths1. The current prediction models on 
post-stroke mortality vary by setting, observation window, algorithms, the breadth of clinical variables, and 
overall  usefulness2. So far, features selected to predict post-ischemic stroke (post-IS) mortality mainly focus 
on demographics, social, and clinical factors. Identified genetic risk factors have not been integrated into these 
prediction models, individually or together, as a composite score in either  cohort2 or longitudinal studies.

Genome-wide association studies (GWAS) on IS and its etiologic subtypes have been conducted for a decade, 
and more stroke risk loci have been  identified3. Polygenic risk scores (PRSs) based on the effect sizes estimated 
from the meta/mega-analyses of GWAS, led by the MEGASTROKE consortium, have proven informative for IS 
risk  stratification4 and augmenting  subtyping5. The short-term or long-term outcomes have become “The Next 
Big Thing” in the focus of stroke genetics with a great demand for the development of neuroprotective  agents6.

Post-IS mortality is considered a complex multifactorial trait with known and unknown etiologies. The risk 
of stroke-related death and stroke hospitalization in monozygotic compared with dizygotic co-twins is increased 
with the heritability estimated at 0.32 and 0.17,  respectively7, suggesting that genetic liability contributes to post-
stroke mortality. Studies to incorporate genetic variants into the diagnostic/prognostic algorithms for improving 
post-stroke care are  underway8. Domain knowledge-based PRS can be used to integrate genetic variants—at the 
basis of shared biological pathways—and reduce the hypothesis space due to the convergence of gene functions. 
Pathway-specific PRSs can stratify diseases into subtypes in the UK Biobank with substantially greater power 
than genome-wide  PRSs9. Emerging pathway-specific PRS offers profound insight into the complex disease and 
treatment response heterogeneity, prioritizes biologically tractable therapeutic targets, and provides an alterna-
tive path to precision medicine and outcome prediction in multiple  disorders10–15.

Through a regularized regression model to integrate multiple sets of GWAS summary statistics on stroke and 
its modifiable clinical risk factors, a metaGRS has been developed to determine its independent predictability 
for  IS16. Our previous study has identified several pathway-specific PRSs that are significantly associated with 
IS or IS  subtypes5. This study is aimed to evaluate whether we can prioritize mortality-related PRSs from these 
candidates through a regularized regression and further demonstrate their independent predictability in an 
integrated mortality prediction model.

Method
The Geisinger MyCode Community Health Initiative is a health system-based population representing a geo-
graphically defined population who visit Geisinger clinics from East and Central Pennsylvania and is enrolled 
in the MyCode genotyping and exome sequencing  program17. We have previously shown that PRS augments 
stroke subtyping in a retrospective cohort study from September 2003 to May 2019 using data from the MyCode 
 population5. A total of 12,883 IS patients were identified, and their data was extracted from the updated Geisinger 
Neuroscience Ischemic Stroke (GNSIS)  database18, of which 15.2% (1961) were enrolled in the MyCode program 
and met the inclusion/exclusion criteria (Fig. 1). A total of 1756 out of 1961 patients included in this study had 
3-years of follow-up. We also identified 19,806 MyCode patients with index age ≥ 69 but without the International 
Classification of Diseases (ICD), Ninth or Tenth Revision codes for IS. They were only used to prioritize disease-
associated pathway-specific PRSs, as shown in a previous  study5.

The Geisinger institutional review board approved this study for the use of de-identified data. Informed 
consent was obtained for all MyCode patients and/or their legal guardians included in this study. All methods 
were performed in accordance with the relevant guidelines and regulations. Information for genetic variants 
and their  weight3 in the construction of each PRS is publicly available at the MEGASTROKE website (https:// 
www. megas troke. org/); Information for candidate gene-sets selected for this study was previously  identified5.

The outcome of interest and clinical risk factors. Long-term mortality was defined as the hazard of 
death due to all causes within 3-year (primary outcome variable) after incident stroke. For comparative assess-

https://www.megastroke.org/
https://www.megastroke.org/
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ment, we further evaluated all-cause mortality within 1-year and 5-year after the incident stroke. All-cause mor-
tality is a more robust end-point than a specific cause of  death19.

We calculated for each patient from date of the index stroke till death or date of the end of follow-up. The 
data from all encounter types were extracted and processed to ensure the comprehensiveness of the follow-up 
information. The last encounter of patients was also recorded to ensure that patients were active. Filters were 
applied to ensure that the relevant variables were captured within the desired time frame while maintaining 
the order of events. This database was cross-checked with the Social Security Death Index to reflect updated 
information on the vital status. The 3-year all-cause mortality rate was calculated by dividing the total number 
of patients who died within three years after the initial stroke event by the total number of IS patients with 
three-year follow-up (Table 1). Standardized mortality ratios (SMRs) were calculated as the ratio of observed 
(mortality rate in the MyCode IS) to expected deaths (mortality rate in the entire GNSIS database of Geisinger) 
in the duration of the follow-up.

The diagnosis of clinical risk factors was based on structured data captured in the EHR using ICD9/10  codes5.
The demographic and the frequency of clinical risk factors, as shown in Table 1, were comparable to some 

previously reported  cohorts19–22. This was a quality control step to avoid significant coding bias for comorbidities.

Missing clinical data and imputation. For the self-reported variables (such as alcohol, smoking) the 
missing value was replaced by zero. The BMI and systolic and diastolic blood pressures were imputed by MICE 
2lpan, an appropriate strategy as we previously  demonstrated20. No imputation was conducted for NIHSS (miss-
ingness at 37.8%) as there is no consensus strategy to impute this variable. Table 1 lists the missingness levels in 
all the variables. Variables with a high level of missingness (such as NIHSS) were not included in the final model. 
However, we explored the potential associations with PRSs in the prediction model to determine independence 
or possible interaction.

Genotyping, imputation, and quality control. Samples were genotyped using Infinium OmniEx-
press Exome array (Illumina) and GSA-24v1-0 array (Illumina). Genotypes for both cohorts were imputed to 
HRC.r1-1 (Haplotype Reference Consortium reference panel, version r1.1) EUR reference genome (GRCh37 
build) separately using Michigan Imputation Server, which employed Eagle v2.3 and Minimac4 as the phasing 
and imputation algorithm, respectively. Samples with a genotyping rate below 95% were excluded. SNPs with 
imputation info score < 0.7, minor allele frequency (MAF) < 1%, and significant deviation (p <  10–4) from Hardy–
Weinberg Equilibrium (HWE) were removed. A pruned set of SNPs (608,437) was generated from high quality 
genotyped SNPs (MAF > 0.05, HWE p > 0.0001, LD pruned with r2 between SNPs < 0.2). A fast PCA (“https:// 
www. cog- genom ics. org/ plink/2. 0/”) using 1 KG phase III (2014 version) as the reference genome indicated that 
all the selected cases and controls were of EUR.

SNP

GENE

PATHWAY
(MSigDB-BP)

Gene-sets derived PRS from case/control 
#7349

PRS-derived from Gene-sets associated 
with 

ischemic stroke (IS) #333 
(p < 0.001)

Screening normalized PRSs associated with 
all-cause mortality using univariate Cox 

regression

LASSO for feature selection 
(CV.glmnet, nfold=5, α= 1, λ1se or λmin)

Multivariate Cox proportional hazards 
regression analysis
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PRS stratification 
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Baseline Phenotype-PRS association to 
determine independency in subgroup 

analysis
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MAF < 1.0

Figure 1.  A flow chart for the strategy of the entire analysis. Domain Knowledge-based approach to identify 
disease-relevant pathway-specific PRSs and further predict all-cause mortality using an integrated multivariate 
Cox proportional-hazards model with features selected by LASSO.

https://www.cog-genomics.org/plink/2.0/
https://www.cog-genomics.org/plink/2.0/
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PRS construction and estimation. PRSavg
5 was constructed by PRSice-221, with the algorithm, 

PRSj =
∑

i
Xij β̂i
mj

 , which was calculated by the number of observed effective allele ( Xij) for each variant multi-
plied by the corresponding effect size ( ̂βi) derived from the MEGASTROKE, divided by the number of alleles 
( mj ) included in PRS from that individual, and finally sum of all from that individual (j). All PRSs were normal-
ized first ( X ′

= X−µ
σ

 ), where μ is the mean and σ is the standard deviation of the X variable.
Pathway-specific PRSs were created using the gene-set specific PRS algorithm implemented in PRSice-2. 

We reconstructed domain knowledge-based PRS using gene-sets derived from the Gene Ontology (GO) Bio-
logical Process under two MAF thresholds (MAF < 0.025 or < 1.0), which represent low-frequency common 
variants  (SNPn = 68,379) or all variants  (SNPn = 231,307) accordingly. LD-clumping using the following PLINK 
command: –clump-p1 1,–clump-kb 1000, – clump-r2 0.3 was applied to all common variants matched to the 
variants collected in the base files, the summary statistics from MEGASTROKE . A total of 7349 GO pathways 
of the biological process and their related genes were defined by Molecular Signatures Database (https:// www. 
gsea- msigdb. org/ gsea/ msigdb/ index. jsp).

The final report of association with IS was a result of meta-analyses of discovery (n = 1184/10,983 for case/
control) and replication (n = 951/8823 for case/control)  datasets5. The sex and five major principal components 
(PCs) were included as covariates in the logistic regression model. We only considered the signal of associa-
tion valid given at least 25 SNPs per gene-set. The pathway-specific PRSs associated with IS with p < 0.001 were 
considered disease-relevant PRSs for the subsequent analyses. The best fit pathway-specific PRS per gene-set 
was selected from either MAF < 0.025 or MAF < 1.0. A total of 333 PRSs (114 from MAF < 0.025 and 219 from 
MAF < 1.0) were identified as potential candidates for the feature selection. In this study, we used self-contained 
p value for filtering but not for ranking of pathway-specific PRSs. In order to reduce the need of extensive com-
putational resources, we did not calculate competitive p value using the permutation approach.

Table 1.  Baseline characteristics in the retrospective study cohort. The study cohort was split into training 
and testing datasets. We also provided clinical characteristics stratified by dichotomized age at index stroke 
in eTable 2. ANOVA or Chi-square test was selected for quantitative or qualitative measures, respectively. 
Abbreviations; ANOVA = analysis of variance; BMI = body mass index; BP = blood pressure; Ever Ssmoke: 
Defined as ever smoke at least one cigarette per day within the three years prior to the event; Alcohol: Defined 
as consuming more than 200 g of pure alcohol per week. All continuous variables are reported as means with 
standard deviations, and dichotomous variables are reported as percentages. Patients with a BMI of 18.5 to 
24.9 kg/m2 and BMI of 25 to 29.9 kg/m2 were categorized as normal weight and overweight, respectively. 
Patients with a BMI of 30 kg/m2 and above were categorized as obese. NIHSS ≥ 7 was dichotomized NIHSS by 
score ≥ 7. Similar for NIHSS ≥ 10 and NIHSS ≥ 16.

Dataset Training (n = 1226) Testing (n = 530) All Dataset (n = 1756) ANOVA or Chi-square

Feature N
Mean ± SD or 
Frequency(%) %Missing N

Mean ± SD or 
Frequency(%) %Missing N

Mean ± SD or 
Frequency(%) %Missing F or χ2 statistics pvalue

Age at Index 
(≥ 66.8)) 1226 66.42 ± 12.03 0 530 66.35 ± 12.76 0 1756 66.4 ± 12.25 0 0.01 0.91

Age at 
Index(≥ 66.8)) 614 50.1 0 265 50 0 879 50.1 0 0 0.98

Hypertension 952 77.7 0 399 75.3 0 1351 76.9 0 1.17 0.28

Systolic BP 949 132.5 ± 22.43 22.59 418 130.31 ± 18.71 21.13 1367 131.83 ± 21.38 22.15 3.05 0.08

Diastolic BP 949 72.07 ± 11.35 418 71.1 ± 10.54 1367 71.78 ± 11.11 2.22 0.14

BMI 1225 29.6 ± 7.23  < 0.01 528 29.27 ± 7.25  < 0.01 1753 29.5 ± 7.23  < 0.01 0.78 0.38

BMI ≥ 25 905 73.8 365 68.9 1270 72.3 4.17 0.04

BMI ≥ 30 507 41.4 204 38.5 711 40.5 1.16 0.28

Sex (Male) 671 54.7 0 281 53 0 952 54.2 0 0.44 0.51

Atrial fibrillation 311 25.37 0 141 26.6 0 452 25.74 0 0.3 0.59

Coronary Artery 
Disease 414 33.8 0 186 35.1 0 600 34.2 0 0.29 0.59

Diabetes 393 32.1 0 171 32.3 0 564 32.1 0 0.01 0.93

Dyslipidemia 601 49 0 247 46.6 0 848 48.3 0 0.87 0.35

Ever smoke 679 55.4 19.25 289 54.5 18.11 968 55.1 18.91 0.55 0.46

Alcohol 180 14.7 40.46 73 13.8 40.19 253 14.4 40.38 0.32 0.57

NIHSS ≥ 7 163 21.5 38.17 70 21 36.98 233 21.3 37.8 0.04 0.84

NIHSS ≥ 10 94 12.4 47 14.1 141 12.9 0.58 0.45

NIHSS ≥ 16 51 6.7 26 7.8 77 7.1 0.4 0.53

Death within 5 yr 261 21.3 0 123 23.2 0 384 21.9 0 0.8 0.37

Death within 3 yr 193 15.7 0 91 17.2 0 284 16.2 0 0.56 0.46

Death within 1 yr 96 7.8 0 48 9.1 0 144 8.2 0 0.74 0.39

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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Evaluation of the PRSs prediction model. The PRSs were created at one time for the entire cohort. We 
randomly split the cohort into 70% training (n = 1226) and 30% testing datasets for model training and testing. 
eFigure 2 presents a general overview of each normalized PRS output distribution directly from the risk score 
calculation.

Univariate Cox proportional hazards model was conducted to determine if any PRSs or nongenetic variables 
affected 3-year mortality results in the training dataset. We set up the threshold of an unadjusted p-value for this 
association in a stepwise manner to consider different numbers of PRSs during the feature selection and model 
fine-tuning process. Four tiers of significance of this association were established with p < 0.1, p < 0.025, p < 0.05, 
and p < 0.01. The least absolute shrinkage and selection operator (LASSO)  method22 in multivariate CoxPH 
model, an L1 penalization technique, was applied for feature selection. It forced some regression coefficient 
estimates to be exactly zero, thus achieving variable selection while shrinking the remaining coefficients toward 
zero to avoid the overfitting and overestimation caused by data-based model selection.

The partial likelihood for Cox models for β was calculated  by22.

where X = (X1,X2, . . . ,Xp) , a vector of p predictors; β = (β1,β2, … , βp) T , estimates of regression coefficients in 
the proportional-hazards model; D, the set of indices of the failures (death); Rr , the set of indices of the individu-
als at risk at time tr – 0;  jr denote the index of the observation failing at time tr.

The penalized partial likelihood for Cox models was calculated by.

where α = 1, p�(|βx|) = �|βx | , x ∈ p, a vector of p covariates, and 
∑

|βx| ≤ s , where s > 0 is a user-specified 
parameter. � is a penalty coefficient that was selected from a simulated vector.

Briefly, we called our CV.glmnet function to fit with the lasso penalty (alpha = 1), and using CV (nfolds = 5) 
to select optimal λ. We set the maximum number of iterations to 10,000 because our data is relatively high 
dimensional, so more iterations were needed for convergence. We extracted both λ, λmin, and λ1se, and the λ used 
in the final model was determined by the c-statistics calculated from the testing sample. This (to select λmin, or 
λ1se) was the step to assess the bias-variance tradeoff. Variables used in the final risk model(s) and their effect 
sizes are shown in eTable 1. We then refit a multivariate CoxPH model using nongenetic variables or selected 
PRSs with non-zero regression coefficients estimated from the training dataset by Cross-Validation.glmnet (R 
package ‘glmnet’).

The partial log-likelihood (LL) deviance from fivefold cross-validation (CV),

where β̂−i(�) is the parameter estimate leaving out part i of the data, and LL−i is the log-likelihood leaving out 
part i of the data.

Schoenfeld residuals from the Cox models were examined to access possible departures from model 
assumptions.

Model assessment, fine‑tuning, and comparison. We assessed the performance of the multivariate 
model in the prediction of 3-year mortality with concordance probability (C-index) which was computed on 
the 30% testing dataset using methodology described  elsewhere23, which was recognized as Uno’s C-statistic 
for right censored data. To determine whether the final multivariate model was working better than random 
chance, we can empirically compute the null C-index distribution by generating linear predictors from a nor-
mal distribution and comparing observed C-index to null distribution using C-statistics implemented in the R 
survC1 package. This C-index tells how well the given prediction model works in predicting events (mortality) 
that occur in the time range from 0 to ‘tau’, which was set as 3-year. To quantify the improvement of predictability 
using an integrated model with additional pathway-specific PRSs superior to the base model (clinical risk fac-
tors only), we calculated continuous Net Reclassification Index (NRI), Integrated Discrimination Improvement 
Index (IDI), and median improvement by R package ‘survIDINRI’23–25.

We defined subjects who have events by t0 as cases (i.e. T0 ≤ t0 ) and those who are event-free as controls (i.e. 
T0 > t0)., p̂2(Z0

(2); t0) and p̂1(Z0
(1); t0)  were defined as two approximations to  p̂(Z0; t0) by two survival models 

(e.g. integrated and base models), where Z0
(2) and Z0

(1) denote the corresponding covariate vectors. 
D̂
(
Z0; t0

)
= p̂2

(
(Z0

(2); t0

)
− p̂1

(
(Z0

(1); t0

)
 , which denotes the change in estimated risk  score23. The empirical 

distribution function of D̂ is represented by a thick solid line for T0 ≤ t0 and thin solid line for T0 > t0 . If the 
integrated model gives a better prediction than the base model, it can be expected that D̂ tends to be positive for 
a case and negative for a control. The class of measures we consider here is a set of global measures for the ‘dis-
tance’ between these two distributions of D̂ . The distances between two black dots and between two gray dots 
are the estimation of IDI when s = 0 and NRI for median risk-score difference, respectively. All the point esti-
mates with 95%CI for three values were calculated based on 2000 perturbation resampling, and the significance 
of this improvement was present.

L(β) =
∏

r∈D

exp
(
βTXjr

)

{
∑

j∈R exp(β
TXj)}

L(β)−

p∑

x=1

pα , �(|βx |)

ĈV i(�) = LL

(
β̂−i(�)

)
− LL−i

(
β̂−i(�)

)
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Survival analyses. We conducted survival analysis and assumed all survival times were independent of 
each other and censoring occurred solely as right censoring and uninformative. All covariates were measured at 
or surrounding the index date without changing over time. For univariate modeling, 3-year all-cause mortality 
was also assessed using the Kaplan–Meier estimator for cumulative incidence function in the training dataset. 
An optimal cutpoint was obtained by a maximally selected rank statistic greater or equal to b (a percentile) to 
distinguish low and high-risk groups. We approximated the exact conditional p value by simulation using con-
ditional Monte Carlo (R package ‘maxstat’). For multivariate modeling, the cumulative incidence of mortality 
over time in the high-risk, intermediate-risk, and low-risk groups (three terciles) was optimized in the training 
dataset. It was tested on the testing dataset by R ‘survival’ and ‘survminer’ packages. We also conducted pairwise 
Log-rank tests from the three strata (high-risk, intermediate-risk, and low-risk) for mortality using the Kaplan–
Meier estimator. For all analyses, p < 0.05 was considered statistically significant. For all the post-hoc pairwise 
tests, p values were adjusted by the Benjamin-Hochberg procedure.

Subgroup analyses. We split the entire cohort into younger and older stroke subgroups by 1:1 ratio using 
the median age at the index stroke date. We also evaluated the effect size of the PRS in the 1-year, 3-year, and 
5-year univariate CoxPH model in all samples and subgroups. The relationships between PRSs (predictive vari-
able) and clinical risk factors (dichotomized response variable) were evaluated using logistic regression in all 
models and subgroups.

Result
Clinical characteristics. Table  1 summarizes the demographics and clinical characteristics of 1756 IS 
patients. Overall, 54.20% were male patients with the median age at index stroke of 66.80 years. The mortality 
rates were 8.20%, 16.2%, and 21.90% for 1-year, 3-year, and 5-year follow-up periods. Accordingly, the stand-
ardized mortality ratios (SMR) was 0.47, 0.58, and 0.59, suggesting most of the death occurred in the 1st year 
post-IS.

Significantly increased frequency of clinical risk factors such as CAD, hypertension, AFib, Diastolic BP, dys-
lipidemia, diabetes was observed in the older subgroup (eTable 2). The mortality rates significantly increased 
from 3.31%, 7.87%, and 11.74% to 13.08%, 24.46%, 31.97% for 1-year, 3-year, and 5-year follow-up, suggesting 
a relatively more benign outcome for younger patients. Sex was not included for feature selection because of 
insignificant association in the univariate CoxPH model.

Construction and evaluation of PRS prediction model. PRS constructed by all common vari-
ants for 1756 MyCode IS and 19,806 MyCode patients without IS showed a significant association with IS 
 (plowest = 1.23 ×  10–7; Nagelkerke pseudo-R2 = 0.003). The p-value thresholding primarily confirmed the stability 
of the observed association (Fig. 2). The events for mortality at 3-year follow-up were 193/1226 (training cohort) 

Figure 2.  Evaluation of predictive power of PRS derived from all common variants on Geisinger ischemic 
stroke. PRSs were derived from MEGASTROKE by PRSice-2. LD-clumping using the following PLINK 
command: –clump-p1 1, –clump-kb 1000, –clump-r2 0.3 was applied to all common variants, resulting in 
231,307 SNPs for p-value thresholding in the MyCode IS (n = 1756) versus non-IS (n = 19,806) patients. The 
results were derived over a range of p value thresholds. Nagelkerke pseudo-R2 as shown in the Y-axis, represents 
how much variation is explained by the model. the X-axis represents the threshold for a base p value. P value on 
the top of each bar represents the probability of non-zero regression coefficient with the F statistic hypothesis 
testing of the fit of the intercept-only (PRS excluded) model and PRS included model are equal. The regression 
model was adjusted by the covariates including sex, and the five main principal components(PCs).
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and 91/530 (testing cohort). There was no significant difference between training and testing samples except 
for BMI ≥ 25. PRS constructed by all common variants or all low-frequency variants (MAF < 0.025) showed 
no association with post-IS mortality in the univariate CoxPH analysis (HR = 1.025, 95%CI [0.882–1.191] or 
HR = 1.005, 95%CI [0.812–1.243] for 3-year follow-up, respectively).

Common nongenetic risk factors such as age at index stroke, AFib, BMI, CAD, diabetes, dyslipidemia, hyper-
tension, and smoking demonstrated larger HRs than PRSs in the training dataset (eFigure 1).

After filtering out the paradoxical direction for the regression coefficients of the association between PRS and 
IS or post-IS mortality, 15 PRSs formed by SNPs with MAF < 1.0 and 16 PRSs formed by SNPs with MAF < 0.025 
were treated as disease-relevant pathway-specific PRS, were treated as disease-relevant pathway-specific PRS 
 (praw < 0.1), eFigure 2 shows the distribution of these PRSs. PRSs constructed from all-common-variants pri-
marily show Gaussian distribution. In contrast, some PRSs derived from low-frequency-variants retained the 
polynomial distribution patterns, suggesting that low-frequency alleles may only be present in a few patients. 
These PRSs cannot proportionally stratify the outcome risk. We then obtained the optimal cutpoint for each PRS 
and dichotomized the patients into high and low-risk groups (eFigure 3). Kaplan–Meier analyses (Fig. 3) showed 
all 31 PRS candidates significantly distinguished the high and low-risk groups with  praw < 0.05.

The correlation matrix of PRSs (eFigure 4) revealed the hierarchical nature of the GO biological process. For 
example, some PRSs derived from Amyloid β-related pathways were highly correlated, suggesting their relation-
ship as parent-son terms or sibling terms in the hierarchy of this biological process.

The identified pathway-specific PRSs highlighted the known pathogenesis of IS or post-IS mortality. For 
example, (1) Amyloid β formation in cerebral small vascular disease; (2) Endothelial apoptosis and inflammation 
(TNF) in atherosclerosis; (3) Serotonin in platelet aggregation and vascular remodeling; (4) Obesity paradox in 

Figure 3.  Kaplan–Meier plot of the two groups created by the cutpoint for PRS. All the pathway-specific 
PRSs for 3-year mortality identified by univariate CoxPH were dichotomized by the corresponding cutpoint, 
and Kaplan–Meier analysis for each binary PRS was conducted. We simulated the null distribution using the 
conditional Monte Carlo method and compared it with the exact distribution for the log-rank statistic to get the 
lower bound of the p-value for each pathway-specific PRS. P value derived from the Log-rank test was labeled.
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post-IS mortality, which was also observed in nonMyCode  patients26; (5) Coagulation and fibrinolysis in stroke 
and recurrence.

A total of 8 clinical risk factors and an additional 31, 20, 9, or 3 PRSs with potential prognostic value were 
identified as selected features after stepwise cutoffs (p < 0.1, 0.05, 0.025, 0.01) from the univariate CoxPH (Table 2).

Construction of the integrated PRSs prediction model. The LASSO method was used for feature 
selection of prognostic PRSs in combination with and without nongenetic features in a multivariate CoxPH 
(Fig. 4). A total of 16, 11, 5, or 2 PRSs remained to construct the prediction model after filtration by LASSO. 
Three levels of risk stratification, high-risk, intermediate-risk, and low-risk groups, were proposed. This risk 
stratification was first conducted in the training dataset (eFigure  5) and then applied to the testing sample 
(Fig. 5). We also reported the HRs of each variable that remained in the multivariate CoxPH (eTable 1). PRS 
derived from GO Negative regulation of endothelial apoptosis constantly showed a significant association in the 
final models (i.e., HR = 1.193 [1.027–1.385], p = 0.021 for 3-year mortality), suggesting its robustness as an inde-
pendent predictor.

Predictability in the unseen testing sample. A prediction model, based on 11 or 16 disease-asso-
ciated pathway-specific PRSs, outperformed the base model, as demonstrated by a higher concordance index 
(0.751, 95%CI [0.693–0.809], 0.754, 95%CI [0.693–0.814], respectively) in the unseen testing sample (Table 2). 
Estimation of IDI and NRI(> 0) were 0.023 [0.019–0.102] and 0.172 [0.054–0.343] with a significant median 
improvement (0.021 [0.006–0.086], p < 0.020) for the integrated model with 11 pathway-specific PRSs (Fig. 5 
and eFigure 6). Compared to the base model, the integrated model (with 11 PRSs) could differentiate not only 
the high-risk from the intermediate-risk (p = 4.80E-4) but also intermediate-risk from the low-risk (p = 0.016) 
(Fig. 5).

In addition, an attempt to dichotomize PRS by a cutpoint showed no benefit at improving the C-index com-
pared to quantitative PRS in the multivariate prediction model.

Bias assessment and subgroup analysis. Since the prognosis of younger stroke is generally considered 
benign (eTable 2), a more sensitive approach would be to compare the effect size of PRS in association with 
mortality in a subgroup of age-stratified stroke patients. The forest plots (Fig. 6) revealed the HRs at 1-year, 
3-year, and 5-year follow-up for each pathway-specific PRS. Some HRs shifted gradually to the left (e.g., GO 
negative regulation of MAPK cascade) or to the right (e.g., GO response to Interleukin 1) over time. In contrast, 
others showed uncertainty (e.g., GO positive regulation of membrane depolarization). Generally, pathway-specific 
PRSs showed a larger effect size solely in the older subgroup. Secondary analysis of the trends of HR for post-IS 
mortality showed an increase over time in GO negative regulation of endothelial cell apoptosis among older par-
ticipants, a decline over time in GO positive regulation of membrane depolarization among younger participants, 
and an increase over time in GO response to Interleukin 1 among older and younger participants (Fig. 6).

GO negative regulation of endothelial cell apoptosis; the most predictable PRS demonstrated a significant 
effect only in the older subgroup suggesting the endothelial injury plays an essential role in post-IS mortality, 
particularly in the older patients. It was noted that hypertension was the only clinical risk factor showing a trend 
of association with this PRS with the same direction for both (OR = 1.174, 95%CI [0.975–1.418], p = 0.093 for 
old) (eFigure 7). In a bivariate CoxPH model after adjustment for hypertension, this PRS was still associated with 
3-year mortality in all (p = 0.044) and the older subgroup (p = 0.006), suggesting its independent predictability. 

Table 2.  Predictive performance of the integrated multivariate Cox proportional-hazard regression model 
with different entry levels for pathway-specific PRSs included for feature selection by LASSO method. The 
seven clinical risk factors include AFib, BMI, CAD, diabetes, dyslipidemia, hypertension, and smoking.

Univariate p value cutoff Features Input Features selected (LASSO)
C-Index Mean ± SE 
[95%CI]

median improvement 
against base model

 < 0.1 31 PRSs + Age 24 PRSs + Age 0.705 ± 0.035 [0.637–0.773]  < 0.001

 < 0.05 20 PRSs + Age 16 PRSs + Age 0.684 ± 0.033 [0.619–0.749]  < 0.001

 < 0.025 9 PRSs + Age 8 PRSs + Age 0.661 ± 0.036 [0.592–0.731] 0.027

 < 0.01 3 PRSs + Age 2 PRSs + Age 0.643 ± 0.034 [0.575–0.710] 0.233

base model 0 PRSs + Age 0 PRSs + Age 0.626 ± 0.024 [0.578–0.674] NA

 < 0.1 31 PRSs + Age + 7 16 PRSs + Age + 7 clinical 
risk factors 0.754 ± 0.031 [0.693–0.814]  < 0.001

 < 0.05 20 PRSs + Age + 7 11 PRSs + Age + 7 clinical 
risk factors 0.751 ± 0.030 [0.693–0.809] 0.02

 < 0.025 9 PRSs + Age + 7 6 PRSs + Age + 7 clinical risk 
factors 0.740 ± 0.030 [0.680–0.799] 0.066

 < 0.01 3 PRSs + Age + 7 2 PRSs + Age + 7 clinical risk 
factors 0.729 ± 0.028 [0.674–0.783] 0.319

base model 0 PRSs + Age + 7 0 PRSs + Age + 7 clinical risk 
factors 0.729 ± 0.027 [0.676–0.782] NA
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After adding an interactive term (PRS: hypertension) into the bivariate CoxPH model, no significant interaction 
was identified in the older subgroup (p = 0.421).

The PRS derived from the GO serotonin receptor signaling pathway showed a significant association with IS. 
A similar trend of association with 3-year mortality was observed in the same direction for the association inde-
pendent of age at index stroke. This PRS also showed a significant association with CAD regardless of age group 
(OR = 0.835, 95%CI [0.711–0.978], p = 0.027 for younger; OR = 0.869, 95%CI [0.048–0.755], p = 0.048 for older).

In the complete case analysis, NIHSS showed significant association with 3-year mortality (HR = 2.978, 
95%CI[2.038–4.353] for NIHSS ≥ 16; HR = 2.203, 95%CI[1.597–3.039] for NIHSS ≥ 10). PRS derived from GO 
negative regulation of endothelial apoptosis still show a trend of association after controlling for NIHSS ≥ 16 
(p = 0.074) and NIHSS ≥ 10 (p = 0.082), suggesting this PRS was a partially independent predictor after control-
ling for NIHSS in the bivariate CoxPH.

Discussion
This is the first study to predict post-IS all-cause mortality by integrating pathway-specific disease-relevant PRSs 
into a nongenetic multivariate CoxPH model. In this study, model optimization was performed by applying 
regularized regression, LASSO, and cross-validation. Despite the smaller effect size (HR < 1.50) for these PRSs 
compared to nongenetic risk factors identified from the initial univariate CoxPH model, some demonstrated 
independent predictability in the final multivariate CoxPH model. These included PRS derived from GO negative 
endothelial cell apoptotic process regulation and GO Hematopoietic stem cell differentiation. The integrated model 
outperformed the clinical-only model significantly. Our results corroborated the capability of PRSs in refining 
the model’s predictability in the testing dataset. The subgroup analysis results highlighted several pathways 
associated with IS and post-IS mortality, particularly in the older subgroup. The correlation between PRSs and 
modifiable clinical risk factors indicated that several pathways might also contribute to modifiable clinical risk 
factors, suggesting horizontal or vertical pleiotropisms.

The importance of GO Negative regulation of endothelial cell apoptotic process in ischemic heart disease has 
been highlighted in basic science  research27–29. Understanding the molecular mechanisms involved in the regu-
lation of endothelial cell survival and apoptosis may provide new therapeutic targets to enhance angiogenesis 
in tissue-ischemia27. As the fundamental cause of myocardial infarction and stroke, atherosclerosis involves 
leukocyte accumulation in the arterial wall and hematopoiesis. Alternatively, hematopoietic stem cell differen-
tiation produces red blood cells, platelets, and leukocytes, contributing to this pathological  process29. This study 
provides genetic evidence to support that the abnormality of these pathways due to genetic liability might account 

Figure 4.  Selection of pathway-specific PRSs using the Least Absolute Shrinkage and Selection Operator 
(LASSO) Model. Eight clinical and 20 PRS features with p < 0.05 from the univariate CoxPH regression were 
selected for 3-year mortality. Fit the Regularized (LASSO) Cox Model in the training dataset with fivefold 
cross-validation for the regression coefficients of PRS and nongenetic variables such as age at index stroke. (A) 
X-tile analysis of the features associated with 3-year mortality with p value < 0.05, respectively. Y-axis represents 
partial log likelihood (LL) deviance from a fivefold cross-validation, Error bar indicate 95% CIs. The left vertical 
line in (A) showed where the CV-error curve hits its minimum. The right vertical line in (A) shows the most 
regularized model with CV-error within 1 standard deviation of the minimum. We extract such optimal λ’s. (B) 
Regularization path for the progressively shrinking of the regression coefficients of variables by tuning the λ in 
the LASSO method with fivefold CV. Variables with bigger absolute regression coefficients were listed. The top 
ten features with the larger effect size were labeled.
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Figure 5.  Kaplan–Meier analysis of post-IS cumulative probability for 3 year mortality in the testing sample. Vertical Bar represents 
right-censored patients. Assuming three risk categories with different survival probability in the testing sample, features included 
in the multivariate Cox proportional-hazards regression model were selected for calculation of the risk score ( ZT β̂  ) where ZT is a 
vector of covariates and β̂  is a vector of estimate of effect size. P-value derived from Log-rank test provided a measure of how well 
the model stratified risk sets. For the entire analysis, p < 0.05 was considered statistically significant. For all the post-hoc pairwise 
tests, p-values were adjusted by Benjamin-Hochberg procedure. The number of patients at risk was listed in the table. We used 
candidate features with a p value < 0.05 from the univariate Cox regression model as an example for feature selection. We compared 
Kaplan–Meier curves developed from the base model (A) to the integrated model (B) with an additional 11 pathway-specific PRSs in 
the testing sample after the LASSO-based feature selection using the training sample (C). The forest plot demonstrated the effect size 
(HR) for the integrated multivariate Cox regression model in the training sample; (D). We calculated continuous Net Reclassification 
Index (NRI), Integrated Discrimination Improvement Index (IDI), and median improvement by R ‘survIDINRI’ package, as metrics 
to determine the improvement in prediction when comparing integrated model after additional features selected to the corresponding 
base model. The additional value of pathway-specific PRS is assessed by the paired difference of risk scores. The empirical distribution 
function of the paired difference ( ̂D ) between the risk scores (on the probability scale) estimated at t0 = 3 years using models with and 
without the inclusion of pathways-specific PRSs. The added value of these PRSs is proportional to the area of the shared region. The 
vertical difference at s = 0 (between the two black dots, where s scales the region between − 1 and + 1) is NRI (> 0), and the horizontal 
difference (between the two gray dots) equals the median risk-score difference. Y-axis, cumulative probability; X-axis, s = D̂ , the 
difference between two model risk scores.
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Figure 6.  Hazard ratio of each pathway-specific PRS for 1-year, 3-year, and 5-year calendar period of 
follow-up in all samples as well as subgroups stratified by age at index stroke. The HRs were calculated by the 
univariate Cox proportional-hazards regression model. The X-bar represents 95%CI of the effect size. Top 16 
PRSs were selected from 31 PRS candidates with p-value < 0.1 in association with 3-year mortality from the 
initial univariate Cox regression model in the training dataset. (A) older stroke subgroup; (B) younger stroke 
subgroup.
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for the pathogenesis of the ischemic cerebral vascular disease and post-IS mortality. These results highlight the 
importance of managing the risk that the identified PRSs stratify in combination with clinical factors.

The control of risk factors is the key to prevention; however, given that these pathway-specific PRSs are 
nonmodifiable, it is essential to conduct targeted post-stroke surveillance and personalized management on the 
flagged high- or moderate-risk patients.

Pioneer studies have shown the predictability of PRS in atherosclerotic cardiovascular disease and its 
 outcome30. However, the small effect size, limited predictability, or lack of independence in multivariate predic-
tion  model31 make the predictability of PRS less practical. Nevertheless, incorporating PRSs in the models could 
still be helpful for populational screening to exclude ‘low-risk individuals. The healthcare resources could be 
more effectively distributed to care for those needing them the  most32. Therefore, PRS-false-positive patients 
classified as “high- or intermediate-risk” would only benefit from the more comprehensive management without 
harming the high-risk patients.

PRSice-221, an ‘LD clumping, and p-value thresholding’ method, also known as ‘C + T,’ was used for PRS con-
struction. This p-value thresholding can be substituted or combined with MAF thresholding. We found that MAF 
rather than p-value as the thresholding parameter can significantly enhance the power of the association mainly 
when using low-frequency variants with effect sizes estimated from the summary statistics of MEGASTROKE 
GWAS on IS  subtypes5. The p-value thresholding primarily confirmed the stability of this association between 
PRS and IS. Low-frequency variants contributed more to the heritability of cardiometabolic traits due to negative 
 selection33. Our finding echoed the previously identified GWAS hits of IS enriched with subtype-specific SNPs 
of low  MAF34. The previous gene sets analyses using PRS constructed by low-frequency variants highlighted the 
association of IS with top Gene Ontology terms (vascular endothelial growth factor, amyloid precursor protein, 
atherosclerosis, and others), known etiologies of  IS5.

Validation of exiting etiologies and drug‑targeting pathways. The results from the subgroup 
analysis highlighted several β amyloid peptide (Aβ) related pathways associated with IS and post-IS mortality, 
particularly in the older subgroup. Sporadic cerebral amyloid angiopathy (CAA) is characterized by progres-
sive deposition of Aβ in the walls of cortical and leptomeningeal small arteries, resulting in vascular occlu-
sion, rupture, and brain parenchymal  damage35. Aβ has been the culprit for Alzheimer’s disease, hereditary 
cerebral hemorrhage with  amyloidosis36, and CAA without symptomatic  hemorrhage35. Aβ induced toxicity 
includes generating reactive oxygen species, which trigger a signaling pathway to inflammation and  apoptosis37. 
Recent studies showed CAA-linked β-amyloid mutations (E22Q and D23N) promoted cerebral fibrin deposits 
via increased binding affinity for  fibrinogen38. All the above findings linked CAA, Aβ, apoptosis, inflammation, 
and fibrinolysis-related pathways, which were identified together in this study.

The PRSs derived from GO response to Interleukin 1 (IL1) and GO response to TNF shared a moderate level 
of correlation (0.2 < r < 0.4). The PRS from the IL1 pathway was filtered out, but the PRS from the TNF pathway 
remained in the multivariate CoxPH (eTable 1). IL1 is a therapeutic target for all forms of stroke, and several 
clinical trials of IL1 receptor antagonists have shown promising  results39. TNF-α is rapidly upregulated after 
focal ischemic injury of the brain, and inhibition of TNF-α may represent a novel pharmacological strategy to 
treat  IS40. These identified inflammation-related pathways indicated a chronic inflammatory response might 
contribute to post-IS mortality.

The results from the correlation between PRSs and modifiable clinical risk factors (such as AFib, CAD, etc.) 
indicated that several pathways might also contribute to modifiable clinical risk factors, suggesting horizontal 
or vertical pleiotropisms. One of the key findings was the association of multiple pathway-specific PRSs with 
AFib with the same direction for disease risk and mortality risk, particularly in the older subgroup. This includes 
pathways related to fibrinolysis, amyloid precursor protein, response to tumor necrosis factor, and more. After 
adjustment for AFib, these pathway-specific PRSs no longer showed significance (p > 0.1), suggesting they were 
not independent predictors, further emphasizing the clinical importance of AFib management.

The association between PRS derived from the GO serotonin receptor signaling pathway and CAD suggested 
serotonin might play an important role in ischemic heart disease, ischemic cerebral vascular disease, and the post-
event (both conditions) mortality in this cohort. The widely investigated serotonin transporter (SERT) functional 
polymorphisms have been linked to the risk of incidental  IS41. The mechanism underlying the detrimental effect 
of serotonin may involve both neuronal and vascular components. The role of serotonin in thrombogenesis and 
the development of CAD is well-known42. High serotonin level in plasma was significantly associated with CAD 
and cardiac events, particularly in younger age groups (< 70 years). Serotonin modulates excitatory glutamatergic 
neurotransmission and induces long-term potentiation, an essential mediator of neuroplasticity that supports 
sensorimotor learning in the post-stroke perilesional  cortex43.

Strengths and limitations. Strengths: (1) Optimizing an integrated prediction model that includes mul-
tiple pathway-specific PRSs, which may help to cross the boundary between empirically defined subtypes or 
comorbidities (because of etiologies consolidated at the pathway level); and (2) Demonstrating the power and 
utility of models when pathway-derived PRSs are included as features along with known clinical risk factors.

Limitations: (1) Single healthcare system cohort with one ethnic background; (2) Limited sample size (lack 
of power) for a prediction study in subgroups; and (3) Challenges to the survival analysis using EHR data which 
are often high-dimensional, censored, have high and not-completely-at-random missingness, and low prevalence 
for the outcome of  interest20.

Stroke severity mainly affects survival during the very early phase after stroke; the effect of stroke severity on 
long-term mortality is  limited44,45. NIHSS was not included in the final model due to a high level of missingness 
and lack of consensus on imputing this variable. The PRS derived from GO Negative regulation of endothelial cell 
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apoptotic process was a partially independent predictor in the bivariate CoxPH after controlling for NIHSS. These 
prioritized pathway-specific PRSs may lose their independent predictive power when more valuable (nongenetic 
or genetic) clinical features are considered in the models.

Finally, PRS should be universally applicable to all patients regardless of ethnicity to ensure health equity in 
the distribution of healthcare  resource46. Although this study focused on IS patients of any kind with EUR, the 
strategy can be adapted to cohorts with mixed ancestry or known TOAST subtypes using PRS constructed by 
the variants with effect size estimated from similar (mixed) ancestry or  subtypes3,47.

In conclusion, we provide evidence that pathway-specific PRSs for IS are associated with 3-year all-cause 
mortality. The integrated multivariate risk model provides a better prognostic value for overall survival after 
IS. Identified PRSs from disease-relevant pathways echoed several known etiologies for IS as well as post-IS 
mortality. However, we recognize the effect size of individual pathway-specific PRS was still modest and many 
of these pathway-specific PRS cannot be considered as independent predictors in the final multivariate model. 
Validating and expanding the model’s utility in external cohorts with mixed ancestry will help determine the 
generalizability of models when PRSs are part of the feature sets.

Data availability
The summary statistics of our GWAS may be shared with a third party upon execution of the data-sharing agree-
ment for reasonable requests. Information for genetic variants and their  weight3 in the construction of each PRS 
is publicly available at the MEGASTROKE website (https:// www. megas troke. org/); Information for candidate 
gene-sets selected for this study was previously  identified5. The codes developed as part of this study are available 
at  TheDecodeLab/Prediction_of_Post_Stroke_Mortality_by_PRS (github.com).

Received: 22 March 2022; Accepted: 11 July 2022

References
 1. Collaborators, G. B. D. S. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for 

the Global Burden of Disease Study 2019. Lancet Neurol. https:// doi. org/ 10. 1016/ S1474- 4422(21) 00252-0 (2021).
 2. Abedi, V. et al. Predicting short and long-term mortality after acute ischemic stroke using EHR. J. Neurol. Sci. 427, 117560. https:// 

doi. org/ 10. 1016/j. jns. 2021. 117560 (2021).
 3. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke 

subtypes. Nat. Genet. 50, 524–537. https:// doi. org/ 10. 1038/ s41588- 018- 0058-3 (2018).
 4. Rutten-Jacobs, L. C. et al. Genetic risk, incident stroke, and the benefits of adhering to a healthy lifestyle: Cohort study of 306 473 

UK Biobank participants. BMJ 363, k4168. https:// doi. org/ 10. 1136/ bmj. k4168 (2018).
 5. Li, J. et al. Polygenic risk scores augment stroke subtyping. Neurol. Genet. 7, e560. https:// doi. org/ 10. 1212/ NXG. 00000 00000 000560 

(2021).
 6. Dichgans, M., Beaufort, N., Debette, S. & Anderson, C. D. Stroke genetics: Turning discoveries into clinical applications. Stroke 

52, 2974–2982. https:// doi. org/ 10. 1161/ STROK EAHA. 121. 032616 (2021).
 7. Bak, S., Gaist, D., Sindrup, S. H., Skytthe, A. & Christensen, K. Genetic liability in stroke: A long-term follow-up study of Danish 

twins. Stroke 33, 769–774. https:// doi. org/ 10. 1161/ hs0302. 103619 (2002).
 8. Malik, R. & Dichgans, M. Challenges and opportunities in stroke genetics. Cardiovasc. Res. 114, 1226–1240. https:// doi. org/ 10. 

1093/ cvr/ cvy068 (2018).
 9. Choi, S. W. et al. The power of pathway-based polygenic risk scores. https:// doi. org/ 10. 21203/ rs.3. rs- 643696/ v1 (2021).
 10. Li, D. et al. The influence of common polygenic risk and gene sets on social skills group training response in autism spectrum 

disorder. NPJ. Genom. Med. 5, 45. https:// doi. org/ 10. 1038/ s41525- 020- 00152-x (2020).
 11. Elam, K. K., Clifford, S., Shaw, D. S., Wilson, M. N. & Lemery-Chalfant, K. Gene set enrichment analysis to create polygenic scores: 

A developmental examination of aggression. Transl. Psychiatry 9, 212. https:// doi. org/ 10. 1038/ s41398- 019- 0513-7 (2019).
 12. Reay, W. R., Atkins, J. R., Carr, V. J., Green, M. J. & Cairns, M. J. Pharmacological enrichment of polygenic risk for precision 

medicine in complex disorders. Sci. Rep. 10, 879. https:// doi. org/ 10. 1038/ s41598- 020- 57795-0 (2020).
 13. Rammos, A. et al. The role of polygenic risk score gene-set analysis in the context of the omnigenic model of schizophrenia. 

Neuropsychopharmacology 44, 1562–1569. https:// doi. org/ 10. 1038/ s41386- 019- 0410-z (2019).
 14. Kolin, D. A., Kulm, S. & Elemento, O. Prediction of primary venous thromboembolism based on clinical and genetic factors within 

the U.K. Biobank. Sci. Rep. 11, https:// doi. org/ 10. 1038/ s41598- 021- 00796-4 (2021).
 15. Bandres-Ciga, S. et al. Large-scale pathway specific polygenic risk and transcriptomic community network analysis identifies novel 

functional pathways in Parkinson disease. Acta Neuropathol 140, 341–358. https:// doi. org/ 10. 1007/ s00401- 020- 02181-3 (2020).
 16. Abraham, G. et al. Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nat. 

Commun. 10, 5819. https:// doi. org/ 10. 1038/ s41467- 019- 13848-1 (2019).
 17. Carey, D. J. et al. The Geisinger MyCode community health initiative: an electronic health record-linked biobank for precision 

medicine research. Genet. Med. 18, 906–913. https:// doi. org/ 10. 1038/ gim. 2015. 187 (2016).
 18. Chaudhary, D. et al. Trends in ischemic stroke outcomes in a rural population in the United States. J. Neurol. Sci. 422, 117339. 

https:// doi. org/ 10. 1016/j. jns. 2021. 117339 (2021).
 19. Clark, T. G., Bradburn, M. J., Love, S. B. & Altman, D. G. Survival analysis Part I: Basic concepts and first analyses. Br. J. Cancer 

89, 232–238. https:// doi. org/ 10. 1038/ sj. bjc. 66011 18 (2003).
 20. Li, J. et al. Imputation of missing values for electronic health record laboratory data. NPJ. Digit Med. 4, 147. https:// doi. org/ 10. 

1038/ s41746- 021- 00518-0 (2021).
 21. Choi, S. W. & O’Reilly, P. F. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 8, https:// doi. org/ 10. 1093/ 

gigas cience/ giz082 (2019).
 22. Tibshirani, R. The lasso method for variable selection in the Cox model. Stat. Med. 16, 385–395. https:// doi. org/ 10. 1002/ (sici) 

1097- 0258(19970 228) 16:4% 3c385:: aid- sim380% 3e3.0. co;2-3 (1997).
 23. Uno, H., Tian, L., Cai, T., Kohane, I. S. & Wei, L. J. A unified inference procedure for a class of measures to assess improvement in 

risk prediction systems with survival data. Stat. Med. 32, 2430–2442. https:// doi. org/ 10. 1002/ sim. 5647 (2013).
 24. Pencina, M. J., D’Agostino, R. B. Sr. & Steyerberg, E. W. Extensions of net reclassification improvement calculations to measure 

usefulness of new biomarkers. Stat. Med. 30, 11–21. https:// doi. org/ 10. 1002/ sim. 4085 (2011).
 25. Kerr, K. F., McClelland, R. L., Brown, E. R. & Lumley, T. Evaluating the incremental value of new biomarkers with integrated 

discrimination improvement. Am. J. Epidemiol 174, 364–374. https:// doi. org/ 10. 1093/ aje/ kwr086 (2011).

https://www.megastroke.org/
https://doi.org/10.1016/S1474-4422(21)00252-0
https://doi.org/10.1016/j.jns.2021.117560
https://doi.org/10.1016/j.jns.2021.117560
https://doi.org/10.1038/s41588-018-0058-3
https://doi.org/10.1136/bmj.k4168
https://doi.org/10.1212/NXG.0000000000000560
https://doi.org/10.1161/STROKEAHA.121.032616
https://doi.org/10.1161/hs0302.103619
https://doi.org/10.1093/cvr/cvy068
https://doi.org/10.1093/cvr/cvy068
https://doi.org/10.21203/rs.3.rs-643696/v1
https://doi.org/10.1038/s41525-020-00152-x
https://doi.org/10.1038/s41398-019-0513-7
https://doi.org/10.1038/s41598-020-57795-0
https://doi.org/10.1038/s41386-019-0410-z
https://doi.org/10.1038/s41598-021-00796-4
https://doi.org/10.1007/s00401-020-02181-3
https://doi.org/10.1038/s41467-019-13848-1
https://doi.org/10.1038/gim.2015.187
https://doi.org/10.1016/j.jns.2021.117339
https://doi.org/10.1038/sj.bjc.6601118
https://doi.org/10.1038/s41746-021-00518-0
https://doi.org/10.1038/s41746-021-00518-0
https://doi.org/10.1093/gigascience/giz082
https://doi.org/10.1093/gigascience/giz082
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3c385::aid-sim380%3e3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3c385::aid-sim380%3e3.0.co;2-3
https://doi.org/10.1002/sim.5647
https://doi.org/10.1002/sim.4085
https://doi.org/10.1093/aje/kwr086


14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12358  | https://doi.org/10.1038/s41598-022-16510-x

www.nature.com/scientificreports/

 26. Chaudhary, D. et al. Obesity and mortality after the first ischemic stroke: Is obesity paradox real?. PLoS ONE 16, e0246877. https:// 
doi. org/ 10. 1371/ journ al. pone. 02468 77 (2021).

 27. Chavakis, E. & Dimmeler, S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler. Thromb. Vasc. 
Biol. 22, 887–893. https:// doi. org/ 10. 1161/ 01. atv. 00000 17728. 55907. a9 (2002).

 28. Scarabelli, T. et al. Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104, 
253–256. https:// doi. org/ 10. 1161/ 01. cir. 104.3. 253 (2001).

 29. Poller, W. C., Nahrendorf, M. & Swirski, F. K. Hematopoiesis and cardiovascular disease. Circ. Res. 126, 1061–1085. https:// doi. 
org/ 10. 1161/ CIRCR ESAHA. 120. 315895 (2020).

 30. Aragam, K. G. & Natarajan, P. Polygenic scores to assess atherosclerotic cardiovascular disease risk: Clinical perspectives and basic 
implications. Circ. Res. 126, 1159–1177. https:// doi. org/ 10. 1161/ CIRCR ESAHA. 120. 315928 (2020).

 31. Elliott, J. et al. Predictive accuracy of a polygenic risk score-enhanced prediction model vs a clinical risk score for coronary artery 
disease. JAMA 323, 636–645. https:// doi. org/ 10. 1001/ jama. 2019. 22241 (2020).

 32. Sud, A., Turnbull, C. & Houlston, R. Will polygenic risk scores for cancer ever be clinically useful?. NPJ Precis. Oncol. 5, 40. https:// 
doi. org/ 10. 1038/ s41698- 021- 00176-1 (2021).

 33. Gazal, S. et al. Functional architecture of low-frequency variants highlights strength of negative selection across coding and non-
coding annotations. Nat. Genet. 50, 1600–1607. https:// doi. org/ 10. 1038/ s41588- 018- 0231-8 (2018).

 34. Malik, R. et al. Low-frequency and common genetic variation in ischemic stroke: the METASTROKE collaboration. Neurology 
86, 1217–1226. https:// doi. org/ 10. 1212/ WNL. 00000 00000 002528 (2016).

 35. Boulouis, G. et al. Small vessel disease burden in cerebral amyloid angiopathy without symptomatic hemorrhage. Neurology 88, 
878–884. https:// doi. org/ 10. 1212/ WNL. 00000 00000 003655 (2017).

 36. Bugiani, O. et al. Hereditary cerebral hemorrhage with amyloidosis associated with the E693K mutation of APP. Arch. Neurol. 67, 
987–995. https:// doi. org/ 10. 1001/ archn eurol. 2010. 178 (2010).

 37. Kadowaki, H. et al. Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 12, 19–24. 
https:// doi. org/ 10. 1038/ sj. cdd. 44015 28 (2005).

 38. Cajamarca, S. A., Norris, E. H., van der Weerd, L., Strickland, S. & Ahn, H. J. Cerebral amyloid angiopathy-linked beta-amyloid 
mutations promote cerebral fibrin deposits via increased binding affinity for fibrinogen. Proc. Natl. Acad. Sci. USA 117, 14482–
14492. https:// doi. org/ 10. 1073/ pnas. 19213 27117 (2020).

 39. Smith, C. J. et al. Interleukin-1 receptor antagonist reverses stroke-associated peripheral immune suppression. Cytokine 58, 384–
389. https:// doi. org/ 10. 1016/j. cyto. 2012. 02. 016 (2012).

 40. Barone, F. C. et al. Tumor necrosis factor-alpha a mediator of focal ischemic brain injury. Stroke 28, 1233–1244. https:// doi. org/ 
10. 1161/ 01. str. 28.6. 1233 (1997).

 41. Mortensen, J. K. et al. The Serotonin transporter gene polymorphisms and risk of ischemic stroke. Cerebrovasc. Dis. 45, 187–192. 
https:// doi. org/ 10. 1159/ 00048 8364 (2018).

 42. Vikenes, K., Farstad, M. & Nordrehaug, J. E. Serotonin is associated with coronary artery disease and cardiac events. Circulation 
100, 483–489. https:// doi. org/ 10. 1161/ 01. cir. 100.5. 483 (1999).

 43. Gulati, T. et al. Robust neuroprosthetic control from the stroke perilesional cortex. J. Neurosci. 35, 8653–8661. https:// doi. org/ 10. 
1523/ JNEUR OSCI. 5007- 14. 2015 (2015).

 44. Putaala, J. et al. Causes of death and predictors of 5-year mortality in young adults after first-ever ischemic stroke: the Helsinki 
Young Stroke Registry. Stroke 40, 2698–2703. https:// doi. org/ 10. 1161/ STROK EAHA. 109. 554998 (2009).

 45. Rutten-Jacobs, L. C. et al. Long-term mortality after stroke among adults aged 18 to 50 years. JAMA 309, 1136–1144. https:// doi. 
org/ 10. 1001/ jama. 2013. 842 (2013).

 46. Williams, J. S., Walker, R. J. & Egede, L. E. Achieving equity in an evolving healthcare system: Opportunities and challenges. Am. 
J. Med. Sci. 351, 33–43. https:// doi. org/ 10. 1016/j. amjms. 2015. 10. 012 (2016).

 47. Keene, K. L. et al. Genome-wide association study meta-analysis of stroke in 22 000 individuals of African descent identifies novel 
associations with stroke. Stroke 51, 2454–2463. https:// doi. org/ 10. 1161/ STROK EAHA. 120. 029123 (2020).

Acknowledgements
Regeneron Genetics Center performed genome-wide SNP genotyping, reviewed the manuscript, and approved 
it for publication. See the Supplementary Information for a list of members from Regeneron Genetics Center.

Author contributions
J.L., R.Z., and V.A. designed the study and interpreted the results; J.L. and D.C. wrote the codes; J.L. conducted 
the analysis and wrote the first draft of the manuscript; D.C., D.J.C., C.J.G., R.Z., and V.A. critically reviewed 
the manuscript.

Competing Interests 
J Li, D Chaudhary, CJ Griessenauer, DJ Carey, R Zand, and V Abedi declare no competing financial and/or non-
financial interests in relation to the work described.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 16510-x.

Correspondence and requests for materials should be addressed to R.Z. or V.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1371/journal.pone.0246877
https://doi.org/10.1371/journal.pone.0246877
https://doi.org/10.1161/01.atv.0000017728.55907.a9
https://doi.org/10.1161/01.cir.104.3.253
https://doi.org/10.1161/CIRCRESAHA.120.315895
https://doi.org/10.1161/CIRCRESAHA.120.315895
https://doi.org/10.1161/CIRCRESAHA.120.315928
https://doi.org/10.1001/jama.2019.22241
https://doi.org/10.1038/s41698-021-00176-1
https://doi.org/10.1038/s41698-021-00176-1
https://doi.org/10.1038/s41588-018-0231-8
https://doi.org/10.1212/WNL.0000000000002528
https://doi.org/10.1212/WNL.0000000000003655
https://doi.org/10.1001/archneurol.2010.178
https://doi.org/10.1038/sj.cdd.4401528
https://doi.org/10.1073/pnas.1921327117
https://doi.org/10.1016/j.cyto.2012.02.016
https://doi.org/10.1161/01.str.28.6.1233
https://doi.org/10.1161/01.str.28.6.1233
https://doi.org/10.1159/000488364
https://doi.org/10.1161/01.cir.100.5.483
https://doi.org/10.1523/JNEUROSCI.5007-14.2015
https://doi.org/10.1523/JNEUROSCI.5007-14.2015
https://doi.org/10.1161/STROKEAHA.109.554998
https://doi.org/10.1001/jama.2013.842
https://doi.org/10.1001/jama.2013.842
https://doi.org/10.1016/j.amjms.2015.10.012
https://doi.org/10.1161/STROKEAHA.120.029123
https://doi.org/10.1038/s41598-022-16510-x
https://doi.org/10.1038/s41598-022-16510-x
www.nature.com/reprints


15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12358  | https://doi.org/10.1038/s41598-022-16510-x

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Predicting mortality among ischemic stroke patients using pathways-derived polygenic risk scores
	Method
	The outcome of interest and clinical risk factors. 
	Missing clinical data and imputation. 
	Genotyping, imputation, and quality control. 
	PRS construction and estimation. 
	Evaluation of the PRSs prediction model. 
	Model assessment, fine-tuning, and comparison. 
	Survival analyses. 
	Subgroup analyses. 

	Result
	Clinical characteristics. 
	Construction and evaluation of PRS prediction model. 
	Construction of the integrated PRSs prediction model. 
	Predictability in the unseen testing sample. 
	Bias assessment and subgroup analysis. 

	Discussion
	Validation of exiting etiologies and drug-targeting pathways. 
	Strengths and limitations. 

	References
	Acknowledgements


