
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12478  | https://doi.org/10.1038/s41598-022-16490-y

www.nature.com/scientificreports

Can machine learning algorithms 
perform better than multiple linear 
regression in predicting nitrogen 
excretion from lactating dairy cows
Xianjiang Chen1,2, Huiru Zheng2*, Haiying Wang2* & Tianhai Yan1*

This study aims to compare the performance of multiple linear regression and machine learning 
algorithms for predicting manure nitrogen excretion in lactating dairy cows, and to develop new 
machine learning prediction models for MN excretion. Dataset used were collated from 43 total diet 
digestibility studies with 951 lactating dairy cows. Prediction models for MN were developed and 
evaluated using MLR technique and three machine learning algorithms, artificial neural networks, 
random forest regression and support vector regression. The ANN model produced a lower RMSE 
and a higher CCC, compared to the MLR, RFR and SVR model, in the tenfold cross validation. 
Meanwhile, a hybrid knowledge-based and data-driven approach was developed and implemented 
to selecting features in this study. Results showed that the performance of ANN models were greatly 
improved by the turning process of selection of features and learning algorithms. The proposed new 
ANN models for prediction of MN were developed using nitrogen intake as the primary predictor. 
Alternative models were also developed based on live weight and milk yield for use in the condition 
where nitrogen intake data are not available (e.g., in some commercial farms). These new models 
provide benchmark information for prediction and mitigation of nitrogen excretion under typical dairy 
production conditions managed within grassland-based dairy systems.

Dairy cows do not efficiently utilize dietary nitrogen (N), primarily in the form of protein, and excrete a large pro-
portion of dietary N to environment, causing terrestrial eutrophication, biodiversity loses and soil acidification1–3. 
In addition to the environmental pollution, N-related pollutants (e.g. ammonia) are linked to lung diseases, 
chronic bronchitis and premature mortality4. In Europe, approximately 75% of ammonia emitted to the atmos-
phere comes from livestock production5. Furthermore, protein supplements are the most expensive ingredient in 
dairy cows’ rations, so N excretion represents an economic loss. As a consequence, economic and environmental 
pressures are focusing attention on reducing manure N (MN) excretion from dairy production systems. There-
fore, it is critical for dairy production industry to have capacity to accurately predict/mitigate MN excretion, in 
order to enhance economic stability and reduce environmental impacts of dairy farming.

Multiple linear regression (MLR) analysis is one of widely used modelling approaches for evaluation of MN 
excretion from livestock production. So far, a large number of statistical models, principally based on linear 
regression and MLR, have been established to predict MN excretion from dairy cows6,7. These studies found 
that equations had higher prediction accuracy for MN when using dietary variables, e.g., N intake (NI), dietary 
forage proportion (FP) and dietary N content (DNC), and animal factors, e.g., live weight (LW), milk yield 
(MY) and days in milk, as predictors1,6,7. However, MLR analysis makes four principal assumptions: the linear-
ity of the relationship between dependent and independent variables, statistical independence of the errors, 
homoscedasticity of the errors and normality of the error distribution8,9. A challenge in implementing MLR 
technique is that these assumptions may not always be fulfilled, which might lead to biased results and fail to 
provide satisfactory prediction.

However, machine learning algorithms are quite beneficial when handling non-linear and complex datasets 
without any prior assumption, even if datasets are noisy and imprecise10, make machine learning algorithms, e.g. 
artificial neural networks (ANN), random forest regression (RFR), support vector regression (SVR), appropriate 
candidates to explore deep relationships between resource inputs and product outputs in livestock production. 
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For example, Chen et al.11 found that ANN model had a better performance than MLR model in prediction 
of dairy cattle manure nutrient concentration, although Craninx et al.10 did not observe a better performance 
by ANN models when compared to MLR models in evaluation of relationships between rumen fermentation 
pattern and milk fatty acids in dairy cows. The RFR model made more accurate prediction than MLR model in 
prediction of individual survival rates to second lactation in Holstein cattle12. Faridi et al.13 evaluated the per-
formance of SVR models and neural network models for predicting bodyweight and carcass weight of broiler 
chicken and found that the SVR method achieved better accuracy and generalization than the neural network 
method. These results imply that machine learning algorithms might be a better alternative, rather than MLR, 
to develop robust models for prediction of MN in cattle production. This is because N excretion rates in cattle 
are regulated by many animal and dietary factors (e.g., LW, productivity, feed intake and dietary N and fiber 
concentrations) and the interaction between these factors14,15. Machine learning algorithms may have technical 
power to explore and identify the deep and complexed relationships of N excretion rates against animal/dietary 
factors and their interaction effects. However, there is little information available on using machine learning algo-
rithms to explore relationships between dairy cow MN and animal and dietary factors. Therefore, this study was 
designed to address this knowledge gap by using total diet digestibility data of lactating dairy cows to compare 
the predictive performance of different machine learning algorithms with MLR approach in predicting manure 
N excretion, and then develop new machine learning models for accurate prediction of MN for dairy production.

Results and discussion
Comparison of prediction performance of MN between MLR and machine learning mod-
els.  There is little information available in the literature on the evaluation of prediction performance for MN 
excretion of dairy cows using MLR models against machine learning algorithms. Therefore, the research frame-
work (the first objective) of the present study started with comparing predictive ability of machine learning 
approaches (ANN, SVR and RFR) against a typical MLR model published in 2006 (Yan et al.6) for prediction of 
MN output of dairy cows.

Feature selection.  To select relevant features for machine learning models (ANN, RFR and SVR), a hybrid 
knowledge-based and data driven approach was developed and implemented in this study. Based on Pearson 
correlation matrix and VIF technique, 6 features with the VIF scores lower than 5 and these features were 
selected as input features to model manure N output from lactating dairy cows using the present training data-
set (Fig. 1). The features selected were NI, DNC, MY, FP, LW and DMEC (diet metabolizable energy content). 
The DMEC had the lowest VIF score (1.1) among those features. Three of those features (NI, LW, MY) were 
included in the MLR model of Yan et al.6 which was used as benchmark model in the present study. A range 
of prediction equations for MN output in dairy cow have been developed based on linear and multiple linear 
regression with stepwise procedure6,7,14,16,17. Among these equations, NI, LW and MY were the most commonly 
selected predictors (features) for the prediction. The NI has been found to be a better predictor for MN output 
than LW or MY in dairy cows and beef cattle7,18. Although the relationship between MN and LW or MY was not 
strong, the model performance was improved significantly when using NI, LW and MY together as predictors6. 
Furthermore, in the present study, DNC, FP and DMEC were also selected as features using Pearson correlation 
matrix and VIF technique. This selection is consistent with the domain knowledge, i.e., the higher N concentra-
tion in dairy cow diets (DNC), the higher N consumption (NI) and then more N excretion in manure (MN). For 
grassland-based dairy systems, increasing the proportion of grazed grass or silage in dairy cow diets (FP) would 
normally reduce NI and consequently total N excretion in manure (MN). These features (DNC, FP and DMEC) 
have been selected in a number of published MLR models as predictors for MN output in dairy cows1,7,19.

Comparison of prediction performance of the four selected models.  Prediction performance 
metrics using the present testing dataset performed by MLR, ANN, RFR and SVR models are showed in Table 1. 
The root mean square error (RMSE) was selected as the criteria for evaluation of the precision of models. The 

Figure 1.   The variance inflation factors (VIF) score of features selected based on the training dataset. The 
features included N intake (NI), diet N content (DNC), milk yield (MY), forage proportion (FP), live weight 
(LW) and diet metabolizable energy content (DMEC).
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concordance correlation coefficient (CCC) was used to assess agreement between observed and predicted val-
ues. The CCC represents both the accuracy and precision of model performance, because it is calculated from 
the Pearson correlation coefficient multiplied by a bias-correction factor. For the prediction of MN using fea-
tures selected by the Stepwise method, ANN model had a significantly the lowest RMSE (P < 0.01) and highest 
CCC when compared to MLR, RFR and SVR models. No significant differences in both RMSE and CCC were 
observed among MLR, RFR and SVR models. When using features selected by the VIF method, a similar result 
was obtained with the lowest RMSE and greatest CCC with the ANN model, which was significantly lower than 
those with RFR and SVR models. As RFR and SVR models had no improvement on the prediction accuracy of 
MLR model, a further evaluation was conducted by comparison of MLR versus ANN in relationships of residual 
plots (predicted–actual MN) against actual MN. The result is presented in Fig. 2. The ANN has a lower mean 
residual MN (0 vs. 25 kg/d) and a lower SD value (32.8 vs. 36.6) than the MLR. The majority of the plot data 
with the ANN model was evenly distributed around the y = 0 line (Fig. 2), but most of plot data with the MLR 
model was above that line. These results indicate that the ANN model could accurately predict MN excretion 
from dairy cows, while MLR, on average, overestimated MN excretion. This means that the ANN model was 
constructed successfully with a higher accuracy in the present study, when compared with the MLR model.

The ANN, RFR and SVR can be applied to approximate any complex functional relationship. These models 
have been applied in many studies in animal science to evaluate rumen fermentation pattern10, animal diet 
formulation20, and milk yield21. However, these models did not always perform better than MLR models. Chen 
et al.11 reported that ANN models had better performance in prediction of dairy cattle manure nutrient concen-
tration when compared with MLR models, while Craninx et al.10 did not find that ANN models could perform 
better than MLR models in evaluation of relationships between rumen fermentation pattern and milk fatty acid 
profile. The RFR models had a higher prediction accuracy than MLR models in prediction of individual survival 

Table 1.   Predictive performance of different modeling approaches for manure N output using stepwise 
and variance inflating factors (VIF) as feature selection methods. a,b,c Means within a column with different 
superscripts differ (P < 0.05). 1 MLR multiple linear regression; RFR random forests regression; SVR support 
vector regression; ANN artificial neural network. 2 RMSE root mean square error (obtained by tenfold 
cross validation). 3 CCC​ concordance correlation coefficients (obtained by tenfold cross validation). 4 The 
features selected by using stepwise methods were NI (N intake), LW (live weight) and MY (milk yield). 5 The 
features selected by using variance inflating factors (VIF) method were NI (N intake), LW (live weight), MY 
(milk yield), FP (forage proportion), DNC (diet N concentration) and DMEC (diet metabolizable energy 
concentration). 6 The significance was determined by one-way analysis of variance and followed by Tukey’s 
Honest Significant Difference (HSD) test (n = 10, α = 0.05).

Models1

RMSE2 CCC​3

Stepwise4 VIF5 Stepwise4 VIF5

MLR 44.7b / 0.60ab /

RFR 46.8b 38.3b 0.58a 0.68b

SVR 44.9b 45.3c 0.64b 0.63a

ANN 34.7a 28.5a 0.70c 0.78c

Sig.6 P < 0.01 P < 0.01 P < 0.01 P < 0.01

Figure 2.   The relationship between actual and residual (predicted–actual) manure N output of dairy cows with 
predicted manure N performed by models developed using the multiple linear regression (MLR) and artificial 
neural network (ANN), respectively.
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rates to the second lactation in Holstein dairy cows12. Hence, these results may indicate that the prediction per-
formance of machine learning algorithms and MLR not only relates to their modelling power/capacity, but also 
depends on the nature of target data and relationships to be explored. Further investigation may need to explore 
the modelling potential of machine learning algorithms (e.g., ANN) for development of robust prediction models 
for mitigation of environmental footprint (e.g. MN excretion) in livestock production.

Development of ANN models for prediction of MN output of dairy cows.  The comparison of pre-
diction performance for MN output in dairy cows in the present study indicated that the ANN model performed 
significantly better than the MLR model and other machine learning models. Therefore, the second objective of 
the present study was to establish new ANN models for more accurate prediction of MN output from lactating 
dairy cows.

Artificial Neural Network model selection and turning.  The ANN can provide universal and highly 
flexible function approximates for all kinds of data22. The ANN models have several factors, such as function 
adoption, network architecture and learning algorithms, and the application of these factors may affect the per-
formance of ANN models. Once the features of ANN model are decided, architecture of network is determined 
mainly by artificial neurons numbers in the hidden layer. Therefore, selecting a suitable number of neurons in 
the hidden layer is important for ANN model development.

In the present study, in order to obtain the optimal architecture and parameters for development of ANN 
models, ANNs were trained by varying features, numbers of hidden layer(s) and neuron(s), training algorithms, 
learning rates and the threshold for partial derivatives of the error function as stopping criteria. A total of 39 
ANN architectures were trained using the same features and various numbers of hidden layer(s) and numbers 
of neuron(s) in each hidden layer, with the objective to find the optimal number of hidden layer(s) and the cor-
responding neurons for each hidden layer (Table 2). As shown in Table 2, a change of numbers of hidden layers 
and neurons in each hidden layer greatly affected the performance of ANN models. One of the architectures 
with 2 hidden layers (3 and 6 neurons for the first and second layers, respectively) had the lowest RRMSE value. 
Therefore, the optimal architecture of the ANN model for prediction of MN in lactating dairy cows was a feed-
forward network with 2 hidden layers, the first layer with 3, and the second one with 6 hidden neurons. Because 
there is no rule for the selection of numbers of hidden layer(s) and numbers of neuron(s) in the hidden layer, no 
similar results in terms of numbers of neuron(s) and hidden layer(s) were found in the published ANN models. 
For example, Craninx et al.10 developed an ANN model with one hidden layer and 6 hidden neurons for predict-
ing rumen acetate, propionate and butyrate proportion. Felipe et al.23 used one hidden layer and 3 neurons in an 
ANN model for prediction of poultry egg production. In addition, Chen et al.11 found that the best ANN models 
for predicting of manure nutrient concentration were those which had one hidden layer with 7 hidden neurons 
for ammonium N, 12 for total potassium, 9 for total N and 8 for total phosphorus. Results obtained indicate 
that the process for selecting and obtaining the optimal configuration (consists of nodes in input layer, number 
of hidden layers and nodes in hidden layer/layers and nodes in output layer) is essential for the development of 
ANN models, although currently there is no standard approach for this process.

To obtain the optimal parameters for ANN models, in the present study, the RRMSE values were tested 
and compared using same features but different training algorithms, learning rate and threshold for the partial 
derivatives of the error function as stopping criteria (Table 3). As shown in Table 3, reducing learning rates and 
thresholds decreased RRMSE when ANN models were trained by both backpropagation and resilient back-
propagation with weight backtracking algorithms. In the present study, the resilient backpropagation with weight 
backtracking algorithm was selected to train the final ANN model because backpropagation algorithm took too 
much longer time (single-digit minutes vs. more than one hour, data not shown) to train the ANN model than 
time required for the resilient backpropagation with weight backtracking algorithm. This is consistent with 
findings reported by Zhao et al.24 found that resilient back propagation algorithms took less time to train ANN 
model for prediction of soil texture distributions. Moreover, based on cross validation procedures, higher predic-
tion accuracy (RMSE) was obtained by models trained with backpropagation algorithm. The results found that 
reducing values of multiplication factors for the upper and lower learning rate (defined by function learningrate.
factor) decreased the RRMSE of the mean actual MN. However, the lower RRMSE (8.75%) were observed when 
turning the parameter of learningrate.factor as list (minus = 0.4, plus = 1.2), which was then selected as values of 
learningrate.factor in the training of models. The results indicate that although selection of training algorithms 
did not greatly improve the performance of ANN model, the time consumed for training the model was affected 
greatly, which needs to be considered in the turning operation.

Table 4 shows the predictive performance of ANN models affected by reduction of features with all tun-
able parameters setting to the same values. The NI was the most important feature among the 6 features as the 
RRMSE increased considerably from 8.48 to 12.6% when NI was excluded from the features list. It suggests that 
changes of model performance caused by reduction of features might use as an alternative tool for identifying 
important features. Although the prediction error of ANN model reduced when FP or DNC was excluded from 
the features, ANN models fitted with the 6 features selected based on the VIF technique had lower SD value, 
indicating that the ANN model fitted using the 6 features had lower prediction errors within the whole dataset 
from low to high range of MN excretion.

Turning operation can help to find optimal learning parameters for ANN model and achieve its best per-
formance for a considered dataset and selection of learning rate has great influence on model performance25. 
In this study, however, only small performance gain is achieved by lower learning rate (Table 3). On the other 
hand, variation in features does not affect performance of model greatly (Table 4) when the most important 
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feature was included in the features list. It implies that in general the ANN model is not critically sensitive to 
the variation in learning parameters.

New ANN models developed using the combined data.  Since the above comparison indicates that 
the ANN model performed better than the MLR model, new ANN models for MN excretion for dairy cows were 
developed using the combined data of the present training and testing datasets. Two ANN prediction models 
were developed with the first one using NI as the primary predictor (Tables 5 and 6) and the second one using 
LW and MY as primary predictors (Tables 7 and 8) as NI data are not always available especially in commercial 
farms. The ANN model based on NI had 2 hidden layers with 3 neurons in the first layer, and 6 in the second 
layer. The input layer consists of NI, DNC, MY, FP, LW and DMEC. The optimized weights and biases are shown 
in Tables 5 and 6. The ANN model based on LW and MY had 2 hidden layers—the first layer with 4, and the 

Table 2.   Prediction accuracy of ANN model for predicting manure N output affected by network structure. 
1 The network structure is denoted as: input layer nodes—hidden layers (nodes in each hidden layer)—output 
layer nodes. The input layer nodes are N intake (NI), diet N concentration (DNC), milk yield (MY), forage 
proportion (FP), live weight (LW) and diet metabolizable energy concentration (DMEC). The output layer 
node is manure N (MN). 2 RRMSE relative root mean square error (obtained by tenfold cross validation).

Network structure1

RRMSE2

Minimum Maximum Median Mean

6–1(1)–1 8.40 9.01 8.80 8.54

6–1(2)–1 8.23 8.93 8.73 8.48

6–1(3)–1 8.11 8.83 8.52 8.44

6–1(4)–1 8.12 8.63 8.31 8.35

6–1(5)–1 8.14 8.95 8.32 8.40

6–1(6)–1 8.07 8.79 8.28 8.32

6–2(2,1)–1 8.29 8.60 8.49 8.46

6–2(2,2)–1 8.15 8.48 8.41 8.39

6–2(2,3)–1 8.14 8.36 8.32 8.26

6–2(2,4)–1 8.21 8.29 8.24 8.25

6–2(2,5)–1 8.24 8.84 8.32 8.36

6–2(2,6)–1 8.22 8.33 8.21 8.23

6–2(3,1)–1 8.08 8.60 8.35 8.33

6–2(3,2)–1 8.10 8.61 8.23 8.32

6–2(3,3)–1 8.17 8.64 8.41 8.39

6–2(3,4)–1 8.15 8.38 8.18 8.20

6–2(3,5)–1 8.12 8.36 8.15 8.18

6–2(3,6)–1 8.01 8.15 8.11 8.04

6–2(4,1)–1 8.22 8.89 8.50 8.52

6–2(4,2)–1 8.07 8.76 8.33 8.34

6–2(4,3)–1 8.11 11.22 8.64 8.79

6–2(4,4)–1 8.07 8.68 8.30 8.34

6–2(4,5)–1 8.17 8.89 8.35 8.42

6–2(4,6)–1 8.13 8.50 8.28 8.28

6–2(5,1)–1 7.90 9.26 8.24 8.38

6–2(5,2)–1 7.91 8.50 8.25 8.25

6–2(5,3)–1 8.07 8.79 8.28 8.32

6–2(5,4)–1 8.05 8.56 8.36 8.33

6–2(5,5)–1 7.94 8.82 8.40 8.37

6–2(5,6)–1 8.12 8.52 8.23 8.30

6–2(6,1)–1 8.20 8.91 8.40 8.47

6–2(6,2)–1 8.09 8.64 8.22 8.25

6–2(6,3)–1 7.90 8.80 8.40 8.40

6–2(6,4)–1 8.11 8.69 8.27 8.30

6–2(6,5)–1 8.09 9.07 8.35 8.45

6–2(6,6)–1 8.09 8.57 8.23 8.26

6–3(1,3,6)–1 8.17 8.79 8.25 8.35

6–3(3,1,6)–1 8.13 8.76 8.23 8.26

6–3(6,3,1)–1 8.07 8.85 8.27 8.33
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second layer with 2 hidden neurons. The selected features were based on the domain knowledge and included 
LW, MY, DNC, CDMI and DMEC. The optimized weights and biases are shown in Tables 7 and 8. The prediction 
performances of these two new ANN models, through the cross validation technique, are given in Table 9. The 
two ANN models showed good predictive performance, with the R2 values in the relationships between actual 
and predicted MN being 0.83 and 0.79 for models based on NI and LW/MY, respectively, and the corresponding 
RRMSE was 10.9% and 12.1%, respectively, and the corresponding CCC was 0.76 and 0.70, respectively.

Conclusions
The present study compared the prediction performance for manure N excretion of lactating dairy cows using 
models developed from the multiple linear regression against those from machine learning algorithms. The 
results indicate that artificial neural network model has better potential to explore animal and dietary factors 
which influence manure N excretion in lactating dairy cow when compared with the multiple linear regression 
approach. A hybrid knowledge-based and data driven approach for artificial neural network model was devel-
oped and implemented to selecting features in this study. Results indicate that the resilient backpropagation 
with weight backtracking algorithm is better than backpropagation algorithm for model training. The optimal 

Table 3.   Turning of ANN models for manure N output with selected features. The features selected are N 
intake (NI), diet N concentration (DNC), milk yield (MY), forage proportion (FP), live weight (LW) and diet 
metabolizable energy concentration (DMEC). a Learning rate is a numeric value specifying the learning rate 
used for backpropagation algorithm. For resilient backpropagation with weight backtracking algorithm it’s 
a vector or a list containing the multiplication factors for the upper and lower learning rate and defined by 
function learningrate.factor. b Threshold for the partial derivatives of the error function as stopping criteria. 
c RRMSE relative root mean square error (obtained by tenfold cross validation). a,b Means within a column with 
different superscripts differ (P < 0.05). The significance was determined by one-way analysis of variation and 
followed by Tukey’s Honest Significant Difference (HSD) test (n = 10, α = 0.05).

Algorithm Learning ratesa Thresholdb RRMSEc

Backpropagation 0.01 0.05 8.92a

0.001 0.05 8.60b

0.0005 0.05 8.61b

0.0001 0.05 8.63b

0.00005 0.05 8.59b

0.00001 0.05 8.57b

0.00001 0.01 8.47c

Resilient backpropagation with weight backtracking

Minus = 0.5, plus = 1.2 0.01 9.19a

Minus = 0.5, plus = 1.5 0.01 8.98a

Minus = 0.4, plus = 1.2 0.01 8.75b

Minus = 0.3, plus = 1.2 0.01 8.76b

Minus = 0.3, plus = 1.1 0.01 8.76b

Table 4.   Influence of features selected on the ANN model performance. 1 The learning algorithm = resilient 
backpropagation with weight backtracking; learningrate.factor = list (minus = 0.4, plus = 1.2). NI N intake; 
DNC diet N concentration; MY milk yield; FP forage proportion; LW live weight; DMEC diet metabolizable 
energy concentration. 2  RRMSE relative root mean square error (obtained by tenfold cross validation). a,b 
Means within a column with different superscripts differ (P < 0.05). The significance was determined by one-
way analysis of variance and followed by Tukey’s Honest Significant Difference (HSD) test (n = 10, α = 0.05). 
3 SD standard deviation.

Features1 RRMSE2 SD3

NI + LW + MY + FP + DNC + DMEC 8.48b 0.53

LW + MY + FP + DNC + DMEC 12.6a 1.08

NI + MY + FP + DNC + DMEC 8.49b 0.80

NI + LW + FP + DNC + DMEC 8.62b 0.64

NI + FP + DNC + DMEC 8.84b 0.65

NI + LW + MY + FP + DNC 8.76b 0.73

NI + LW + MY + FP + DMEC 8.46b 0.89

NI + LW + MY + DNC + DMEC 8.45 b 0.89

NI + LW + MY + DNC 8.99b 0.56

NI + LW + MY + FP 8.95b 0.62

NI + LW + MY + DMEC 8.68b 0.49
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network using NI as primary predictors to predict manure N excretion in lactating dairy cows was a feed-forward 
network with 6 input nodes, 2 hidden layers (the first layer with 3, and the second one with 6 hidden neurons). 
The alternative network using LW and MY as primary predictors to predict manure N excretion from dairy 
farm was a feed-forward network with 5 input nodes, 2 hidden layers (the first layer with 4, and the second one 
with 2 hidden neurons). While currently there is no standard approach to determine optimal set of parameters 
for those learning parameters in advance, results obtained indicate that the ANN models developed are not 
critically sensitive to the variation in learning parameters setting. Consequently, two artificial neural network 
models for prediction of manure N excretion of dairy cows were developed using either N intake or live weight 

Table 5.   Optimized weights of connections and biases of the input nodes to nodes on hidden layer one of 
ANN model using NI as the primary predictor based on the combined data of the present training and testing 
datasets. The ANN model is a feed-forward network with 6 input nodes, 2 hidden layers (the first layer with 3, 
and the second one with 6 hidden neurons). a NI N intake; DNC diet N concentration; MY milk yield; FP forage 
proportion; LW live weight; DMEC diet metabolizable energy concentration.

Nodes on hidden layer one

1 2 3

Input nodesa

NI 0.032 − 1.640 − 1.869

LW − 0.125 − 1.684 0.474

MY 1.200 1.599 − 1.241

FP − 0.253 1.344 − 0.490

DNC − 1.968 0.413 0.456

DMEC − 0.5738 3.551 − 0.519

Bias to nodes on hidden layer one − 0.859 − 0.749 0.432

Table 6.   Optimized weights of connections of the nodes on hidden layer one to two and biases to nodes on 
hidden layer two and output node of ANN model using NI as the primary predictor based on the combined 
data of the present training and testing datasets. The ANN model is a feed-forward network with 6 input 
nodes, 2 hidden layers (the first layer with 3, and the second one with 6 hidden nodes). MN manure N.

Nodes on hidden layer two

Bias to MN1 2 3 4 5 6

Nodes on hidden layer one

1 − 0.528 − 0.024 − 0.881 − 2.922 1.356 − 1.106 –

2 0.044 − 0.134 0.485 − 1.170 1.294 − 0.833 –

3 0.109 − 1.334 0.119 − 1.989 2.426 0.338 –

Output node

MN − 1.050 0.436 1.026 2.978 − 1.551 − 0.155 1.118

Bias to nodes on hidden layer2 0.321 − 0.361 0.166 − 0.367 − 0.604 0.090 –

Table 7.   Optimized weights of connections and biases of the input nodes to nodes on hidden layer one of 
ANN model using LW and MY as primary predictors based on the combined data of the present training and 
testing datasets. The ANN model is a feed-forward network with 5 input nodes, 2 hidden layers (the first layer 
with 4, and the second one with 2 hidden nodes). a LW live weight; MY milk yield; DNC diet N concentration; 
CDMI concentrate dry matter intake; DMEC diet metabolizable energy concentration.

Nodes on hidden layer one

1 2 3 4

Input nodesa

LW 0.0001 − 0.567 − 0.165 − 1.961

MY − 12.200 − 4.362 − 0.251 − 2.137

DNC − 2.600 3.271 − 1.404 2.035

CDMI 2.499 0.685 − 0.194 − 0.305

DMEC 5.571 4.780 1.625 1.419

Bias to nodes on hidden layer one 0.461 − 1.285 0.082 − 0.286
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and milk yield as primary explanatory variables. These models provide a novel and useful tool for prediction 
and mitigation of manure N excretion of dairy cows under typical farming condition managed within grassland-
based dairy systems.

Materials and methods
All the experiments were conducted at the Agri-Food and Biosciences Institute (AFBI) farm at Hillsborough, 
County Down, UK. All the experiments and procedures complied with the requirements of the UK Animals 
(Scientific Procedures) Act 1986 and were approved by the AFBI Hillsborough Ethical Review Group. All the 
experiments were performed in accordance with relevant guidelines and regulations (following the ARRIVE 
guidelines26).

Data description.  Data used were collated from 43 total diet digestibility studies with 951 lactating dairy 
cows undertaken at Agri-Food and Biosciences Institute in Northern Ireland over a period of 26 years (1990–
2015). The data from studies undertaken between 1990 and 2002 were used as the training dataset (n = 564) and 
undertaken between 2005 and 2015 as the testing dataset (n = 387). The training data were used to develop pre-
diction models for MN using MLR and the three selected machine learning algorithms (ANN, RFR and SVR). 
These new models were then tested for their predictive performance using the training dataset by tenfold cross 
validation. The testing dataset were used for the independent evaluation and comparison of predictive ability of 
different modeling approaches. The information of the two datasets on numbers of experiments, cow genotypes 
and forage types offered are presented in Table 10. Data on live weight, milk production, feed intake, N intake 
and outputs are presented in Table 11. The datasets used in the present study showed a various cow genetic 
merit and a broad range in LW (379–781 kg), MY (5.1–40.2 kg/d), total dry matter intake (7.54–26.6 kg/d), FP 
(0.21–1.00%), DNC (19.0–38.0 g/kg DM), diet metabolizable energy concentration (DMEC, 9.68–19.4 MJ/kg 
DM) and NI (155–874 g/d), which represents typical dairy production conditions managed within grassland-
based dairy systems in the West and North Europe.

Digestibility measurements.  Cows were housed in free-stall cubicle accommodation for at least 20 d 
before commencing digestibility trials in metabolism units for 8 d with feed intake, milk production and feces 
and urine collected during the final 6 d. Throughout the whole experiment, cows were offered experimental diets 
ad libitum and had free access to water. During the final 6 d, the following measurements for each individual 
cows were carried out to generate total digestibility data used in the present study. Forages and concentrates 
offered and refused were recorded daily and sampled for analysis of feed dry matter (DM), N concentration and 
forage proportion. Feces and urine outputs were collected daily and sampled for DM (feces only) and N con-

Table 8.   Optimized weights of connections of the nodes on hidden layer 1 to 2 and biases to nodes on hidden 
layer 2 and output node of ANN model using LW and MY as primary predictors based on the combined data 
of the present training and testing datasets. The ANN model is a feed-forward network with 5 input nodes, 2 
hidden layers (the first layer with 4, and the second one with 2 hidden nodes). MN manure N.

Nodes on hidden layer two

Bias to MN1 2

Nodes on hidden layer one

1 8.171 − 0.290 –

2 − 1.788 1.386 –

3 8.982 − 1.294 –

4 4.281 − 1.354 –

Output node

MN − 0.799 1.966 − 0.089

Bias to nodes on hidden layer 2 − 2.607 0.763 –

Table 9.   Predictive performance of the ANN models for prediction of manure N output using the whole 
dataset. 1 NI N intake; DNC diet N concentration; MY milk yield; FP forage proportion; LW live weight; 
DMEC diet metabolizable energy concentration; CDMI concentrate dry matter intake. 2 RMSE root mean 
square error (obtained by tenfold cross validation), mean ± standard deviation. 3 RRMSE relative root mean 
square error (obtained by tenfold cross validation), mean ± standard deviation. 4 CCC​ concordance correlation 
coefficients (obtained by tenfold cross validation), mean ± standard deviation.

Primary predictors Features1 R2 RMSE2 RRMSE3 CCC​4

NI NI + LW + MY
 + FP + DNC + DMEC 0.83 32.1 ± 1.68 10.9 ± 0.44 0.76 ± 0.025

LW and MY LW + MY + DNC + CDMI + DMEC 0.79 35.2 ± 1.08 12.1 ± 0.47 0.70 ± 0.021
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centration. Milk yield was recorded daily and sampled for analysis fat, protein and lactose concentrations. Live 
weight was measured on the first and last days in the metabolism unit. Details in feed intake, feces and urine 
collection and methods used for analysis of feed, feces, urine and milk samples were described by Yan et al.6.

Data preprocessing.  Normalization of input data for ANN model.  Because features (variables) in raw 
data may have different dynamic ranges, which may result in poor model performance, it is recommended to 
normalize them to make ANN training more efficient by performing normalization process for the raw inputs10. 
In the present study, all the input data for ANN models were normalized into the interval [0, 1] by performing 
Min–Max normalization technique27 using Eq. (1):

where Xnorm or X is the normalized or original value, Xmin or Xmax is the minimum or maximum values of the 
input data.

After finding the optimal tuning parameter, all normalized data for MN obtained by ANN models were 
denormalized into their original scale using Eq. (2) 27:

where Ynorm or Y is the normalized or demoralized value, Ymin or Ymax is the minimum or maximum values of 
the output data.

Knowledge‑based and data driven feature selection.  Feature selection is an essential step during development 
of models, which can hugely impact the generalization and predictive ability of models10,28. In the present study, 
a hybrid knowledge-based and data driven approach was developed and implemented to selecting features. 
Knowledge in animal science and the process of digestibility trial were applied to diagnosing and removing 
irrelevant features before the implementing of data driven feature selection process. For instance, the features of 
feces N output (FN) and urine N output (UN) were excluded from the set of features in present study according 

(1)Xnorm =
X−Xmin

Xmax − Xmin

(2)Y = Ynorm ∗ (Ymax − Ymin) + Ymin

Table 10.   Information on experiment, animal and forage types in the training and testing datasets of dairy 
cows used in the present study. a Including Holstein crossbreds, Norwegian and Swedish Red. b GS grass silage; 
FG fresh grass; MS maize silage; WCW​ whole crop wheat silage.

Training dataset Test dataset

Years of experiments 1990–2002 2005–2015

Number of experiments 27 16

Number of individual cow data 564 387

Cow breeds

  Holstein–Friesian 534 269

  Othersa 30 118

Forage typesb GS, FG GS, MS, WCW​

Table 11.   Descriptive statistics of animal, dietary and nitrogen utilization variables in the present study. 
1 DMI dry matter intake; ME metabolizable energy; N nitrogen. 2 standard deviation. 3 DM dry matter.

Features1 Unit3 Abbreviation

Training dataset Test dataset

Mean SD2 Minimum Maximum Mean SD2 Minimum Maximum

Live weight kg LW 564 65.3 385 781 549 70.1 379 757

Milk yield kg/d MY 21.4 6.61 6.10 49.1 23.6 7.16 5.87 48.8

Energy-corrected milk yield kg/d ECMY 21.8 6.70 5.53 45.6 24.0 6.50 5.10 49.5

Forage DMI kg/d FDMI 9.33 2.79 2.96 18.9 10.0 2.80 3.60 16.8

Concentrate DMI kg/d CDMI 7.08 3.51 0 16.9 8.18 2.99 3.21 16.0

TotalDMI kg/d TDMI 16.4 3.02 7.54 24.3 18.2 2.92 10.8 26.6

Forage proportion kg/kg DM FP 0.58 0.183 0.21 1.00 0.55 0.142 0.31 0.79

Diet N concentration g/kg DM DNC 29.3 4.15 17.0 43.3 27.8 4.02 18.0 43.0

Diet ME concentration MJ/kg DM DMEC 12.1 0.92 9.89 19.1 12.1 0.82 9.68 14.1

N intake g/d NI 486 129.6 155 874 506 106.6 228 798

Feces N output g/d FN 142 36.1 48.4 241 159 32.9 73.7 284

Urine N output g/d UN 209 69.1 69.6 452 178 61.4 44.7 364

Manure N output g/d MN 351 97.7 130 679 337 77.1 159 577
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to prior background and expert knowledge. Because the data of UN and FN were obtained from analyzing urine 
and feces samples and then they were summed up and treated as new feature MN, both FN and UN are heav-
ily correlated with MN. Their inclusion in the features list might cause poor generalization performance of the 
models. Furthermore, the optimal features selected from data driven approach may need to be diagnosed based 
on background knowledge in animal science according to the scenarios of model application. For instance, 
several variables (e.g. NI and FP) included in datasets used in this study may not be available in commercial 
farms. Therefore, alternative feature (concentrate dry matte intake, CDMI) was selected and included into the 
feature list in this study based on the domain knowledge and then new ANN model suits for commercial farms 
was developed.

The filter method was applied for feature selection using the Pearson correlation matrix and variance inflation 
factor (VIF) technique. The first step was to use the Pearson correlation matrix to identify features which might 
correlate each other for prediction of MN excretion, because using correlated features in models could influence 
performance of these models with a biased outcome. If two features were heavily correlated, the less important 
one was removed from the set of features to minimize adverse effects on model performance. Afterwards, the 
VIF analysis was applied to detect multicollinearity, which has been widely used as a measure of the degree of 
multicollinearity among input features. A VIF score was calculated for each feature and those with high values 
were removed. The threshold score for the VIF analysis was 5 and features with a VIF score below this threshold 
were selected. The VIF score was computed by VIF function in R29.

Modelling and analysis using the training dataset.  In the present study, four models based on the MLR ANN, 
RFR and SVR were developed using the training dataset and these new models were tested using the testing 
dataset for comparison of their prediction performance for MN outputs in lactating dairy cows (presented later). 
The MLR with the stepwise procedure for selection of independent variables was used as benchmark model since 
it is a well-known technique and has been applied for modelling in a wide range of applications in animal science 
research. Alternative modeling approaches proposed in the present study were ANN, RFR and SVR. To compare 
the performance, models developed with different approaches and ensure that the same resampling sets were 
used between calls, the same random number seeds were set prior to perform the process of training, fitting and 
testing models. All statistical analyses were performed with R29.

Multiple linear regression.  The MLR model (Eq. 3) selected in the present study for the prediction of MN 
output was published in 20066 which was developed using the same training dataset listed in Table 2. To improve 
the estimation of the regression parameters, experiment was included as a random factor during the develop-
ment of MLR model. The dataset had a large range within each dependent or independent variable, e.g., MN, 
NI, LW, MY, FP and DNC, which is vital to ensure the development of robust regression model applicable under 
various farming conditions10.

where NI, LW and MY are N intake (g/d), live weight (kg) and milk yield (kg/d), respectively.

Artificial neural networks.  In the present study, ANN was fitted using R package neuralnet which was 
built to train neural networks in the context of regression analyses. The details of ANN training and application 
of neuralnet were described by Günther and Fritsch30. Multilayer perceptron networks trained with backpropa-
gation learning algorithms were used and consist of an input layer, hidden layer(s) and an output layer. The input 
variables were obtained by using the feature selection algorithm described in the section ‘Knowledge-based and 
data driven feature selection’, and the neuron in output layer represents MN. The ANN models were trained 
based on the selection of training algorithms and learning parameters including the number of hidden layer(s), 
number of neurons in hidden layer(s), error function, threshold for partial derivatives of the error function as 
stopping criteria, and activation function etc.. The optimized number of hidden layer(s), number of neuron(s) 
in the hidden layer(s), learning algorithms, learning rate and other learning parameters were obtained on the 
basis of prediction performance measured as relative root mean square error (RRMSE, Eq. 6) with tenfold cross 
validation and then the best topology/architecture was finalized.

Random forest regression.  The RFR is an ensemble machine learning method and a nonparametric 
technique derived from classification and regression trees which are constructed using a bootstrap aggregating 
(bagging) method from the training data31. In RFR, prediction is conducted by averaging the individual tree 
predictions. A detailed description of RFR theory can be found in the report by Breiman32. The RFR was imple-
mented by the randomForest function in the R package (version 3.6.1). To select the optimal hyperparameters 
for learning algorithm, tuning process was performed based on the R package ranger. The hyperparameters 
include number of trees to grow (ntree), number of randomly drawn candidate variables (mtry), sample size and 
node size. Grid search strategy was used to choose the candidate hyperparameter values and the performances 
of the trained algorithm with different values of the hyperparameters were evaluated as RRMSE (Eq. 6) by using 
tenfold cross validation.

Support vector regression.  The SVR uses similar principles as support vector machine, a supervised non-
parametrical statistical learning technique that uses the kernel functions and the maximum margin algorithm to 
solve the nonlinear problem33. The detailed theoretical background and description of SVR can be found in the 
report by Cristianini and Shawe-Taylor34. The SVR model performs the regression estimation by risk minimiza-

(3)MN
(
g/d

)
= 0.749 NI + 0.065 LW−1.515 MY−17.0
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tion where the risk is measured by a loss function. In this study, R package e1071 was used and the svm function 
was implemented to fit SVR model. The radial basis kernels function, the most commonly used kernels types, 
was employed in training and predicting process. Parameter tuning was performed by using grid search over 
supplied parameter ranges and the best combination of parameters (lowest RMSE) were selected. The perfor-
mance of SVR model was measured as RRMSE (Eq. 6) with tenfold cross validation.

Criteria selected to access model prediction performance.  The MLR model and the three new 
models (ANN, RFR and SVR) was developed and compared in terms of their prediction performance for MN 
outputs in lactating dairy cows based on the datasets listed in Table 2. The predictive performance of mod-
els were evaluated using coefficient of determination (R2), root mean square error (RMSE), relative root mean 
square error (RRMSE) and concordance correlation coefficient (CCC), based on the actual and predicted values. 
The R2 was calculated using Eq. (4). The RMSE and RRMSE were produced in a tenfold cross validation process 
(10 RMSE data generated) using Eq. (5)35 and Eq. (6)36, respectively. The concordance correlation coefficient 
(CCC), a further measure of the agreement between observed and predicted values, was given by Eq. (7)37. The 
tenfold cross validation was used to evaluate prediction performance of these models (MLR, ANN, RFR and 
SVR)The obtained RMSE, RRMSE and CCC values (n = 10) through the tenfold cross validation were compared 
among the 4 models using one-way analysis of variance and then followed by Tukey’s honest significant differ-
ence (HSD) test (α = 0.05). The same cross validation folds were used for all modeling scenarios to compare cross 
all of the models performance.

where yi is actual MN, ŷi is predicted MN, y is the mean of actual MN and n is the number of observations, r is 
the Pearson correlation coefficient between ŷi and y , Sŷ and Sy are the respective standard divisions.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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