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Evidence for correlations 
between BMI‑associated SNPs 
and circRNAs
Luisa Sophie Rajcsanyi1,2*, Inga Diebels1, Lydia Pastoors1, Deniz Kanber3, Triinu Peters1,2, 
Anna‑Lena Volckmar4, Yiran Zheng1,2, Martin Grosse3, Christoph Dieterich5,6, 
Johannes Hebebrand1,2, Frank J. Kaiser3, Bernhard Horsthemke3 & Anke Hinney1,2*

Circular RNAs (circRNAs) are regulators of processes like adipogenesis. Their expression can be 
modulated by SNPs. We analysed links between BMI‑associated SNPs and circRNAs. First, we 
detected an enrichment of BMI‑associated SNPs on circRNA genomic loci in comparison to non‑
significant variants. Analysis of sex‑stratified GWAS data revealed that circRNA genomic loci 
encompassed more genome‑wide significant BMI‑SNPs in females than in males. To explore whether 
the enrichment is restricted to BMI, we investigated nine additional GWAS studies. We showed an 
enrichment of trait‑associated SNPs in circRNAs for four analysed phenotypes (body height, chronic 
kidney disease, anorexia nervosa and autism spectrum disorder). To analyse the influence of BMI‑
affecting SNPs on circRNA levels in vitro, we examined rs4752856 located on hsa_circ_0022025. The 
analysis of heterozygous individuals revealed an increased level of circRNA derived from the BMI‑
increasing SNP allele. We conclude that genetic variation may affect the BMI partly through circRNAs.

The prevalence of obesity is increasing  globally1–3. Due to an elevated body mass index (BMI), the risk to 
develop comorbidities, like cardiovascular diseases, diabetes, cancers, and Alzheimer’s disease, increases con-
comitantly, causing a greater risk for a premature  death3–5. Genetic variants associated with BMI have been 
identified in genome-wide association studies (GWAS)4,6–8. The most recent meta-analysis of BMI GWAS detected 
941 genetic loci associated with the  BMI9. The functional characterisation of these single nucleotide polymor-
phisms (SNPs) remains challenging, as the majority of GWAS-identified signals reside within non-coding regions 
and are thus located in enhancers or sequences harbouring non-coding RNAs (ncRNAs), such as circular RNAs 
(circRNAs)6,10,11.

CircRNAs derive from a backsplicing process linking a downstream splice donor to an upstream splice accep-
tor forming covalently closed  loops12–14. These circular transcripts are expressed in a cell-type-, tissue-, and devel-
opmental stage-specific manner, exhibiting the highest enrichment in the brain and during  neurogenesis12,14–17. 
Previous studies linked circRNAs to various diseases and cellular processes, such as the preadipocyte differentia-
tion, known as  adipogenesis18–21. A knockdown of circSAMD4A, for instance, inhibited the adipogenesis and 
eventually led to a reversion of the murine weight gain when fed a high-fat diet. In humans, overexpression of 
circSAMD4A was associated with an increased  BMI19. Dynamic regulation of circRNAs during adipogenesis 
and in obesity provided insights in the emerging regulatory roles of these transcripts. Two circRNAs, circTshz2-1 
and circArhgap5-2, were found to be substantial regulators of the preadipocyte maturation as depletions of the 
circRNAs inhibited the respective  mechanism18.

Evidence has emerged that genetic variations can affect circRNAs. Accordingly, the level of circRNAs is 
influenced in a genotype-specific  manner22,23. For example, carriers of the C-allele of a multiple-sclerosis (MS)-
associated SNP showed increased levels of a STAT3-derived  circRNA22. Additionally, SNPs located within the 
flanking sites of circRNAs showed higher correlations with the respective circular transcript than SNPs located 
within the circRNA  sequence24.
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To date, there is a lack of studies exploring GWAS-identified SNPs and their impact on circRNAs, particu-
larly in the context of BMI. Given that circRNAs are highly expressed in the  brain16 and energy homeostasis 
is associated with the  hypothalamus25, we speculate there may be links between SNPs that are associated with 
BMI alterations and circRNAs. Consequently, the present study aimed to investigate interactions of genome-
wide significant SNPs (P < 5 ×  10−8) identified in the most recent meta-analysis of BMI  GWAS9 with circRNAs. 
We initially examined whether these significant SNPs are more frequently located on circRNA genomic loci 
compared to non-significant variants. Investigation of additional GWAS studies pertaining to psychiatric, neu-
rological, anthropometric, and peripheral traits ensued. Subsequently, we selected one genome-wide significant 
SNP (rs4752856) for BMI, which is located on a circRNA derived from an obesity-associated gene (MTCH2; 
hsa_circ_0022025), and assessed the relative levels of the circRNA derived from the two alleles in vitro.

Results
Enrichment of genome‑wide significant BMI‑SNPs. Initially, we investigated if the proportion of 
genome-wide significant SNPs (P < 5 ×  10−8) on circRNA genomic loci deviates from the ratio of non-significant 
SNPs (P ≥ 5 ×  10−8) located within these regions. Therefore, we used data from the most recent BMI GWAS meta-
analysis9 (see Table 1 and Supplementary Table S2) and four publicly available circRNA databases (circAtlas v2.0, 
circBase, CIRCpediaV2 and circVAR; see Supplementary Table S1). Due to different reference genome versions 
between circRNA and the majority of SNP data (see Supplementary Table S1 and S2), we subjected the SNP 
data to a genome version lift over to ensure compatibility with all circRNA databases. Notably, due to ambigu-
ous mappings, over 10,000 SNPs had to be removed from our SNP pool. In total, 2,324,569 BMI-analysed SNPs 
remained in the study (see Table 1).

We observed a significant and consistent enrichment of genome-wide significant SNPs (P < 5 ×  10−8, see 
Table 1) for BMI on circRNA genomic loci throughout all circRNA datasets (see Fig. 1 and Supplementary 
Table S5). Thus, 62.86% (25,669 SNPs) of all significant SNPs were present on at least one circRNA genomic 
locus included in circAtlas v2.0 (GRCh38), while the proportion of non-significant SNPs on circRNAs was 
significantly lower (54.96%; P < 0.0001; OR = 1.39; 95% CI = [1.36, 1.42]). Analogous findings were detected in 
the datasets of circBase, CIRCpediaV2 and circVAR. Genomic loci of circRNAs included in circBase harboured 
24.36% of significant SNPs (9,949 SNPs; P < 0.0001; OR = 1.46; 95% CI = [1.43, 1.49]), while circRNAs extracted 
from CIRCpediaV2 and circVAR encompassed 31.62% (12,913 SNPs; P < 0.0001; OR = 1.56; 95% CI = [1.53, 1.59]) 
and 38.11% (15,561 SNPs; P < 0.0001; OR = 1.41; 95% CI = [1.38, 1.44]) of significant BMI-SNPs, respectively. 
The ratio of non-significant SNPs within the genomic coordinates of circRNAs remained significantly lower (see 
Fig. 1 and Supplementary Table S5).

Sensitivity analysis reveals marginal deviations. Next, we tested the sensitivity of our analysis by clas-
sifying the non-significant SNPs in accordance with three newly defined thresholds (P ≥ 5 ×  10−7, P ≥ 5 ×  10−6 
and P ≥ 5 ×  10−5). Despite a stricter definitional delineation, we observed solely marginal deviations in ratios of 
non-significant SNPs located on circRNA genomic loci (see Fig. 2 and Supplementary Table S6). Accordingly, we 
still detected a statistically significant enrichment of genome-wide significant BMI variants on the genomic loci 
of circRNAs of all databases when re-classifying the group of non-significant SNPs (see Supplementary Table S6).

Defining approximations of the linkage disequilibrium of SNPs does not affect the out‑
come. Non-significant SNPs can be located within linkage disequilibrium (LD) regions comprising signifi-

Table 1.  SNP classification for the analyses of the BMI GWAS data. Following the processing of data by 
removing SNPs with ambiguous information and mappings, the analyses of the BMI GWAS  data9 were split 
into three sub-analyses. The initial analysis and its SNP set assignment was based on the general GWAS P-value 
threshold of 5 ×  10−8. The ensued sensitivity analysis aimed for a more stringent group delineation between 
significant and non-significant SNPs by excluding SNPs whose P-value fell within a certain range. Each 
non-significant group was separately analysed in relation to the initial significant SNP group (P < 5 ×  10−8). 
Considering two distinct approximations for the LD of SNPs, non-significant variants were added to the 
respective significant group if they were either located within a 1 Mb region adjacent to a significant SNP or if 
they are located in known regions of high LD (as extracted from  plinkQC70).

Analysis Group classification Number of SNPs

P-value based analysis
Significant (P < 5 ×  10−8) 40,835

Non-significant (P ≥ 5 ×  10−8) 2,283,734

Sensitivity analysis

Significant (P < 5 ×  10−8) 40,835

Non-significant (P ≥ 5 ×  10−7; excluded SNPs with 5 ×  10−8 < P < 5 ×  10−7) 2,269,795

Non-significant (P ≥ 5 ×  10−6; excluded SNPs with 5 ×  10−8 < P < 5 ×  10−6) 2,248,179

Non-significant (P ≥ 5 ×  10−5; excluded SNPs with 5 ×  10−8 < P < 5 ×  10−5) 2,215,048

Linkage disequilibrium (LD) 
analysis

Significant (within a 1 Mb region) 805,908

Non-significant (not within a 1 Mb region) 1,518,661

Significant (in regions of high LD) 77,104

Non-significant (not within regions of high LD) 2,247,465
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cant  variants26,27. By defining approximations for the LD structures of the BMI-associated SNPs, we obtained an 
overall increase in the number of ‘significant’ variants and a decrease in the quantity of non-significant SNPs (see 
Table 1). Remarkably, by applying these newly defined groups to our R script, we detected similar results as in 
our previous examinations. Again, the genome-wide significant SNPs were more frequently located on circRNA 
genomic loci than non-significant variants, regardless of whether the LD was approximated by a 1 Mb region 
adjacent to significant SNPs or by known regions of high LD (see Fig. 3 and Supplementary Table S7).

Enrichment of genome‑wide significant SNPs is not a general characteristic. Given the 
observed enrichment of genome-wide significant BMI-SNPs on genomic loci of circRNAs, we aimed to uncover 

Figure 1.  Genome-wide significant SNPs for BMI are enriched in genomic loci of circRNAs. SNPs 
were classified as significant and non-significant based on the genome-wide P-value threshold of 5 ×  10−8. 
Correspondingly, SNPs with a lower P-value than this threshold were considered significant (grey; total of 
40,835 SNPs), while SNPs with P-values exceeding this cut-off were defined as non-significant (black; total 
of 2,283,734 SNPs). Genomic positions of these SNPs were checked if they matched the genomic coordinates 
of circRNAs extracted from the databases circAtlas v2.0 (GRCh38), circBase, CIRCpediaV2 and circVAR 
using a custom R script. The numbers shown in the parentheses indicate the number of circRNAs included 
in the respective dataset (see also Supplementary Table S1). The results of the statistical tests can be found in 
Supplementary Table S5. ****P < 0.0001; SNP single nucleotide polymorphism.

Figure 2.  Sensitivity analysis reveals deviations of ratios of circRNA-located non-significant SNPs. 
To obtain a more distinct group delineation between significant and non-significant BMI-SNPs within the 
sensitivity analysis, the non-significant SNPs (P ≥ 5 ×  10−8; pink) were re-classified applying the additional 
P-value cut-offs of 5 ×  10−7 (green), 5 ×  10−6 (blue) and 5 ×  10−5 (orange). Non-significant SNPs with P-values 
ranging between these thresholds and the initial threshold of 5 ×  10−8 were removed from the respective group. 
The results were obtained by applying the custom R script to the newly defined dataset of non-significant SNPs 
and were compared to the initial group of significant SNPs (P < 5 ×  10−8). The respective statistical outcomes are 
stated in Supplementary Table S6. SNP single nucleotide polymorphism.
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whether this localisation is a BMI-specific feature or if it is a general phenomenon. Therefore, we extracted data 
of additional GWAS studies analysing arbitrary, but distinct phenotypes (see Supplementary Tables S2 and S3). 
As circRNAs are generally highly expressed in the brain and especially during  neurogenesis16, we assumed that 
this SNP enrichment might be an effect exclusively seen for traits associated with the central nervous system 
(CNS). To investigate a widespread range of traits, we have chosen GWAS datasets pertaining to one anthro-
pometric trait (body  height9), two neurological conditions (amyotrophic lateral  sclerosis28 and  epilepsy29), four 
peripheral diseases (chronic kidney  disease30, heart  failure31, pernicious  anemia32 and ulcerative  colitis33) and 
two psychiatric disorders (anorexia  nervosa34 and autism spectrum  disorder35; see Supplementary Tables S2 and 
S3). As we identified consistent results throughout the four circRNA datasets for BMI and since GWAS data is 
predominantly provided in the GRCh37 genome version, we decided to exclusively analyse the additional SNP 
datasets with the circRNAs extracted from circBase. Therefore, all prior performed processing steps are omitted.

A statistically significant enrichment of genome-wide significant SNPs (P < 5 ×  10−8) was determined for SNPs 
from GWAS pertaining to both psychiatric disorders, namely anorexia nervosa (AN; P < 0.0001; OR = 4.83; 95% 
CI = [3.88, 6.00]) and autism spectrum disorder (P < 0.0001; OR = 3.40; 95% CI = [2.26, 5.12]), as well as the 
anthropometric trait of the body height (P < 0.0001; OR = 2.19; 95% CI = [2.17, 2.22]) and the peripheral chronic 
kidney disease (P < 0.0001; OR = 2.03; 95% CI = [1.82, 2.27]; see Fig. 4 and Supplementary Table S8). No signifi-
cant difference of circRNA genomic loci localisation was detected for SNPs extracted from a heart failure GWAS 
(P = 0.38; OR = 1.14; 95% CI = [0.85, 1.51]; see Fig. 4 and Supplementary Table S8). The inverse circRNA enrich-
ment of non-significant SNPs was detected for SNPs from GWAS studies analysing the neurological traits of 
amyotrophic lateral sclerosis (ALS; P = 0.003; OR = 0.48; 95% CI = [0.30, 0.78]) and epilepsy (P = 0.008; OR = 0.43; 
95% CI = [0.22, 0.82]) as well as the peripheral diseases pernicious anemia (P = 0.003; OR = 0.43; 95% CI = [0.24; 
0.76]) and ulcerative colitis (P < 0.0001; OR = 0.74; 95% CI = [0.69, 0.78]; see Fig. 4 and Supplementary Table S8).

Considering that a low BMI is also a characteristic of  AN36, we additionally wanted to assess if significant SNPs 
localised on circRNAs overlap between AN and BMI. Of the 9949 significant BMI-SNPs located on circBase-
extracted circRNAs (see Supplementary Table S5) and the 168 significant and circRNA-located AN-SNPs (see 
Supplementary Table S8), none overlapped (not shown).

Deviations of significant BMI‑SNPs on circRNAs genomic loci between females and males. To 
assess if the enrichment of significant BMI-SNPs on circRNA genomic loci applies equally to both sexes, we 
extracted data from an additional GWAS for  BMI37 examining both sexes separately. More than 25% of the signif-
icant BMI SNPs for females are localised in at least one circRNA genomic locus included in circBase (7109 SNPs; 
see Fig. 5 and Supplementary Table S9). The proportion of significant SNPs for males was lower with 23.53% 
(5372 SNPs). For both sexes, the fraction of non-significant SNPs was identical at 19.35% (females: 5,292,550 
SNPs; males: 5,294,287 SNPs). We were thus able to detect a significant enrichment of genome-wide significant 
variants for both, females (P < 0.0001; OR = 1.44; 95% CI = [1.40, 1.48]) and males (P < 0.0001; OR = 1.28; 95% 
CI = [1.24, 1.32]; see Fig. 5 and Supplementary Table S9). By comparing both sexes with each other, we detected 
a significant sex difference for the circRNA localisation of the genome-wide significant SNPs. BMI-associated 
SNPs significant in females are more abundant on circRNA genomic loci than the significant SNPs for BMI in 
males (P < 0.0001; OR = 1.13; 95% CI = [1.08, 1.17]; see Fig. 5 and Supplementary Table S10). Additionally, we 
were able to confirm this enrichment of BMI-associated SNPs in females in the largest dataset of circAtlas v2.0 
(GRCh37; see Supplementary Fig. S1 and Supplementary Table S10).

Subsequently, we assessed whether circRNA-located SNPs significant in females and males overlap. We have 
found 2780 SNPs that were significant for both sexes and were localised on at least one circRNA (not shown). To 

Figure 3.  Consideration of the linkage disequilibrium of BMI-SNPs located on circRNA genomic loci. 
(a) To correct for the LD of SNPs, we have defined non-significant SNPs (black; total of 1,518,661 SNPs) that 
were located within a 1 Mb region adjacent to a significant SNP (P < 5 ×  10−8) as a ‘significant region’ (grey; 
total of 805,908 SNPs) as well. (b) Further, in an additional LD approximation, non-significant variants (black; 
total of 2,247,465 SNPs) located within an already described region of high LD (as stated in  plinkQC70) were 
classified as ‘significant’ (grey; total of 77,104 SNPs). The corresponding statistical results can be obtained from 
Supplementary Table S7. ****P < 0.0001; SNP single nucleotide polymorphism.
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obtain information about overrepresented functions and cellular compartments via a gene ontology (GO) analy-
sis, we first mapped those overlapping SNPs to their corresponding genes using the Variant Effect Predictor (VEP) 
by Ensembl. The SNPs mapped to 198 unambiguous Ensembl gene IDs. The GO analyses revealed no significant 
overrepresentation for any biological process. By analysing the GO molecular functions terms, 160 of those genes 
were shown to be involved in protein binding (GO:0005515, FDR P = 4.83 ×  10−8). Further, the 198 genes seem 
to be enriched in the nucleus (GO:0005634, FDR P = 5.89 ×  10−4), membrane-bounded organelles (GO:0043227, 

Figure 4.  Enrichment of genome-wide significant SNPs is not a cross-phenotype feature. To test whether the 
detected enrichment of genome-wide significant SNPs (P < 5 ×  10−8) is BMI-specific or a general characteristic, 
we extracted datasets of additional GWAS studies analysing various phenotypes. We have selected one 
anthropometric trait (body  height9), two neurological diseases (amyotrophic lateral  sclerosis28 and  epilepsy29), 
four peripheral diseases (chronic kidney  disease30, heart  failure31, pernicious  anemia32 and ulcerative  colitis33) 
as well as two psychiatric disorders (anorexia  nervosa34 and autism spectrum  disorder35). The results of the BMI 
GWAS are presented as a reference and are exclusively based on the analysis with the circBase circRNA dataset. 
The corresponding statistical results are stated in Supplementary Table S8. ****P < 0.0001; **P < 0.01; ns not 
significant, SNP single nucleotide polymorphism.

Figure 5.  Deviations of genome-wide significant BMI-SNPs located on circRNAs between females and 
males. To explore whether the enrichment of significant BMI-associated SNPs deviates between females and 
males, we extracted data of a BMI-GWAS37 analysing both sexes separately. We applied the custom R script 
to the significant (grey; total of 27,653 SNPs in females; total of 22,833 SNPs in males) and non-significant 
(black; total of 27,352,598 SNPs in females; total of 27,357,420 SNPs in males) SNP data concomitantly with 
the circRNA data extracted from circBase separately for both sexes. Subsequently, we compared the number 
of circRNA-located significant SNPs for females against the quantity of SNPs encompassed in circRNA loci for 
males (Chi-square test). The statistical results are stated in Supplementary Table S9. ****P < 0.0001; SNP single 
nucleotide polymorphism.
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FDR P = 6.36 ×  10−4; GO:0043231, FDR P = 6.82 ×  10−4), nuclear lumen (GO:0031981, FDR P = 8.25 ×  10−4), intra-
cellular organelles (GO:0043229, FDR P = 8.29 ×  10−4), cytosol (GO:0005829, FDR P = 8.51 ×  10−4), nucleoplasm 
(GO:0005654, FDR P = 1.27 ×  10−3), intracellular anatomical structure (GO:0005622, FDR P = 1.54 ×  10−3), orga-
nelles (GO: 0043226, FDR P = 2.20 ×  10−3), cytoplasm (GO:0005737, FDR P = 6.30 ×  10−3), membrane-enclosed 
lumen (GO:0031974, FDR P = 1.23 ×  10−2), organelle lumen (GO:0070013, FDR P = 1.34 ×  10−2; GO:0043233, 
FDR P = 1.46 ×  10−2) and cytoplasmic stress granules (GO:0010494, FDR P = 2.59 ×  10−2).

Interactions of microRNAs (miRNAs) and circRNAs. As it is known that circRNAs often function 
as miRNA  sponges14,38, we aimed to explore potential interactions between circRNAs harbouring significant 
BMI-SNPs and miRNAs. Thus, we downloaded data from the Encyclopedia of RNA Interactions (ENCORI)39 
containing 475,341 miRNA target sites (GRCh37) of 643 miRNAs that were correlated with various circBase 
circRNAs. In total, 5717 circRNAs from the circBase database contained at least one of the 9949 significant SNPs 
for BMI (see Supplementary Table S5). Of these, 4100 (71.72%) were linked to at least one miRNA target site (not 
shown). The 20 most miRNA-comprising circRNAs by raw numbers were on average 1,243,002 bp long. To be 
able to estimate more precisely the number of miRNA binding sites presumably present in a given circRNA, we 
have normalised the number of miRNA targets found for a specific circRNAs on its length (see Supplementary 
Fig. S2b). Thereby, hsa_circ_0005103 showed the highest ratio of miRNAs based on its length (0.1449; see Sup-
plementary Fig. S2b), while hsa_circ_0007319 showed the highest raw count of miRNA target sites (4275; see 
Supplementary Fig. S2a). 641 miRNAs (99.69%) could be linked to a circRNA containing at least one BMI-SNP. 
Of these, two of the miRNAs with the highest numbers of circRNAs linked (hsa_miR-15a-5p and hsa_miR-
16-5p; see Supplementary Fig. S3) have been implicated in obesity-related  traits40–43.

Experimental validation of the SNP and a circRNA candidate. Next, to assess whether BMI-associ-
ated SNPs might affect the level of circRNAs, we selected one genome-wide significant SNP for BMI located on a 
circRNA. Accordingly, we screened for a genome-wide significant SNP detected in the BMI  GWAS9,44 that is pro-
spectively localised on a circRNA extracted from circBase, while further fulfilling predefined requirements. 9949 
BMI-associated SNPs were found to be located on circRNAs included in circBase (see Supplementary Table S5). 
Of these, 5471 variants exhibited a MAF of at least 30% and 1749 SNPs were further detected in regions of circR-
NAs previously confirmed in multiple cell lines and tissues. After the validation of the set distance between SNP 
and circRNAs’ backsplice junction (BSJ) and LD structures, the SNP rs4752856 (chr11: 47,648,402; GRCh37; 
MAF = 0.3526; P = 9.4 ×  10–46)9 whose risk allele (A) predisposes to an increased BMI (β = 0.0242)9 was selected. 
It is located on the mitochondrial carrier homologue 2 gene (MTCH2)-derived circRNA hsa_circ_0022025 
(chr11: 47,647,226–47,648,679; GRCh37). By genotyping 21 recruited participants (age: 24.95 ± 3.46 years old; 
BMI: 20.77 ± 1.77 kg/m2), we identified that ten probands were heterozygous (G/A), ten were homozygous for 
G/G and one was homozygous for A/A. The Hardy–Weinberg-Equilibrium was thus fulfilled.

Allelic levels of rs4752856‑containing circRNAs are skewed in favor of the risk allele. To deter-
mine the relative levels of the circRNAs derived from the G- and A-allele of rs4752856, we performed highly 
sensitive primer-extension assays (SNaPshot)45 on the genomic DNA (gDNA) and circRNA-derived comple-
mentary DNA (cDNA) of heterozygous individuals. The gDNA was used to normalize the circRNA values. For 
each sample, the assay was performed in triplicates. Homozygous samples acted as assay controls and were not 
further analysed (see Supplementary Figs. S4 and S5). Two samples of heterozygous individuals were excluded 
from subsequent statistical analysis due to low signals and high background noise. Thus, eight heterozygous 
samples remained in the study (for exemplary output see Supplementary Fig. S6). All of these samples revealed 
a distinct skew in favor of the BMI-increasing allele (A-allele; see Fig. 6 and Table 2). The one-sample Wilcoxon 
test showed that the normalised circRNA value was significantly higher (observed median = 1.25; asymptotic 
two-sided P-value = 0.012; effect size r = 0.63; see Supplementary Table S11) than the hypothesized median value 
of 1. Collectively, we ascertained that the A-allele of rs4752856 was 25% more abundant on the circRNA than the 
G-allele (see Fig. 6 and Table 2).

Discussion
Our study aimed to analyse the putative interactions of SNPs affecting BMI variation and circRNAs. Therefore, 
we initially investigated whether genome-wide significant SNPs (P < 5 ×  10−8) for BMI are more frequently located 
on genomic loci harbouring circRNAs than non-significant SNPs (P ≥ 5 ×  10−8). We indeed identified a significant 
enrichment of genome-wide significant BMI-associated SNPs on circRNA genomic loci extracted from the data-
bases circAtlas v2.0, circBase, CIRCpediaV2 and circVAR. This enrichment was consistent throughout the four 
circRNA datasets. Concurrently, our sensitivity analysis revealed analogous findings. Despite the exclusion of 
SNPs with P-values within a certain range and a resultant stricter delineation between the definitions of signifi-
cant and non-significant SNPs, we still detected the previously shown enrichment of significant SNPs. Equally, 
this clustering was still evident when considering the LD structures of SNPs, regardless of whether a 1 Mb region 
was defined as an LD block or whether already known regions of high LD were analysed.

A previous study observed that SNPs with the highest impact on circRNAs, so-called circRNA quantitative 
trait loci (circQTLs), were mainly located in the flanking sites of the respective circRNAs, while merely a limited 
proportion reside inside the circRNAs. By analysing various sequence-defined elements, an intron-based enrich-
ment was  detected24. As GWAS signals predominantly map to non-coding  regions6,7,10,11 and as we exclusively 
analysed the genomic loci of circRNAs based on the start and stop positions deposited in the respective data-
bases, and thereby neglecting splice isoforms of circRNAs, our results might be driven by this intron-specific 
enrichment of the significant SNPs. Consequently, we may have overestimated the number of SNPs that are 
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potentially located on the matured circRNAs. However, this equally applies to significant and non-significant 
variants. Yet, SNPs in the flanking introns exerting their effects on circRNAs as proposed by Liu et al.24 might at 
least be partially covered by our genomic level-based analysis. Still, since we cannot utilize the circRNA database 
data to infer which splice forms are generally formed, our approach can potentially account for the majority of 
isoforms putatively generated. Conversely to the intronic circQTL enrichment, an additional report showed that 
circQTLs were less likely to be intronic variants and instead tended to be localised within 5’ untranslated regions 
and exonic  regions46, concurring with the fact that the majority of circRNAs are comprised of  exons24. Never-
theless, both studies have demonstrated that circQTLs with a high influence on circRNAs are more frequently 
located on disease-associated loci than SNPs that do not influence the  circRNA24,46. Although we assigned the 
SNPs significance level based on the P-value and we thus might have encompassed non-causal variants in the 
significant group, it is certainly feasible that the majority of our significant SNPs localized to circRNAs may 
have a detectable influence on these circular transcripts. Generally, genetic variants located within genomic loci 
of circRNAs could putatively alter sequences of binding sites for miRNAs and RNA-binding proteins (RBPs), 
albeit Thomas and Sæstrom47 ascertained that the SNP density at these binding sites is generally diminished in 
circRNAs. Yet, as circRNAs exhibit a cell type specific  expression17, it is still plausible that while there is gener-
ally a reduced enrichment of SNPs in these regions, this may vary depending on the cell type from which the 

Figure 6.  Allelic ratios of hsa_circ_0022025 in eight heterozygous individuals for SNP rs4752856. 
Primer extension analysis of the allelic levels was performed with the ABI Prism SNaPshot Multiplex kit 
(Applied Biosystems, Foster City, CA, USA) as previously  described45. The assay was performed in triplicates 
for each subject indicated by the single data points. For ‘all subjects’, each data point refers to the mean value 
of one subject. The allelic circRNA ratios were normalised with the allelic gDNA ratios. Besides the mean 
value (middle bar), the upper and lower limits of the 95% confidence interval are shown. The descriptive 
statistics of the normalised results were analysed with SPSS (version 28.0.0.0) and are stated in Supplementary 
Table S11. circRNA circular RNA.

Table 2.  Allelic ratios of the SNP rs4752856 on the circRNA hsa_circ_0022025 and the genomic fragment 
of MTCH2. The A/G ratios of the primer extension products were determined for both the circRNA-derived 
cDNA as well as genomic DNA (for details see “Materials and methods” section). The circRNA ratios were 
normalized with regard to the genomic DNA. A risk allele, G major allele, circRNA circular RNA, gDNA 
genomic DNA.

Subject

Triplicate I Triplicate II Triplicate III

A/G circRNA A/G gDNA
Normalised 
circRNA/gDNA A/G circRNA A/G gDNA

Normalised 
circRNA/gDNA A/G circRNA A/G gDNA

Normalised circRNA/
gDNA

Subject 1 0.61 0.59 1.02 0.65 0.55 1.18 0.76 0.58 1.30

Subject 2 0.62 0.59 1.05 0.66 0.56 1.17 0.80 0.56 1.42

Subject 3 0.70 0.59 1.19 0.78 0.55 1.41 0.80 0.56 1.43

Subject 6 0.65 0.60 1.09 0.84 0.57 1.48 0.75 0.56 1.33

Subject 7 0.74 0.57 1.29 0.71 0.57 1.24 0.79 0.59 1.33

Subject 8 0.62 0.57 1.08 0.70 0.54 1.29 0.75 0.58 1.28

Subject 9 0.69 0.62 1.13 0.80 0.60 1.35 0.72 0.60 1.19

Subject 10 1.08 0.59 1.84 1.37 0.56 2.44 1.25 0.57 2.19
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circRNA was extracted. Still, an altered binding affinity of circRNAs towards their targets can have profound 
consequences, which remain to be validated in subsequent in vitro and in vivo studies.

As we observed a significant accumulation of the genome-wide significant SNPs for BMI on the genomic 
loci of circRNAs, we subsequently aimed to explore whether this enrichment was evident for SNPs associated 
with additional diseases and traits. As a previous report has demonstrated that circRNAs are highly enriched in 
the brain and  synapses16, we postulated that the detected enrichment might be associated with CNS-mediated 
diseases and traits. Replication of our analyses with GWAS data pertaining to anthropometric, neurological, 
peripheral, and psychiatric phenotypes revealed a significant clustering of genome-wide significant SNPs for the 
psychiatric disorders (AN and autism spectrum disorder), the anthropometric measure of the body height and 
the peripheral CKD. The inverse enrichment of non-significant variants was detected for SNPs extracted from 
GWAS pertaining ulcerative colitis, pernicious anemia and the two neurological diseases (ALS and epilepsy). 
No significant deviation in circRNA localisation of significant and non-significant variants was ascertained for 
variants analysed in a GWAS for heart failure. Consequently, we could not confirm our hypothesis. Apparently, 
this enrichment is not a general feature of circRNAs. Clearly, the results may be biased due to the characteristics 
and implementations of the GWAS. The GWAS for BMI and body height, for instance, were conducted by the 
same  authors9 and given the definition of the BMI (kg/m2), we cannot exclude the possibility that the results 
obtained for the BMI GWAS were driven by the results of the dataset pertaining the body height. Generally, a high 
polygenicity for BMI and body height has been  reported48. Further, genetic correlations between the phenotypes 
may have impacted our results. For example, past studies of our research group identified nine SNP alleles at three 
independent genetic loci that were associated with both, AN, and BMI. We were able to show that all nine AN 
susceptibility alleles concomitantly accounted for a lower  BMI49. This correlation was confirmed by additional 
 studies50–52. Yet, we did not assess any overlapping significant SNPs for BMI and AN located on circRNAs and 
consequently, could exclude SNP-based bias. Still, correlation and reciprocal interference between our results 
regarding BMI and AN cannot be fully excluded as our sex-specific analysis based on data from the BMI GWAS of 
Pulit et al.37 implies that genome-wide significant BMI-SNPs in females are more abundant on circRNA genomic 
loci than significant BMI-SNPs in males. Since it is known that AN patients are predominantly  female53 and 
SNPs associated with a higher risk of AN predispose to a lower  BMI49–52, we can assume that the BMI-SNPs on 
circRNAs mainly predispose to a lower BMI and that the effect on the etiology of obesity is marginal. In addition, 
most phenotypes analysed have already been associated with  circRNAs54–59. For example, circRNA expression 
profiling of post-mortem brains of autistic patients and controls identified 60 circRNAs and more than 8000 
autism-associated circRNA-miRNA-mRNA interactions. It was shown that targets of these axes were mainly 
risk genes for autism. Some of these high-risk genes were even modulated by upregulated circRNAs acting as a 
miR-204-3p sponge in human neuronal  cells54. Merely studies on AN and pernicious anemia and their circRNA 
implication are lacking. Yet, it is unknown how disease-associated SNPs affect these mechanisms.

Previously, most circRNAs were functionally characterised as miRNA  sponges14,38. Consequently, we have 
explored putative miRNA-circRNAs interactions based on a dataset extracted from the ENCORI  database39. More 
than 70% of all circBase-extracted circRNAs were found to be linked to a least one miRNA. Yet, the circRNAs 
with the highest raw counts of miRNA target sites tended to be large in size. We assume that these circRNAs do 
not in fact span the entire range between predicted start and stop position stated in the database, but are indeed 
smaller. Therefore, we performed a normalisation based on the circRNA length. This yielded low ratios of miRNA 
target sites in contrast to the circRNAs length.

Almost all miRNAs included in the ENCORI dataset were determined to be correlated to SNP-harbouring 
circRNAs. Within the five miRNAs linked to the highest number of circRNAs, two were associated with an 
obesity-related trait. Interestingly, hsa-miR-15a-5p has been reported to be involved in the process of adipocyte 
 differentiation40 and was differentially expressed in response to a low-fat  diet41. Similarly, hsa-miR-16-5p was 
found to be downregulated after bariatric  surgery42 and after aerobic exercise  training43. It is thus feasible, that 
certain circRNAs linked to BMI-associated SNPs might act on miRNAs as well.

Notably, due to predictions of circRNAs being based on computational algorithms and a lack of experimental 
validation, the possibility arises that the circRNAs from the databases represent false  positives60. In general, given 
the high number of SNPs included in this study, the statistical power increased substantially and thus might 
exaggerate the potentially clinically negligible  effects61.

To analyse a potential functional effect of SNPs on circRNAs obtained by our in silico analyses, we selected 
a BMI-increasing SNP (rs4752856) located on a MTCH2-derived circRNA (hsa_circ_0022025) for follow-up 
in vitro analyses. Using a highly sensitive primer extension assay, we determined the relative levels of the circR-
NAs derived from the G- and A-allele of heterozygous probands. We detected a significant skewing in favour 
of the risk allele (A). Normally, when investigating cis-regulatory effects, a large sample pool is required. But as 
we exclusively analysed heterozygous individuals, the respective other allele acted as the internal  control45 war-
ranting our small number of eight probands.

Previous studies have already demonstrated that SNPs have a considerable impact on the circRNAs’  levels22,23. 
Zhou et al. showed that SNP rs12196996, which was significantly correlated with an increased risk to develop 
coronary artery disease (CAD), was associated with decreased circFOXO3 levels in individuals with the GG geno-
type. It has been suggested that the increased CAD risk is caused by the effect of the SNP on  circFOXO323. Fur-
ther, it is known that the levels of circRNAs in adipose tissue are different between obese and lean  individuals18,19. 
One circRNA, circSAMD4A, exhibited a positive correlation with BMI in obese patients which was assumed to 
exert its effects through interactions with miR-138-5p, ultimately regulating the expression of EZH219. Further, 
a deep sequencing analysis discovered thousands of circRNAs within the adipose tissue, which were dynamically 
regulated during adipogenesis and in obesity. A downregulation of circRNAs in contrast to the linear mRNAs 
was detected in obese  mice18.
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MTCH2 is known to be an obesity susceptibility  gene62,63. Previously, it has been positively correlated with 
BMI variance and was reported to be upregulated during  adipogenesis62,64. Elevated MTCH2 expression levels 
have been determined in obese  women62. Given that circRNAs can regulate mRNA levels due to their role as 
miRNA  sponges14,38 and given that we have detected increased levels of the hsa_circ_0022025 derived from the 
BMI-increasing allele (A) of rs4752856, it is feasible that this circRNA may act as a miRNA sponge indirectly 
affecting the MTCH2 mRNA levels. Additionally, MTCH2 protein levels are increased in obese  individuals62, 
which might potentially reflect the increased mRNA levels. Still, it has been reported that circRNAs can undergo 
cap-independent  translation14. Thus, our detected increase of hsa_circ_0022025 derived from the risk allele (A) 
might hint at such a cap-independent translation, consequently raising the protein levels of MTCH2. Further, 
animal models have shown that a knockout of Mtch2 leads to a lower susceptibility for weight  gain63. These 
transgenic mice exhibited elevated levels of energy  expenditure63, while a loss of Mtch2 was shown to be protec-
tive for diet-induced  obesity65. Hence, rs4752856’s BMI-increasing  effect9 might be caused by the here detected 
increased levels of hsa_circ_0022025.

Accordingly, it is indeed conceivable that BMI-affecting SNPs, such as the here examined rs4752856, might 
exert an impact on circRNAs and ultimately affect the BMI of the risk allele carriers. Yet, as circRNAs are cell-
type specifically  expressed17, a replication of the analysis using circRNAs from different sources could yield in 
different outcomes and since we solely examined one SNP on one circRNA, the obtained results merely serve as 
an indication for putative SNP-mediated mechanisms and should be confirmed in additional analyses of multiple 
circRNA-located and BMI-affecting variants.

Taken together, we have determined a significant enrichment of genome-wide significant SNPs for BMI in 
circRNAs in comparison to non-significant variants. A sensitivity analysis as well as approximations of LD struc-
tures revealed similar outcomes. Yet, we did not ascertain evidence that this enrichment is consistent throughout 
various phenotypes. Our analysis of the BMI-increasing SNP rs4752856 located on the MTCH2-derived circRNA 
hsa_circ_0022025 revealed a higher abundance of the risk (A) allele on the circular transcript compared to the 
major (G) allele. Thus, our analyses extend the current knowledge of interactions of SNPs with circRNAs provid-
ing evidence for effect of BMI-affecting SNPs on circRNAs and thus implications in obesity. Further analyses 
need to determine the extent of the here detected findings.

Materials and methods
Datasets of circRNAs and GWAS SNPs. The circRNA datasets were downloaded from four publicly 
available circRNA databases, namely circAtlas v2.066,  circBase67,  CIRCpediaV268 and  circVAR69 (see Supple-
mentary Table S1). All data was extracted from the download section of the respective database and contained 
exclusively human data. Data with ambiguous or incomplete annotations and circRNAs derived from genomic 
loci of the sex chromosomes were excised. The data was further checked for internal database duplicates.

The SNP summary statistics of the meta-analysis of BMI GWAS conducted by Yengo et al.9 was downloaded 
from the Genetic Investigation of Anthropometric Traits (GIANT) consortiums’ website (see Supplementary 
Table S2). Given the inconsistent assignment of reference genomes amongst the circRNA databases (see Sup-
plementary Table S1), the SNP coordinates were shifted from GRCh37 to GRCh38 using the remapping service 
of the National Center for Biotechnology Information (NCBI) (https:// www. ncbi. nlm. nih. hov/ genome/ tools/ 
remap). As the lift over of certain SNPs was inconclusive, the respective variants were excluded. In total, 2,324,569 
SNPs remained in the analysis (see Supplementary Tables S2 and Table 1).

In order to replicate the analysis for further phenotypes, additional GWAS data for  ALS28,  AN34, autism 
spectrum  disorder35, body  height9,  CKD30,  epilepsy29, heart  failure31, pernicious  anemia32 and ulcerative  colitis33 
were downloaded (see Supplementary Table S2). Putative gender deviations were analysed with data of an addi-
tional BMI  GWAS37. All GWAS data was acquired in the GRCh37 genome version and was exclusively analysed 
pertaining the autosomal chromosomes.

SNP classification. To assess whether genome-wide significant SNPs for BMI show a higher abundance on 
the genomic loci of circRNAs than non-significant variants, SNPs were assigned as significant (P < 5 ×  10−8) or 
non-significant (P ≥ 5 ×  10−8) based on their P-value (see Table 1).

Next, a sensitivity analysis was implemented intended to provide a more stringent delineation between the 
groups of SNPs from the BMI GWAS. Three additional P-value thresholds were introduced (5 ×  10−7, 5 ×  10−6, 
5 ×  10−5). The SNPs with P-values between 5 ×  10−8 and the corresponding novel cut-off were excluded (see 
Table 1). Accordingly, while the group of significant SNPs remained unchanged, we obtained three diminished 
sets of non-significant variants (P ≥ 5 ×  10−7, P ≥ 5 ×  10−6 or P ≥ 5 ×  10−5).

Subsequently, approximations of the LD structures of the BMI-SNPs were defined. Hence, all non-significant 
SNPs within a 1 Mb region adjacent to significant SNPs were assigned as significant as well (see Table 1). Since 
this definition of a 1 Mb region as a LD block was expected to yield a large number of false positives, the analysis 
of known regions of high LD as represented in  plinkQC70 (https:// github. com/ meyer- lab- cshl/ plink QC/ blob/ 
master/ inst/ extda ta/ high- LD- regio ns- hg38- GRCh38. txt) was ensued. If a region of high LD contained one of 
the significant SNPs (based on the P-value), all non-significant SNPs within this region were also classified as 
significant (see Table 1).

The group assignment of SNPs derived from GWAS of additional phenotypes is shown in Supplementary 
Table S3.

Enrichment analysis. A custom R script (R version: 4.0.5; RStudio version 1.4.1106) was applied to match 
the genomic coordinates of the circRNAs with those of the GWAS SNPs. The genomic coordinates of the cir-
cRNAs were constructed based on the predicted start and stop positions provided in the respective circRNA 

https://www.ncbi.nlm.nih.hov/genome/tools/remap
https://www.ncbi.nlm.nih.hov/genome/tools/remap
https://github.com/meyer-lab-cshl/plinkQC/blob/master/inst/extdata/high-LD-regions-hg38-GRCh38.txt
https://github.com/meyer-lab-cshl/plinkQC/blob/master/inst/extdata/high-LD-regions-hg38-GRCh38.txt
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database. The total number of unique SNPs located on the genomic loci of circRNAs was extracted from the 
generated output. Subsequently, a two-sided Chi-square test and the odds ratio (OR) were calculated using 
GraphPad Prism (version: 9.2.0). The confidence intervals (CI) of the OR were computed using the Woolf logit 
intervals. The confidence level was set to 95%.

Gene mapping and gene ontology analyses. To perform a functional assignment of SNPs, the rsIDs of 
these were initially allocated to the corresponding Ensembl gene IDs using the Ensembl Variant Effect Predictor 
(https:// ensem bl. org/ Tools/ VEP). Next, the gene IDs were analysed by the means of the Gene Ontology (http:// 
www. geneo ntolo gy. org) to yield functional classifications. Therefore, the PANTHER overrepresentation test was 
subjected applying the GO Ontology database. All 20,589 human genes listed in the database were used as a 
reference. As a statistical test, the Fisher’s exact test with a False Discovery Rate (FDR) correction was applied. 
Significance was given with FDR P < 0.05.

In silico analyses of interactions between miRNAs and circRNAs. To analyse whether the circR-
NAs harbouring significant SNPs for BMI might interact with miRNAs, a dataset containing information regard-
ing miRNA-circRNA interactions supported by Ago CLIP-sequencing data was downloaded from the ENCORI 
database (https:// starb ase. sysu. edu. cn)39. This contained 475,341 target sites of 643 miRNAs known to be linked 
to circRNAs. The data was based on the GRCh37 genome version. Using a marginally modified version of the 
custom R script implemented before, it was checked whether the circBase ID of circRNAs containing BMI-SNPs 
was included in the ENCORI dataset.

Experimental validation of SNP effects. To determine the relevance of BMI-affecting SNPs on circR-
NAs, a genome-wide significant SNP for BMI (P < 5 ×  10−8)9,44, whose circRNA localisation was predicted by the 
preceding in silico analysis, was selected for subsequent in vitro studies. Following conditions needed to be met: 
(1) the SNP is located on a circRNA that was verified to be expressed in multiple cell lines and tissues; and (2) 
the SNP exhibits a MAF of at least 30% to ensure the detection of heterozygous carriers required for the allelic 
expression assay (as described  in45); and (3) the SNP is located in close proximity (< 2 kb) to the BSJ of the cir-
cRNA in order to amplify both BSJ and SNP on one fragment to exclude potential unspecific amplicons; and (4) 
is either a lead SNP or in high LD to a lead SNP.

Study group. We collected blood of 21 healthy individuals (age: 24.95 ± 3.46 years old; BMI: 20.77 ± 1.77 kg/
m2; 52.38% female). Written informed consent was given by each participant. This study was approved by the 
Ethics Committee of the Medical Faculty of the University Duisburg-Essen (15-6534-BO) and was performed in 
accordance with the Declaration of Helsinki.

Genotyping. The DNA of each participant was isolated from whole-blood. Subjects were genotyped per-
forming a PCR (Veriti 96-well thermal cycler; Applied Biosystems, Foster City, CA, USA) with SNP-specific 
gDNA primers (see Supplementary Table S4). Samples were purified with the QIAquick PCR Purification kit 
(Qiagen, Hilden, Germany) and sent for Sanger sequencing to Microsynth Seqlab GmbH in Göttingen, Ger-
many. Sequence analysis and genotype assignment were performed by at least two experienced scientists using 
the SeqMan Pro software (version: v.10.1.0). Discrepancies were solved by either reaching consensus or by re-
sequencing. The fulfilment of the Hardy–Weinberg-Equilibrium was checked.

Experimental validation of the circRNA. Peripheral blood mononuclear cells (PBMCs) were isolated 
from the participants’ whole-blood applying a density gradient centrifugation utilizing Lymphoprep (Stemcell 
Technologies, Vancouver, BC, Canada) pre-filled Leucosep tubes (Greiner Bio-One GmbH, Frickenhausen, Ger-
many) according to the manufacturer’s instructions. Total RNA was extracted from the isolated PBMCs using 
TRIzol (Invitrogen AG, Carlsbad, CA, USA). The manufacturer’s protocol was modified to increase the cell 
number and to minimize the dilution factor. Next, the total RNA samples were treated with at least 1 U RNase 
R (Epicentre Biotechnologies, Madison, WI, USA) per 1 µg RNA for 15 min at 37 °C. Subsequently, the samples 
were subjected to at least 2 U DNase I (New England Biolabs GmbH, Ipswich, MA, USA) per 10 µg RNA for 
10 min at 37 °C followed by an EDTA (5 mM) heat inactivation step for 10 min at 75 °C. The remaining RNA was 
reversely transcribed to cDNA using the qScript cDNA SuperMix (Quanta Biosciences Inc., Beverly, MA, USA) 
as described in the manufacturer’s instructions. Residual linear contaminations were excluded for each sample 
by performing a PCR with primers spanning two exons including their in-between intron of the sex hormone 
binding globulin (SHBG; see Supplementary Table S4). Furthermore, the successful circRNA isolation was vali-
dated conducting a PCR with divergent primers amplifying the yippee-like 2 (YPEL2)-derived circRNA, hsa_
circ_0005600. Divergent primers spanning the BSJ and the SNP (see Supplementary Table S4) were applied in a 
PCR (Veriti 96-well thermal cycler; Applied Biosystems, Foster City, CA, USA) on the circRNA-derived cDNA 
template to confirm the presence of both. A 2.5%-agarose gel electrophoresis validated the expected fragment 
size and was followed by purification of the PCR products (QIAquick PCR purification kit; Qiagen, Hilden, 
Germany) and Sanger sequencing (performed by Microsynth Seqlab GmbH, Göttingen, Germany). Sequence 
analysis and circRNA confirmation were conducted by at least two experienced scientists with the SeqMan Pro 
software (version: v.11.0.0). Discrepancies were solved by either reaching consensus or by re-sequencing. The 
desired fragments were successfully ascertained for all examined samples.

https://ensembl.org/Tools/VEP
http://www.geneontology.org
http://www.geneontology.org
https://starbase.sysu.edu.cn
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Primer extension analysis. To determine the relative levels of hsa_circ_0022025, the amplification of the 
genomic DNA and circRNA-derived cDNA fragments for ten heterozygous individuals (G/A), two homozygous 
G/G probands, and one homozygous A/A participant was repeated in triplicates. The fragments were confirmed 
by a 2.5%-agarose gel and were subsequently purified (QIAquick PCR purification kit; Qiagen, Hilden, Ger-
many). Next, the samples were subjected to a primer extension assay using the ABI Prism SNaPshot Mulitplex 
kit (Applied Biosystems, Foster City, CA, USA) and a specific SNaPshot primer (see Supplementary Table S4) 
following the manufacturer’s instructions. Equal amounts of cDNA and gDNA of each investigated participant 
were applied. Samples were heated for 3 min to 96 °C, followed by 25 cycles of 96 °C for 10 s, 53 °C for 5 s and 
60 °C for 30 s. The SNaPshot reaction products were purified with shrimp alkaline phosphatase (GE Healthcare, 
Waukesha, WI, USA) and were analysed by gel capillary electrophoresis on the ABI Prism 3700 DNA Analyzer 
(Applied Biosystems, Foster City, CA, USA). The resultant electropherograms were examined using the Gen-
eMapper 4.0 software by Applied Biosystem (Foster City, CA, USA). Next, allelic ratios of the circRNA-derived 
cDNA were normalised with the gDNA allelic ratios as in Eq. (1). The descriptive statistics with confidence inter-
vals were based on the t-test and a one-sample Wilcoxon test and was conducted with SPSS (version: 28.0.0.0). 
The confidence level was set to 95%.

Data availability
The datasets generated and analysed during the current study are available in the Zenodo repository, https:// doi. 
org/ 10. 5281/ zenodo. 67262 58. The sources of the used GWAS and circRNA datasets are stated in Supplementary 
Tables S1 and S2. Biological material can be obtained for research purposes. The R script can be obtained by the 
authors upon reasonable request.
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