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EKF‑SIRD model algorithm 
for predicting the coronavirus 
(COVID‑19) spreading dynamics
Abdennour Sebbagh* & Sihem Kechida

In this paper, we study the Covid 19 disease profile in the Algerian territory since February 25, 2020 to 
February 13, 2021. The idea is to develop a decision support system allowing public health decision 
and policy‑makers to have future statistics (the daily prediction of parameters) of the pandemic; and 
also encourage citizens for conducting health protocols. Many studies applied traditional epidemic 
models or machine learning models to forecast the evolution of coronavirus epidemic, but the use of 
such models alone to make the prediction will be less precise. For this purpose, we assume that the 
spread of the coronavirus is a moving target described by an epidemic model. On the basis of a SIRD 
model (Susceptible‑Infection‑Recovery‑ Death), we applied the EKF algorithm to predict daily all 
parameters. These predicted parameters will be much beneficial to hospital managers for updating the 
available means of hospitalization (beds, oxygen concentrator, etc.) in order to reduce the mortality 
rate and the infected. Simulations carried out reveal that the EKF seems to be more efficient according 
to the obtained results.

Since its appearance in late December 2019, the new COVID-19 epidemic has spread rapidly across the world. 
The first cases of COVID-19 were reported in Wuhan, China and this disease then dilated to Europe, North and 
South America affecting the most of developed countries such as Italy, France, USA, etc. where sporadic cases 
have been imported via returning travelers from China.

While it has long seemed spared, or almost, by Covid-19, the African continent is not immune to this corona-
virus epidemic, it is now affected like the rest of the world, even if the number of deaths remains very limited. A 
sudden acceleration in the number of cases was observed in July and August and then the contaminations slowed 
down again. At the start of the year, we are witnessing a "new wave" very visible in the North of the continent, and 
observable in several large countries of the East and the South, while the health authorities are getting organized 
for the arrival of the first doses of vaccine.

As of February 13, 2021, the virus had spread to most African countries, with more than 3 734 227 confirmed 
cases and more than 97 863 reported deaths, including Algeria with 112 461 cases and 2 970  deaths1.

For the purpose of control and prevention from the spread of this outbreak of coronavirus, Algerian authori-
ties have implemented various containment measures since March 28, 2020, including traffic restrictions, contact 
tracing, mandatory face masks in public spaces, entry or exit screening, quarantine and awareness campaigns.

The current outbreak of coronavirus disease (COVID-19) is declared as Public Health Emergency of Interna-
tional concern and a pandemic by the World Health Organization (WHO). This alarming situation has prompted 
scientists to indulge in studies concerning the transmission dynamics and forecasting of the virus to the most 
affected countries in the world such as  Chine2,3,  Italy4,  France5,  India6 and then to other  countries7–13, etc.

These works focus on epidemiological studies whose the main objective is to develop strategies to fight against 
the spread of the coronavirus and provide guidance to control its transmission  dynamic14,15. A considerable 
number of strategies require or involve mathematical models dedicated for studying infection diseases such as 
SIRD, SIR or SEIR models in different  context16–18 (analysis, forecasting the spread and prediction).

The most of these works are intended to the modeling of transmission dynamics with the aim to predict the 
trend of the epidemic and control the outbreak evolution. In this context, authors  of19–23 proposed mathematical 
models translating the transmission dynamics of COVID-19 to forecast the number of active cases or to estimate 
the total number of infected and  deaths7, while those  of5 develop a strategy based on SIR model to estimate the 
actual number of people infected and to deduce the IFR (Infected Fatality Ratio). The forecast of future COVID-
19 cases has discussed  in24 using regression analysis.
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The estimation of infection, mortality and recovery rates and the basic reproduction number ( R0) are provided 
 in3 using a SIRD model. Afterwards, Dhillon and all study the trend analysis of mortality and recovery rate con-
sidering scenario of most affected countries and Indian  States6. To mitigate disease transmission, mathematical 
models introducing a quarantine measures are formulated by Liu and all  in2 and Mandal and all  in25. Other 
research works establish the prediction of epidemic peak under the impact of lockdown using an improvised 
compartment mathematical  model26 (SEIR or SEIRD) i.e., Susceptible ( S)-Exposed ( E)-Infected ( I)-Recovered 
( R)-Death ( D ) while,  in27,28, authors study the forecast of the spread tendency of the COVID-19 through an 
improved SEIR model. Others methods such as fractional concept, optimization algorithms, Artificial Neural 
Network… are introduced sometimes for study the growth of cumulative confirmed and cured people and some-
times for formulate the prediction problem as an optimization  framework29 or to estimate the COVID-19  cases8.

Additionally, and for containing the epidemic spread in African countries, research works are being conducted 
in the top infected countries through studies modeling and forecasting of COVID-19. Among which, there have 
been some comparative studies between the African countries including  Algeria30–32.

However, there are a little peer reviewed papers about epidemiological profile in Algerian territory; these 
research studies consider traditional epidemic models (SIR, SI, SEIR, …) dedicated to historical data analysis 
for forecasting the incidence and /or estimation of  parameters33–37.

In all these developed methodologies, the authors consider mathematical models whose parameters are 
estimated over a limited period of time. The model once defined is applied in different studies of COVID’19 
evolution without taking into account the update of the model parameters and the various measures taken by 
those responsible.

In this work, we project the engineering techniques used in targets tracking on epidemiology assuming that 
the spread of the coronavirus is a moving target described by an epidemic model. The idea is to investigate the 
Kalman filter on SIRD model with the goal to predict the spreading of the Covid 19 and to effectively manage 
the burden of COVID-19 pandemic in Algeria.

This study shows the disease profile in the Algerian territory since February 25, 2020 to February 13, 2021. 
Here we are fascinated in applying the extended Kalman filter (EKF) using an epidemic SIRD model to provide 
a daily prediction of infection, mortality and recovery rates and the basic reproduction number  (R0).

In addition, these data are much beneficial to hospital managers and public health decision-makers for updat-
ing the available means of hospitalization (beds, oxygen concentrator, etc.) in order to reduce the mortality rate 
and the infected.

The rest of this paper is organized in 4 sections. “Problem formulation” Section is dedicated the problem 
formulation and the description of chosen model. The next section details Bayesian approach and more precisely 
the EKF algorithm used in the context of this work. The application of this technique and the simulation results 
are discussed in “Simulation results” section  and finally, the last section recapitulates concluding remarks of this 
study and to suggest some outlooks for future works.

Problem formulation
In the literature, the works carried out in the epidemiology study use mathematical models each stratify the 
dynamics of individuals. The choice of these individuals depends on the problem formulation. The most of the 
epidemic models for human-to-human transmission rely on the susceptible-infected-recovered (SIR) structure, 
considered as a fundamental model widely used to delineate various infectious diseases. SIRD model is the 
standard famous SIR model incorporating an additional compartment: Death class (D). Other structures have 
emerged to monitor the dynamics of others compartments (classes), such as quarantined susceptible individuals, 
asymptomatic infectious individuals, isolated infected individuals, exposed individuals, etc.3,21,22,26,37

For the SIRD model, the population N is divided into sub-population: susceptible (S) , infected (I) , recovered 
(R) and deceased (D) for all time k , i.e., N = S + I + R + D.

The discrete nonlinear SIRD model is given by:

where α(k) , β(k) and γ (k) are the daily infection, daily recovery and daily death rates respectively, see Fig. 1, note 
that, these rates are optimized daily using the least square method (LSM) as follows:

If we accept that S = N , then:

If S  = N , then:

(1)S(k + 1) = S(k)−
α(k)

N
S(k)I(k)

(2)I(k + 1) = I(k)+
α(k)

N
S(k)I(k)− β(k)I(k)− γ (k)I(k)

(3)R(k + 1) = R(k)+ β(k)I(k)
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I(j) is the total currently infected in the time j (day).
�S
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− S(j − 1) is daily new coronavirus cases at time j
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(
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(
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)
 is daily new recovered at time j

j) =D
(
j
)
− D(j − 1) is daily new deceased at time j

We suppose that:

Then the SIRD model becomes:

Xk is the state vector including susceptible (S) , infected (I) , recovered (R) and deceased (D) , defined as:

Vk is a zero-mean white noise with covariance QV.
The Jacobian matrice of this model is obtained as:

where α̂(k) , β̂(k) and γ̂ (k) are the predicted daily infection, predicted daily recovery and predicted daily death 
rates respectively and are calculated as:
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x1(k) = S(k), x2(k) = I(k), x3(k) = R(k), and x4(k) = D(k)

(9)
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(11)
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Figure 1.  Flow between the populations of SIRD model.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13415  | https://doi.org/10.1038/s41598-022-16496-6

www.nature.com/scientificreports/

The predicted daily new cases = the predicted daily new currently infected + the predicted daily new recov-
ered + the predicted daily new deceased.

We suppose that the measurement equation is given daily by:

with

Wk is a a zero-mean white noise with covariance 
∑

W

Bayesian filtering
In Bayesian approach we attempt to construct the posterior PDF of the state given all measurements. All available 
information is used to form such PDF. So, this PDF represents complete solution.

Let Xk , k ∈ N , be the state sequence:

where fk is in generally nonlinear function of the previous state Xk−1 ∈ R
nx , Vk−1 ∈ N

nv is state noise, uk−1 ∈ R
nu 

is known input, nx , nv et nu are dimensions of the state, process and input noise vectors.
let Yk be the measurement:

where Yk ∈ R
ny , hk is in generally non-linear measurements function, Wk ∈ N

nw is measurement noise, ny and 
nw are dimensions of the measurement and measurement noise vectors.

We want to find estimate of the Xk based on all available measurements at time k (marked as Y1:k ) by con-
structing the posterior PDF p(Xk ,Y1:k). It is assumed, that initial PDF p(X0|Y0) ≡ p(X0) is available. Posterior 
PDF can be obtained recursively in two stages, namely prediction and update. Suppose that required PDF 
p(Xk−1|Y1:k−1) at time step k − 1 is available. Then using the system model, it is possible to obtain the prior PDF 
of the state at the time step k38,39:

Prediction step usually deforms, spreads state PDF due to noise. Measurement Yk is available at time step k , 
so it can be used to update the prior. Using Bayes’ rule, we obtain:

where the normalizing constant is:

In the update Eq. (19), the measurement Yk is used to modify the predicted prior from the previous time 
step to obtain PDF of the state. Equations (17) and (18) theoretically allow optimal Bayesian solution. But it is 
only conceptual solution and integrals in these equations are intractable. Solution exists in some restricted cases 
such as Kalman Filter.

Kalman filter. Kalman filter together with its basic variants are commonly the used tools in statistical signal 
processing, especially in the context of causal, real-time applications.

There are several approaches in the derivation of the Kalman Filter. We can assume Gaussian distribution of 
the deriving process and of the initial state. In the next phase, we derive the posterior distribution of the states 
given the observations, taking the mean of the resulting distributions as the estimation of the state. The second 
approach combines a recursive weighted least-squares method with special weighting of the previous estimate 
of the states in the role of additional  measurements40,41.

Kalman Filter can be used in estimation of the state Xk ∈ R
nx where posterior PDF is Gaussian in every time 

step. But in many cases this PDF is not Gaussian and we need to use different approach such as extended Kalman 
Filter. This method is also labelled as sub-optimal  algorithm42,43.

Extended Kalman filter. Most processes in real life are unfortunately nonlinear, and therefore needs to be 
linearized before they can be estimated by Kalman filter.
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The extended Kalman filter (EKF)38,39,44–46, is the nonlinear genre of the Kalman  filter41,42 which linearizes 
about an estimate of the current mean and  covariance43,47. The state transition and measurement models for the 
extended Kalman filter are taken as:

where V(k) is the process noise with zero mean and covariance Qk , and W(k) is the measurement noise with 
zero mean and covariance 

∑
k.

The functions f (X(k)) and h(X(k + 1)) are used to compute the predicted state from the previous estimate 
and predicted measurement from the predicted state, respectively. Instead of applying f (X(k)) and h(X(k + 1)) 
to the covariance directly, a Jacobian matrix is applied which is evaluated with current predicted states at each 
time step. Extended Kalman Filter is based upon approximation of the Bayes’ rule using linearization.

Discrete-time extended Kalman filter’s prediction (time update) and correction (measurement update) equa-
tions are given by,

• Prediction (time update)

Predict stage can be described using following equations:

where X̂k+1|k is the predicted state estimate at time k + 1 given measurements up to time k and

where Pk+1|k is the error covariance matrix.

• Correction (measurement update)

Update stage can be described with the following equations:

where ỹk+1 is innovation term,

where Sk+1 is the innovation covariance,

where Kk+1 is the Kalman gain,

is update state estimate and

is update estimate covariance.
Where the Jacobian for state transition and measurement matrices are defined as:

Figure 2 Shows the EKF-SIRD Algorithm.

Simulation results
For the application of EKF estimator on coronavirus (covid-19) modelled by the SIRD model, we use the real 
data provided by the Ministry of Algerian health and the WHO, from February 25, 2020 to February 13, 2021 
in our daily predictions.

We consider that the spread of coronavirus is a target that begins its movement from the initial vector:

(20)X(k + 1) = f (X(k))+ V(k)

(21)Y(k + 1) = h(X(k + 1))+W(k)

(22)X̂k+1|k = f
(
X̂(k|k)

)
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where N = 44219385 is the Algerian population number. The mean vector and covariance matrice initialization 
of the EKF according to a Gaussian law are:

The process noise is zero mean, white and with covariance

The measurement noise is also zero mean, white, independent of the process noise, and with covariance

The trajectories plotted in Fig. 3a, b, c and d are the real data of Algeria and predicted by EKF of total coro-
navirus cases, total currently infected, total recovered and total deceased respectively.

We observe that the predicted trajectories by the EKF are superposable on the trajectories of real data, which 
allowed us to say that the EKF is correctly predicted the evolution of these quantities.

X(1) =
(
N − 1 1 0 0

)T

X̂(1) =
(
N − 1 1 0 0

)T

P
�
1|1

�
=





100 0 0 0
0 100 0 0
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0 100 0 0
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�
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0 10−2 0
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Figure 2.  EKF-SIRD Model Algorithm.
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The daily infection rate α(k) , daily recovery rate β(k) and daily death rate γ (k) are optimised by using least 
square method (LSM) according to Eqs. (5), (6), (7) and (8), and also predicted by the EKF according to Eqs. (11), 
(12) and (13) as shown in Fig. 4a, b and c.

From these previous predictions (by LMS and by EKF), we can daily predict the basic reproduction number 
R0 as shown in Figs. 5 and 6, according to Eq. (31).

We see that generally, the value of the basic reproduction number between the end of April, 2020 and October 
15, 2020 is between 1 and 2 except for some disturbances in July, this comes down to the containments measures 
taken by the country officials (lockdown), including traffic restrictions, contact tracing, mandatory face masks 
in public spaces.

From the mid of October, 2020 until the end of December, we see some disturbances in the basic reproduction 
number because of the appearance of the second coronavirus wave, where the daily new coronavirus number 
has been increased and reached 1133 cases on November 24, 2020.

From the beginning of January, 2021 until February 13, 2021 the basic reproduction number stabilizes 
between 1 and 1.5.

Using the predictions by EKF of total currently infected, total recovered and total deceased, we can daily 
predict the case fatality ratio (CFR), case recovery ratio (CRR) and also case infection ratio (CIR) as shown in 
Fig. 7a, b and c, according to these equations:

(31)R0(k) =
α(k)

β(k)+ γ (k)

Figure 3.  Real and predicted trajectories, (a) total coronavirus cases, (b) total currently infected, (c) total 
recovered cases and (d) total deceased.
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Figure 8a, b and c show the real and predicted trajectories of daily new coronavirus cases, daily new deceased 
and daily new recovered, from these trajectories it shown that the EKF is correctly predicted these daily new 
quantities.

The good results obtained by the application of the EKF on the coronavirus evolution using SIRD model 
are demonstrated by the smaller RMSEs (Root mean square errors) of daily new coronavirus cases, daily new 
deceased and daily new recovered, illustrated in Fig. 9a, b and c.

These RMSEs are obtained from 100 Monte Carlo runs given by the equation:

(32)CFR(k + 1)% =
Total deceased(x4(k + 1/k) = D(k + 1))

Total coronavirus cases = (x2(k + 1/k)+ x3(k + 1/k)+ x4(k + 1/k))
· 100

(33)CRR(k + 1)% =
Total recovered(x3(k + 1/k) = R(k + 1))

Total coronavirus cases = (x2(k + 1/k)+ x3(k + 1/k)+ x4(k + 1/k))
· 100

(34)CIR(k + 1)% =
Total currently infected(x2(k + 1/k) = I(k + 1))

Total coronavirus cases = (x2(k + 1/k)+ x3(k + 1/k)+ x4(k + 1/k))
· 100
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Figure 4.  Real and predicted trajectories, (a) daily infection rate α(k) , (b) daily recovery rate β(k) and (c) daily 
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Conclusion
To track and predict the spread of coronavirus pandemic, we investigated and analysed the outbreak of this 
Covid-19 disease in Algeria, to help the government and the health ministry take new measures and future 
decisions to deal with this coronavirus pandemic.

For this, we supposed that the coronavirus epidemic is a target modelled by a nonlinear SIRD model and we 
apply the engineering technique of target tracking (an EKF algorithm) on the coronavirus spreading to predict 
daily all parameters i.e., susceptible (S), infected (I), recovered (R) and deceased (D).

The novelty of this work is summed up in two points: the daily updating of the model parameters and the 
application of the extended Kalman filter on this model, which makes the prediction results more precise and 
the method more reliable.
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Figure 5.  Real and predicted trajectories of daily basic reproduction number R0.
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Figure 6.  Real and predicted trajectories of daily basic reproduction number R0(zoom).
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The results showed that according to the data provided by the Ministry of Algerian health and the WHO, 
from February 25, 2020 to February 13, 2021, the EKF algorithm is successfully predicted the daily coronavirus 
spreading.
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Figure 7.  Real and predicted trajectories, (a) case fatality ratio, (b) case recovery ration and, (c) case infection 
ratio.
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Figure 8.  Real and predicted trajectories, (a) daily new coronavirus cases, (b) daily new dead and (c) daily new 
recovered.
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Data availability
The datasets generated and/or analysed during the current study are available in the [Database Algeria Covid19] 
https:// laig. univ- guelma. dz/ sites/ laig. univ- guelma. dz/ files/ Datab ase_% 20Alg eria_ Covid 19. xlsx or https:// laig. 
univ- guelma. dz/ fr/ node/ 209.
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