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Time and phenotype‑dependent 
transcriptome 
analysis in AAV‑TGFβ1 
and Bleomycin‑induced lung 
fibrosis models
Benjamin Strobel, Holger Klein, Germán Leparc, Birgit E. Stierstorfer, Florian Gantner & 
Sebastian Kreuz*

We have previously established a novel mouse model of lung fibrosis based on Adeno‑associated virus 
(AAV)‑mediated pulmonary overexpression of TGFβ1. Here, we provide an in‑depth characterization 
of phenotypic and transcriptomic changes (mRNA and miRNA) in a head‑to‑head comparison with 
Bleomycin‑induced lung injury over a 4‑week disease course. The analyses delineate the temporal 
state of model‑specific and commonly altered pathways, thereby providing detailed insights into the 
processes underlying disease development. They further guide appropriate model selection as well as 
interventional study design. Overall, Bleomycin‑induced fibrosis resembles a biphasic process of acute 
inflammation and subsequent transition into fibrosis (with partial resolution), whereas the TGFβ1‑
driven model is characterized by pronounced and persistent fibrosis with concomitant inflammation 
and an equally complex disease phenotype as observed upon Bleomycin instillation. Finally, based 
on an integrative approach combining lung function data, mRNA/miRNA profiles, their correlation 
and miRNA target predictions, we identify putative drug targets and miRNAs to be explored as 
therapeutic candidates for fibrotic diseases. Taken together, we provide a comprehensive analysis 
and rich data resource based on RNA‑sequencing, along with a strategy for transcriptome‑phenotype 
coupling. The results will be of value for TGFβ research, drug discovery and biomarker identification in 
progressive fibrosing interstitial lung diseases.

Progressive fibrosing interstitial lung diseases (PF-ILD) comprise a group of rare disorders characterized by 
pulmonary fibrosis, lung function decline, respiratory symptoms, and  mortality1. The concept of PF-ILD arose 
from the fact that besides idiopathic pulmonary fibrosis—the most common and severe condition among ILDs—
a range of additional ILD diagnoses with diverging characteristics but a common manifestation of pulmonary 
fibrosis is observed in the clinic. These include environmental lung disease, sarcoidosis, idiopathic non-specific 
interstitial pneumonia (iNSIP), chronic fibrosing hypersensitivity pneumonitis (HP) and connective tissue dis-
ease (CTD)-associated ILD.

For IPF, various irritants including smoking, occupational hazards, viral and bacterial infections as well as 
radiotherapy and chemotherapeutic agents (like, e.g., Bleomycin) have been described as potential risk factors, 
together with genetic  predisposition2,3. While genetic factors in other PF-ILDs are largely unknown, the concept 
of repeated lung injury followed by a self-sustaining fibrotic response that is uncoupled from the initial irritant 
is hypothesized to be a common feature. Accordingly, pulmonary fibrosis is initiated through repeated alveolar 
epithelial cell micro-injuries, leading to the recruitment of immune cells and stem/progenitor cells that secrete 
various pro-inflammatory cytokines, chemokines, and growth factors, thereby triggering expansion and activa-
tion of  fibroblasts4. In contrast to physiological, self-limiting wound healing, continuous deposition of extracel-
lular matrix (ECM) components by activated, contractile myofibroblasts results in progressive lung stiffening 
and destruction of lung architecture.
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Because the most used preclinical lung fibrosis model based on pulmonary Bleomycin instillation only par-
tially reflects aspects of human ILDs, we have recently developed an alternative, complementary mouse model 
based on Adeno-associated-virus (AAV) 6.2-mediated expression of TGFβ15. In stark contrast to previously used 
Adenovirus-based  models6,7 that only induce transient TGFβ1 expression due to antiviral immune  responses8,9, 
the AAV-TGFβ model leads to persistent expression of TGFβ and consequently to a progressive worsening of 
lung fibrosis. Moreover, contrary to the patchy, bronchocentric fibrosis pattern in the Bleomycin model, AAV6.2 
specifically targets TGFβ1 expression to bronchial epithelium and alveolar type II (AT2)  cells5, thereby induc-
ing more homogenous fibrosis, reminiscent of the histological features in non-specific interstitial pneumonia 
(NSIP)10.

In the present work, we thoroughly characterized AAV-TGFβ1 induced pulmonary fibrosis development by 
simultaneous analysis of phenotypic and bulk RNA-sequencing derived transcriptomic changes (mRNA, miRNA) 
over a time course of four weeks. By conducting this analysis in direct comparison to Bleomycin-induced fibrosis, 
we provide a comprehensive insight into the differences and commonalities of these two disease models. Finally, 
in a transcriptome-phenotype coupling approach based on correlation of longitudinal gene expression changes 
and lung function measurements, we identify proteins and miRNAs that represent attractive starting points as 
novel anti-fibrotic drug targets.

Results
Phenotypic fibrosis development following AAV‑TGFβ1 versus Bleomycin administra‑
tion. We have previously shown that AAV6.2-mediated TGFβ1 expression in the lung of mice induces fibrosis 
in a dose-dependent  fashion5,11. To study the time course of fibrosis development in a direct comparison with 
Bleomycin-induced lung injury, the most commonly used model of lung fibrosis, C57Bl/6 mice received either 
2.5E + 11 vector genome-containing particles (vg) of single-stranded AAV6.2-CMV-TGFβ1 (AAV-TGFβ1) or 
1 mg/kg Bleomycin by intratracheal (i.t.) administration. Control mice either received AAVs containing non-
coding “stuffer”-DNA (AAV-stuffer) or NaCl. Disease development was followed over day 3, 7, 14, 21 and 28 
after administration by several phenotypic and molecular biological analyses, which also included isolation of 
RNA from lung homogenates for total and small RNA-seq.

Body weight measurement showed that mice that had received Bleomycin started to lose weight three days 
after administration, whereas AAV-TGFβ1 mice showed a similar loss in body weight, however, only starting 
from approximately one week after vector application (Fig. 1a). Notably, while Bleomycin-treated animals started 
to regain weight from about 18 days post treatment onwards, AAV-TGFβ1-treated animals continuously lost 
weight, reaching 20% loss at four weeks after starting the experiment. Interestingly, despite the finding that as 
early as day three, bronchoalveolar lavage (BAL) TGFβ1 levels in the AAV model strongly exceeded the amount 
of endogenous TGFβ1 produced in the Bleomycin model (Fig. 1b), phenotypic changes were only observed in the 
Bleomycin model. This clearly illustrates that acute injury and inflammation drive disease onset in the Bleomycin 
model, whereas in the absence of injury, prolonged TGFβ1 expression is required to disrupt tissue homeostasis 
and drive fibrosis. This notion is also supported by the finding that neutrophils were distinctly increased at day 
three in the Bleomycin model (Fig. 1d), followed by an increase in macrophages and lymphocytes from day 
seven onwards (Fig. 1e,f). While immune cell influx was expected upon acute injury, it was interesting to observe 
that a similar immune cell influx was also observed in the TGFβ1 model, however, only from day 14 onwards 
(Fig. 1c–f). This delay in innate immune response clearly demonstrates that it was not targeted towards the 
viral vector (in line with our previous  observation5) but rather a consequence of prolonged TGFβ1 activity. The 
increase in neutrophils and macrophages correlated well with the BAL levels of the neutrophil chemoattractant 
CXCL1 and the dendritic cell and macrophage product IL-12, respectively, in both models (Insets in Fig. 1d,e).

The different kinetics of phenotypic changes in the models (i.e., acute onset in the Bleomycin model versus 
onset at day 7 in the TGFβ1 model) was also evident in the increase in lung weight (Fig. 1g), which is an indica-
tor of inflammation and increased extracellular matrix (ECM) production. Moreover, an acute increase in total 
BAL protein, indicative of disrupted barrier function (i.e., epithelial and endothelial leakage), was observed 
upon Bleomycin instillation, whereas in the AAV model similar effects were observed only at later time points 
(Fig. 1h). As a consequence of fibrosis and the corresponding increase in tissue rigidity, a decrease in lung func-
tion was observed in both models with the time shift previously observed for all other readouts in the AAV model 
(Fig. 1i). However, despite the different kinetics in disease onset, a remarkably similar phenotype was observed 
at later time points, particularly day 21, in both models. Finally, histological analyses confirmed strong fibrosis 
development in both, Bleomycin- and AAV-TGFβ1-treated animals, with a rather patchy distribution in the 
Bleomycin model as opposed to a more even distribution of fibrotic areas in the AAV model (Fig. 1j), congru-
ent with our previous  observation5. This is also mirrored by a slightly higher Ashcroft score at day 21 in the 
Bleomycin model (Suppl. Fig. 1). These differences are explainable by the different modes of disease induction, 
i.e., direct and bronchocentric injury with focal inflammation by Bleomycin, and bronchial epithelium and AT2 
cell-specific secretion and spreading of TGFβ1 in the AAV model.

Interestingly, despite the strong and persistent overexpression of TGFβ1 in the AAV model, pharmacological 
intervention by applying the TGFBR1/ALK5 antagonist SB-52533412 one week after AAV administration pro-
tected the mice from body weight loss, reduced inflammation, and fully blocked fibrosis development (Suppl. 
Fig. 2). This proof-of-concept experiment also demonstrates suitability of the model for pharmacological inter-
vention studies and profiling of drug candidates.

Time‑resolved transcriptional profiling of fibrosis development following AAV‑TGFβ1 or Bleo‑
mycin administration. To characterize the transcriptional changes associated with fibrosis disease devel-
opment, mRNA and miRNA were purified from the lungs of AAV-TGFβ1- or Bleomycin-treated animals at day 
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Figure 1.  Phenotypic characterization of AAV-TGFβ1 and Bleomycin induced fibrosis. Mice either received 
2.5 ×  1011 vg AAV-TGFβ1 (n = 5 animals per time point), 2.5 ×  1011 vg AAV-stuffer (n = 5), 1 mg/kg Bleomycin 
(n = 8) or NaCl (n = 6) via intratracheal administration. Three, 7, 14, 21 and 28 days after administration, lung 
function was measured prior to sampling of bronchoalveolar lavage (BAL) fluid and extraction of total lung 
tissue RNA. (a) Relative body weight over time. (b) Total BAL TGFβ1 protein levels. (c) Total BAL cell count 
and differential counts for (d) Neutrophils, (e) Monocytes and (f) Lymphocytes. Insets show BAL protein levels 
of KC (= CXCL1) and IL-12. (g) Wet lung weight. (h) Total BAL protein. (i) Lung function measurement. (j) 
Representative Masson-trichrome stained lung tissue sections obtained at day 21 after start of the experiment. 
Low magnification (upper panel, scale bar = 500 µm) and high magnification (lower panel, scale bar = 50 µm) 
micrographs are shown. Mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 in comparison to respective controls (AAV-
TGFβ1 vs. AAV-stuffer, Bleomycin vs. NaCl) or as indicated.
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3, 7, 14, 21 and 28 after administration and analyzed by RNA-sequencing. The number of differentially expressed 
(|log2FC|≥ 0.6, adjusted p-value ≤ 0.05) genes over time (Fig. 2d), unsupervised hierarchical clustering (Fig. 2a) 
and correlation of model-specific or commonly deregulated genes (Fig. 2e) nicely mirrored the chronology of 
phenotypic disease manifestation, i.e., specific effects early on day 3 in the Bleomycin model, which are absent 
in the AAV model, as well as greater similarity between the models during the fibrotic phase (day 14–28), par-
ticularly on day 21. A list of the top 20 up-regulated genes per time point is available in the supplement (Suppl. 
Table 1). Moreover, also a very similar induction of collagen genes was observed across models over time, with 
a faster onset again observed in the Bleomycin model but a tendency towards slightly higher induction of the 
highly abundant collagens in the AAV model (Suppl. Fig. 3). These data underscore our finding of a similar 
overall degree of fibrosis development, as also suggested by the phenotypic data in Fig. 1.

Figure 2.  Longitudinal assessment of transcriptomic changes in AAV-TGFβ1 and Bleomycin induced 
fibrosis. Total RNA was extracted from the mice treated as described in Fig. 1 and applied to RNA-sequencing. 
(a) unsupervised hierarchical clustering (Z-scored FPKMs) of all mRNAs showing differential expression 
 (log2FC ≥ 0.6, q ≤ 0.05) at ≥ two contrasts across all time points and models (n = 6010). The genes within the 
color-coded clusters were applied to (b) Reactome pathway enrichment analysis. Cluster 1, n = 148 genes; 
cluster 2, n = 552; cluster 3, n = 186, cluster 4, n = 403 and cluster 5, n = 275. (c) Expression profiles of the top 3 
differentially expressed genes in each cluster. (d) Total number of differentially expressed genes over time for 
both models. (e) Correlation plots for genes showing differential expression either exclusively in one model 
or commonly in both models, as defined by expression cutoffs  (log2FC = 0.6). The coefficient of determination 
 (R2) is show for each set of genes under the graphs. Legend as in (f). (f) Significance of enrichment (p-value) 
for selected KEGG pathways over time, obtained and plotted for the gene sets defined in (e). TLR = toll-like 
receptor. ECM = extracellular matrix. Heatmap created with TIBCO Spotfire Analyst 10.3.2.
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To study longitudinal disease events in more detail, we first analyzed gene clusters showing differential 
expression at different time points during disease development (Fig. 2a). Pathway enrichment analysis of Cluster 
1, which largely contained genes acutely and specifically upregulated in the Bleomycin model at day 3, clearly 
indicated cellular and DNA damage, involving type I interferon and cytokine signaling (Fig. 2b). The three 
cluster-genes showing strongest upregulation in the Bleomycin model on day 3 were the ones encoding Cxcl10, an 
interferon-induced macrophage-attracting chemokine, inflammation- and injury-associated Resistin-like alpha 
(Retnla/Fizz1) and Interferon regulatory factor 7 (Irf7) (Fig. 2c). A big cluster of genes prominently upregulated 
on day 7 upon Bleomycin with a tendency to slightly decrease over time showed strong association with innate 
immunity (neutrophils, macrophages) and remodeling (collagen formation, ECM organization), with the top 
3 genes being Sprr1a, Ccl2 and Ccl7. Pulmonary Sprr1a has previously been shown to be induced by inflam-
mation and  smoke13, while Ccl2/Mcp-1 and Ccl7 are well-known monocyte attractors. Interestingly, many of 
the genes in this cluster were also found upregulated upon TGFβ1 overexpression, in particular on day 21. A 
cluster of genes significantly altered upon AAV-TGFβ1, especially on day 14, was strongly associated with cell 
cycle processes, likely indicative of the immune cell activation and influx that was also evident from increased 
BAL cell counts at this time point (Fig. 1c–f). Saa3, Slc26a4 and IL-6 were the top 3 genes in this cluster. Saa3 
has been shown to be required for lung development and homeostasis during lung inflammation and  fibrosis14. 
Slc26a4/pendrin regulates  HCO3- efflux following cytokine stimulation, which enhances  Cl- secretion via CFTR, 
thereby impacting fluid and mucus homeostasis and was found upregulated in asthma and  COPD15,16. Finally, 
IL-6 is a key pro-inflammatory cytokine orchestrating different immunological aspects, including neutrophil 
homeostasis, monocyte differentiation and T-cell activation. Genes that showed particularly strong induction on 
day 21 in the AAV model showed strong association with ECM organization and collagen formation, with Chl1, 
Timp1 and Lce3f being the top upregulated genes. The cell adhesion molecule Chl1 had not been described in 
the context of fibrosis so far but is thought to be a tumor suppressor and potential biomarker for survival in lung 
 cancer17. Timp1 is a strongly fibrosis-associated inhibitor of matrix metalloproteinases (MMPs)18; in contrast, no 
lung or fibrosis association was found in literature for Lce3f. Similar pathways as the ones on day 21 were also 
found enriched for genes most strongly upregulated on day 28. The top genes in this cluster were Thbs4, Ph4a3 
and Spp1. Thrombospondin 4 has been described as a pro-inflammatory and remodeling-associated protein in 
cardiovascular disease, among  others19. Prolyl-hydroxylase 4a3 has more recently been described as a TGFβ1 
downstream target with elevated expression in murine and human  IPF20. Finally, Spp1/osteopontin is a prominent 
protein that is upregulated in various inflammatory and fibrotic conditions in the lung and other organs. Most 
of cluster 4 and 5 genes were also found induced in the Bleomycin model during day 7 and 28.

Analysis of common and model‑specific pathways and regulators. To further increase our under-
standing of the pathways altered by Bleomycin or TGFβ1, we took three different approaches. First, we assessed 
KEGG pathway enrichment for genes deregulated either specifically in one of the models or commonly in both 
models, defined by expression cutoffs (Fig. 2e). This approach confirmed the above findings by revealing day 14 
as the major time point of DNA replication/cell proliferation in the AAV model as compared to biphasic cell 
cycle activity in the Bleomycin model (Fig. 2f). Early inflammatory processes were found to be unique to the 
Bleomycin model, while inflammation is also present in the AAV model, however, occurring rather simultane-
ously with fibrosis development between day 14 and 28.

Second, in order to identify genes altered specifically during a given disease stage, we pre-defined expression 
patterns and ranked genes by the degree of correlation between their longitudinal gene expression profiles and 
these patterns. Well-correlating hits were then applied to pathway analysis (Suppl. Fig. 4). Besides confirming the 
strongly Interferon/TLR-associated DNA damage events in the Bleomycin model on day 3, the analysis revealed 
many immunoglobulin genes among the most highly expressed genes specifically upregulated on day 21 and 
28 in both models (Suppl. Fig. 4). Main phases of cell cycle activity (proliferation) were confirmed to occur on 
day 7 in the Bleomycin model and on day 14 in the AAV model. The function of downregulated genes became 
less clear; yet, in the AAV model, the data suggested that epithelial integrity (cilia and cell development) was 
impaired, starting from day 7. The continuously decreasing expression of surfactant proteins SP-A, SP-B and 
SP-C over time is in line with this finding (Suppl. Fig. 5). Interestingly, three genes associated with the GO term 
“negative regulation of osteoblast differentiation”, were specifically upregulated in the Bleomycin model on day 
28, namely Chrd, Rorb and Limd1. Chordin is a developmental protein that binds bone morphogenic proteins 
(BMPs)21, while Lims domain containing 1 is regulated by tension and cell density to modulate Hippo/YAP and 
Wnt  signaling22, possibly suggesting anti-fibrotic activity at this late time point.

Third, to further understand changes specifically occurring in one of the models, we selected all genes that 
were differentially expressed at least at one time point per model and applied them to pathway enrichment analy-
sis. Following export of all pathways containing one or more of these genes, we ranked them by the difference in 
significance of enrichment (delta adj-p), i.e., we selected those pathways that showed strong enrichment in one 
but not the other model. The top 10 pathways preferentially altered in each model are depicted in Fig. 3a. For 
Bleomycin, pathways related to interferon-signaling, inflammation (TNF, IL6) and proteolysis/antigen processing 
were identified, mainly due to alterations in interferon-associated, TLR, cathepsin and proteasome genes (Suppl. 
Fig. 6). Preferentially altered pathways in the AAV model included apoptosis, developmental, glutathione- and 
epithelium-related pathways, all of which can be linked to known TGFβ functions. Not surprisingly, the term 
“positive regulation of cellular response to TGF-beta stimulus” showed particularly strong enrichment in the 
AAV model. Prominent genes in those pathways, among others, include BAX, BAD, VEGF, FGF and LOXL 
members, cyclin-dependent kinases and glutathione-transferases (Suppl. Fig. 6).

In a final approach, we used Ingenuity Pathway Analysis to predict upstream regulators and downstream 
functions and plotted the enrichment of selected candidates over time (Fig. 3b). These analyses showed strongest 
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enrichment for TNF in the Bleomycin model, underscoring its early inflammatory character, whereas TGFβ was 
correctly predicted for the TGFβ model. The predicted downstream functions are well in line with the results of 
our previous analyses and provide additional insight into the time course of critical events, such as wounding, 
cell death and fibroblast proliferation.

Taken together, our results illustrate distinct differences in kinetics and early events during disease onset in 
AAV-TGFβ1- and Bleomycin-induced pulmonary fibrosis. At the same time, they also highlight striking similari-
ties during the phase of fibrosis and tissue remodeling at later disease stages, in particular on day 21. Notably, 
while Bleomycin-induced fibrosis represents a biphasic response (acute inflammation followed by fibrogenesis), 
it appears that inflammation is evident to a similar degree in the TGFβ1 model, however, occurring rather 
simultaneously with fibrogenesis.

Identification of genes central to experimentally induced fibrosis. The remarkably similar pheno-
type in AAV-TGFβ1- and Bleomycin-induced fibrosis—despite two vastly different modes of disease induction 
(injury vs. persistent exogenous TGFβ1 expression)—suggests that certain underlying transcriptional alterations 
are required for fibrosis development, independent of the mode of disease induction. To identify genes of par-

Figure 3.  Differentially activated pathways and upstream regulator prediction. (a) Shown are the top 10 
pathways preferentially enriched in the respective model, defined and ranked by the difference in pathway 
enrichment score (Δ adj. p) between the models. Color shades from dark to light green visually highlight 
p-values. (b) Selected, categorized upstream regulators (left) and downstream functions (right) as predicted by 
Ingenuity Pathway Analysis for all differentially expressed genes per time point.
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ticular importance during pathogenesis, we focused on genes whose longitudinal expression changes strongly 
correlated with the observed decline in lung function (Fig. 1i), thereby linking transcriptomic to phenotypic 
changes. Genes whose expression changes closely paralleled the decrease in lung function (absolute correlation 
coefficient of ≥ 0.85) were selected and ranked by their mean fold change in expression on day 21 across both 
models (Suppl. Table 2). The top 50 upregulated (i.e., lung function anti-correlated) and top 10 downregulated 
(i.e., lung function correlated) genes are presented in Fig. 4a and c, respectively. Known protein interactions 

Figure 4.  Genes associated with lung function decline. mRNAs of importance to fibrosis were identified by 
correlating their longitudinal gene expression changes to the decline in lung function observed in the respective 
model. (a) The top 50 highest expressed mRNAs showing strong anti-correlation to lung compliance (Pearson 
r ≤ − 0.85) and significant alteration (adj. p-value ≤ 0.05 at day 21 in both models) with consistent direction of 
expression (mean  log2FC ≥ 0 in both models) are shown.  log2 fold changes on day 21 are depicted together with 
the gene expression profile over all five time points. A list of all lung function (anti-) correlated transcripts, 
including correlation coefficients is supplied as Suppl. Table 2. (b) Venn diagrams of mRNAs showing strong 
lung function (anti-)correlation (threshold defined as |Pearson r|≥ 0.85) in either only one (blue = Bleomycin, 
red = AAV-TGFβ1) or both models. EnrichR analysis of Reactome, KEGG and GO biological pathways as well as 
ARCHS4 transcription factor co-expression, kinase co-expression and tissue predictions for all commonly lung-
function anti-correlated genes. (c) Top 10 lung function-correlated (i.e. downregulated) mRNAs identified using 
the criteria from (a), adapted for positive correlation.
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from STRING are also illustrated for the top 200 upregulated genes (Suppl. Fig. 7). Notably, besides a multitude 
of well-known fibrosis-associated hits, also several genes described more recently in the context of fibrosis were 
contained in the list, e.g., P4HA3 (rank 4), IBSP (rank 26) and CTHRC1 (rank 58). P4HA3, as already described 
above, is a TGFβ1-inducible subunit of collagen prolyl hydroxylase whose inhibition had some anti-fibrotic 
 effects20 and IBSP was reported as part of a new 9-gene BAL biomarker set predictive of mortality in human 
 IPF23. Finally, CTHRC1 might possibly be of use to stratify IPF  patients24 and has recently been described as a 
marker of a cell population producing particularly high levels of collagen in murine and human  IPF25.

Not surprisingly, when applying the 484 commonly upregulated, lung function decrease-associated genes 
to EnrichR pathway analysis, highly significant enrichment of ECM, focal adhesion, EMT and Wnt signaling 
associated processes was found (Fig. 4b). Consistently, fibroblasts were predicted as the top “ARCHS4 tissues” hit. 
Transcription factor co-expression analysis revealed PRRX1, CREB3L1 and SNAI2 (= Slug) as the top hits. Inter-
estingly, a role for PRRX1 in driving fibroblast and hepatic stellate cell activation currently emerges for fibrotic 
diseases in the lung, skin and liver, respectively, and might therefore be an interesting therapeutic  target26–28. 
Moreover, CREB3L1 was proposed to be critical for TGFβ1-mediated collagen  induction29 and SNAI1/2 tran-
scription factors are well-described in the context of  EMT30, although their exact roles and interplay are yet to be 
worked  out31. Most strikingly, ARCHS4 kinase co-expression analysis identified PDGF receptors A and B as well 
as DDR2 as the top hits. While PDGF receptors are one of the main targets of  Nintedanib32,33, a role for DDR2 
as a promising target in IPF has only emerged  lately34,35. Finally, the upregulation of the top 15 genes (Fig. 4a) 
was also validated in a follow-up in vivo study by qPCR, clearly underscoring the robustness of our findings 
(Suppl. Fig. 8). Collectively, these results strongly suggest that our gene selection strategy yielded highly relevant 
candidates for biomarker and drug target identification.

miRNA profiling and selection of candidates for exploratory drug research. In addition to mRNA 
expression, we also analyzed changes in microRNA expression over time. Similar to the changes observed for 
mRNA, alterations in miRNA expression in the Bleomycin model occurred more rapidly with 86 differentially 
expressed (adj. p-value ≤ 0.05, |log2fc|≥ 0.6) miRNAs on day 7 as opposed to only two (non-overlapping) miR-
NAs in the AAV-TGFβ model at this time point (Fig. 5a,b). Also, correlation between the models was particu-
larly strong during fibrosis development (d14-d28, Fig. 5b). Interestingly, despite the distinct TLR and interferon 
gene expression signature observed for Bleomycin on day 3, only few miRNAs were differentially expressed at 
this earliest time point. In contrast, highest deregulation and a significant overlap between the models was again 
observed on day 21 (Fig. 5a,b).

As for mRNA, we identified relevant miRNAs by correlating their longitudinal expression with the observed 
decrease in lung function over time. Assuming canonical miRNA function, lung function correlation (i.e., miRNA 
downregulation in parallel to the decrease in lung function) was expected to preferentially yield miRNAs, whose 
targets exert pro-fibrotic functions. In turn, miRNAs that are upregulated (i.e., anti-correlated to the decrease 
in lung function) should have targets with anti-fibrotic properties, whose suppression might therefore enable 
disease development. The top 10 lung function-correlated and -anti-correlated miRNAs are depicted in Fig. 5c. 
The deregulation of these miRNAs was also confirmed in a follow-up in vivo study by Nanostring nCounter 
measurements (Suppl. Fig. 9), thereby proving both, technical and biological validity of our findings.

Strikingly, the two top anti-correlated (i.e., upregulated) miRNAs identified using this approach were miR-
199a-5p and miR-21a-5p (r = − 0.97), which are among the most well-known microRNAs associated with fibrotic 
disorders (Fig. 5c). miR-199 is overexpressed in several fibrotic diseases, found elevated in human IPF serum and 
exerts pro-fibrotic actions by suppressing calveolin-1, which increases TGFβ  signaling36,37. miR-21a-5p is induced 
by TGFβ1 and further promotes its signaling by targeting the inhibitory SMAD7 in a feed-forward regulatory 
loop, thereby promoting fibroblast proliferation and  fibrosis38. Many additional fibrosis-associated miRNAs were 
also identified; for instance, reasonably correlated with lung function (r = 0.69), we identified miR-29a-3p, which 
is a well-studied suppressor of many fibrotic  genes39 and a potential therapeutic, as demonstrated by miR-29 
mimics that were successfully used to attenuate fibrosis in vivo40.

We finally aimed to characterize less well-known microRNAs and their regulatory environment in more 
detail. To this end, we developed a network, integrating mRNA and miRNA expression data, miRNA target pre-
dictions queried through the multiMiR  package41 and correlation data for all combinations of phenotypic lung 
function decline, longitudinal mRNA and longitudinal miRNA expression. A staged selection strategy (Fig. 5d) 
was then applied to identify miRNA candidates with the potential for therapeutic applications. Briefly, follow-
ing selection for (anti-)correlation with lung function and differential expression, candidates were evaluated for 
murine-human species conservation, defined as perfect seed region conservation and at least 20 matched base 
pairs in the mature miRNA sequence. Upregulated, non-conserved candidates were excluded (as they cannot be 
targeted in humans) along with candidates that showed inconsistent deregulation across the models. Finally, to 
functionally classify potential mRNA targets (predicted in silico by at least 2 out of 5 prediction tools), they were 
analyzed for gene set enrichment (Suppl. Fig. 10). The resulting list of 16 up- and 12 down-regulated miRNAs is 
shown in Table 1. Moreover, a network of all downregulated candidates, including predicted mRNA targets that 
showed expression anti-correlation, is provided in Fig. 6.

MicroRNAs whose expression continuously decreases with increasing disease severity, are likely to either 
be pro-fibrotic molecules that are suppressed in attempt to fight fibrosis or—maybe even more likely—suppres-
sors of pro-fibrotic targets whose expression increases with worsening disease. Indeed, recent literature for the 
top downregulated hit, miRNA-181a-5p, shows that TGFβ1-induced proliferation and collagen production in 
a cellular model of hepatic stellate cells (LX2 cells) was abrogated by miR-181a-5p  mimics42. A further report 
suggests that its inhibition upregulates IGF1 and WISP1 in an ex vivo cystic fibrosis  model43, both of which are 
involved in wound healing and fibrosis. Therefore, these data suggest that (over)expression of miR-181a-5p 
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might be a strategy to suppress fibrosis. This example, together with the successful identification of highly 
fibrosis relevant genes by the application of a similar phenotype-transcriptome selection approach for mRNAs 
(Fig. 4) suggests that the hit list (Table 1) is a very attractive starting point for the identification of therapeuti-
cally relevant miRNAs.

Discussion
The Bleomycin-induced lung injury model is undoubtedly the most broadly used model to study lung fibrosis 
in mice. However, as every mouse model of human disease, also the Bleomycin model is limited in its ability to 
mimic all relevant aspects of human lung fibrosis. In this regard, two debatable aspects are its mode of action 
(MoA) based on acute lung injury and its usually transient nature. As an alternative model lacking these fea-
tures and instead focusing largely on the actual fibrotic aspect of the disease, we developed the AAV-TGFβ1 
 model5. Because AAV-mediated gene transfer does not elicit strong side effects like, e.g., anti-viral immune 
responses or direct cytotoxicity, the phenotype observed in this model is solely induced by the overexpressed 
transgene—TGFβ1—which, due to AAV6.2’s cellular tropism, is persistently expressed from bronchial epithe-
lial and alveolar type II cells. Therefore, continuous TGFβ1 expression is achieved, which leads to a progressive 
fibrotic phenotype (Fig. 1).

While our first AAV-TGFβ1 study established proof-of-concept for fibrosis induction and its dose-depend-
ency, this current work aimed to delineate the details of TGFβ1- and Bleomcyin-induced fibrosis in order to (1) 
understand the differences and commonalities on a phenotype, gene and pathway level to enable proper model 
selection depending on the scientific question of interest; (2) reveal relevant time points for pharmacological 
intervention studies, dependent on the MoA of respective compounds; (3) identify drug target and biomarker 
candidates as starting points for future therapeutic concept research; (4) built hypotheses on disease-relevant 
miRNA-mRNA interactions and (5) generate a publicly available data resource for future target/pathway-specific 
questions.

The main difference between the two models clearly lies in the acute injury component of the Bleomycin 
model, evident from the observed innate immune response, increase in BAL protein (due to epithelial damage) 

Figure 5.  Longitudinal assessment of miRNAs and lung function association in AAV-TGFβ1 and Bleomycin 
induced fibrosis. Small RNAs were applied to next-generation sequencing analysis. (a) Number of differentially 
expressed miRNAs over time. (b) Correlation plots for miRNAs showing differential expression either 
exclusively in one model or commonly in both models, as defined by expression cutoffs  (log2FC = 0.6). The 
coefficient of determination  (R2) is show for each set of genes under the graphs. (c) The top 10 miRNAs 
most strongly anti-/correlated with the decline in lung function (Fig. 1i) are shown together with their  log2 
fold change in expression on day 21 and the expression pattern over all five time points. The mean Pearson 
correlation coefficient r over both models is also depicted. (d) Staged selection strategy to identify novel miRNA 
candidates for further characterization. rho = Spearman’s rank correlation coefficient. For further details, see 
results and methods.
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and resulting loss in body weight. Corresponding transcriptomics also indicated activation of the clotting cascade, 
TLR signaling and a distinct type I interferon signature, in line with previous  observations44. A link between 
DNA damage and subsequent interferon signaling has been  established45,46, which likely explains the activation 
of this process upon instillation of DNA-damaging  Bleomycin47. In contrast, the AAV-TGFβ1 vectors do not 
induce tissue damage upon instillation and no inflammation was therefore observed during the first week after 
treatment, which was supported by the very low number of differentially expressed genes at day 3 and 7 and 
no association to inflammatory or anti-viral processes. Nevertheless, upon TGFβ overexpression, monocyte/
macrophage and neutrophil BAL counts were similarly high as after Bleomycin treatment, in line with litera-
ture showing that TGFβ, in the absence of cytokines or TLR ligands, stimulates myeloid cell proliferation and 
inflammatory cytokine  secretion48. Notably, while treatment with an ALK5 inhibitor from day 7 fully blocked 
fibrosis development, immune cell counts were reduced to a lesser degree (Suppl. Fig. 2), suggesting that early 
TGFβ effects are sufficient to induce inflammation, whereas subsequent fibrogenesis requires continuous TGFβ 
signaling. Overall, our study clearly shows a biphasic response in the Bleomycin model, with acute injury and 
inflammation leading to subsequent fibrosis, contrary to simultaneously occurring inflammation and fibrogenesis 
in the AAV-TGFβ model.

Given that we found an overall higher number of AAV-TGFβ1 exclusive genes, we wondered what processes 
would be specifically altered in this model. The different approaches taken to answer this question mainly revealed 
apoptosis, prominent cell cycle activation, alterations in glutathione metabolism and a more pronounced decrease 
in surfactant protein expression. Glutathione is known to be decreased by TGFβ1 and decreased levels are also 
found in fibrotic  diseases49. Apoptosis, cell cycle activation and a decrease in surfactant proteins are perfectly in 
line with the presumed molecular pathogenesis of IPF, i.e., a perpetuation of epithelial cell apoptosis and prolif-
eration as a consequence of an initial insult and subsequent pro-fibrotic  stimuli50. Finally, two major differences 
between the models are first, the histological presentation of fibrosis, which appears patchy and bronchocentric 
in the Bleomycin model, due to its MoA based on direct injury that is in contrast to AAV6.2-mediated, bron-
chial epithelium- and AT2-cell specific expression of TGFβ, which leads to more evenly distributed fibrosis, 
reminiscent of the histopathological features of fibrosing non-specific interstitial pneumonia (NSIP)10. Second, 
less fluctuation and continuously worsening fibrosis with the AAV approach as compared to Bleomycin-treated 
animals, which show higher variability due to the randomly distributed injury events and resulting differences 
in the timing and extent of regeneration.

Despite the obvious and expected differences between the models, a remarkably similar phenotype and over-
lap of deregulated genes was observed during the main fibrotic stage, in particular at day 21. Overlapping genes 
showed strong association with typical fibrosis-relevant pathways, such as ECM organization, inflammatory 

Table 1.  Hit list of lung-function associated miRNAs.

miRNA DE Sequence (mature miRNA) miRNA DE Sequence (mature miRNA)

mmu-miR-501-3p UP AAU GCA CCC GGG CAA GGA 
UUUG mmu-miR-181a-5p DOWN AAC AUU CAA CGC UGU CGG 

UGAGU 

mmu-miR-340-3p UP UCC GUC UCA GUU ACU UUA 
UAGC mmu-miR-10a-5p DOWN UAC CCU GUA GAU CCG AAU 

UUGUG 

mmu-miR-378a-3p UP ACU GGA CUU GGA GUC AGA 
AGG - mmu-miR-181b-5p DOWN AAC AUU CAU UGC UGU CGG 

UGGGU 

mmu-miR-1247-5p UP ACC CGU CCC GUU CGU CCC 
CGGA mmu-miR-652-3p DOWN AAU GGC GCC ACU AGG GUU GUG 

mmu-miR-342-3p UP UCU CAC ACA GAA AUC GCA 
CCCGU mmu-miR-146a-5p DOWN UGA GAA CUG AAU UCC AUG 

GGUU 

mmu-miR-148a-3p UP UCA GUG CAC UAC AGA ACU 
UUGU mmu-miR-151-3p DOWN CUA GAC UGA GGCU CCU UGAGG 

mmu-miR-369-5p UP AGA UCG ACC GUG UUA UAU 
UCGC mmu-miR-195a-5p DOWN UAG CAG CAC AGA AAU AUU GGC 

mmu-miR-410-3p UP AAU AUA ACA CAG AUG GCC UGU mmu-miR-503-3p DOWN GAG -UAU UGU UUCC ACUGCC 
UGG

mmu-miR-431-5p UP UGU CUU GCA GGC CGU CAU GCA mmu-miR-203-3p DOWN GUG AAA UGU UUA GGA CCA 
CUAG 

mmu-miR-148b-3p UP UCA GUG CAU CAC AGA ACU 
UUGU mmu-miR-676-3p DOWN CCG UCC UGA GGU UGU UGA 

GCU 

mmu-miR-212-3p UP UAA CAG UCU CCA GUC ACG 
GCC A mmu-miR-7656-3p DOWN ACA GGC UGU CUG AUC CCA 

CGGU 

mmu-miR-183-5p UP UAU GGC ACU GGU AGA AUU 
CACU mmu-miR-30f DOWN GUA AAC AUC CGA CUG AAA 

GCUC 

mmu-miR-411-5p UP UAG UAG ACC GUA UAG CGU ACG 

mmu-miR-127-3p UP UCG GAU CCG UCU GAG CUU 
GGCU 

mmu-miR-212-5p UP ACC UUG GCU CUA GAC UGC 
UUACU 

mmu-miR-146b-5p UP UGA GAA CUG AAU UCC AUA 
GGCU 
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response, response to wounding, cell proliferation, etc. However, in addition to this static analysis, we aimed 
to take into account both, the longitudinal effects and their functional/physiological consequences. Therefore, 
relevant mRNAs and miRNAs were identified based on the strength of correlation between their longitudinal 
expression changes and the continuous decrease in lung function observed in both models. The validity of this 
approach was clearly proven by the presence of numerous well-known fibrosis-associated genes (e.g., throm-
bospondins, osteopontin, collagens, fibronectin, gremlin and Wnt members) and miRNAs (e.g., miR-21, miR-
199a) among the top hits. More importantly, besides those well-known genes, also several only recently emerged 
fibrosis-associated genes, such as P4HA3, CTHRC1 and  FMOD20,24,25,51 were rapidly identified by our approach. 
Similarly, pathway, transcription factor and kinase upstream predictions using ARCHS4 suggested well-known 
(e.g., PDGFR, Slug, Twist) and novel regulators as pathogenic drivers, such as  DDR234,35. Given that our miRNA 
selection approach included several additional layers, i.e., mouse-human conservation, mRNA target prediction 
and anti-correlation thereof, we consider the resulting hit list, which comprises 16 upregulated and 12 downregu-
lated miRNAs a very attractive basis for the investigation of their anti-fibrotic potential in human disease. From 
a drug development point of view, microRNAs represent a particularly attractive molecule class, due to their 
ability to control and fine-tune entire signaling pathways or cellular mechanisms. In fact, the therapeutic effect 
of Nintedanib, a triple receptor kinase inhibitor of VEGF, PDGF and  FGF33 in comparison to largely inefficacious 
single targeting approaches pursued in the past, suggests that polypharmacological treatment strategies might 
be necessary to achieve therapeutic benefit in the complex pathology of pulmonary  fibrosis52.

Our study adds a valuable data set to the existing collection of transcriptome data of murine lung fibrosis 
models, which so far mostly focused on the Bleomycin  model53–55 or cellular isolates  thereof56. Advantages of 
our study include the use of RNA-sequencing (as opposed to  microarrays53,54), a minimally immunogenic vec-
tor system enabling the study of direct and persistent TGFβ effects, combined phenotypic, mRNA and miRNA 
measurements, and longitudinal sampling. The main limitation is the use of bulk lung RNA (extracted from 
flushed lung tissue), which usually achieves higher sequencing-depth than single cell-seq but is limited in cellular 
resolution. While this is sufficient for the characterization of many pathological processes, some specific aspects 
can only be addressed using technologies that provide information on the cellular level, including single-cell 
sequencing, but also histology or FACS. One example in that regard is aging, which is likely to play a major and 
possibly causal role in the development of pulmonary  fibrosis57. One hallmark of aging is cellular senescence, 
which is characterized by DNA double-strand breaks, telomere shortening, cell cycle arrest and a senescence-
associated secretory phenotype (SASP), characterized by proteins including PAI1, MMPs, IL6, IL8, MCP1, 
PDGF and TGFβ57,58. While DNA and telomere alterations cannot be assessed by bulk RNA-sequencing, many 
of the mentioned SASP- and other cellular senescence-associated genes (e.g., histone and cyclin dependent 

Figure 6.  Network of all conserved downregulated miRNAs and their predicted DE targets. MicroRNAs 
were selected as described in Fig. 5d, with additional nodes selected as first neighbors of the selected miRNAs. 
Color scale of the node is the log2-fold change at day 21 in the AAV6.2-TGFβ1 model, with red indicating 
upregulation, and blue indicating downregulation. MiRNAs are represented as large rectangles, and mRNAs as 
small rectangles. Image created with Cytoscape 3.8.1.
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kinase genes) were found deregulated in our data. Yet, it cannot be easily concluded that this is indeed due to 
senescence, as those proteins can be secreted by several different cell types. Therefore, aging is one important 
disease-contributing factor that requires studies with cellular resolution. Notably, there is a rapidly growing num-
ber of single-cell studies in the field of lung  fibrosis59–64, and first examples for the integration of transcriptomic 
and proteomic  data55,65 as well as a rising number of metabolomics and lipidomics studies, including one that 
compared young and aged  mice66, all of which steadily increase our understanding of the complex interplay and 
levels of regulation during PF pathogenesis. Still, given that all these studies made use of the Bleomycin model, 
we consider our AAV-TGFβ model and data a very valuable addition to the field.

As with any disease related animal model, a key question is to what extent the AAV-TGFβ1 model recapitu-
lates human IPF/PF-ILD features, especially when compared to the widely used Bleomycin model. While we 
refrain from a general answer to this question, due to our conviction that it can only be answered on a pathway 
level, a strategy to assess this aspect in the required level of detail has been developed in our group. This com-
putational approach, termed “In Silico Treatment” assesses translation of disease-related molecular expression 
patterns between animal models and humans and simulates experimentally observed expression changes on 
human data sets to quantify their impact on disease outcomes. The respective manuscript, covering a deepened 
analysis of this current data set in terms of human disease-relevance, is currently in preparation (Picart-Armada 
et al.). In general, to improve backtranslation into disease models, high quality and well-annotated clinical IPF 
datasets are still desperately needed, given that the number of available studies and respective patient samples 
is low (reviewed  in67).

Furthermore, in addition to models like Bleomycin-induced lung injury that aim to broadly recapitulate 
human disease phenotypes in mice, we see particular value in using AAVs for the targeted modulation of path-
ways of interest, enabling a more mechanistic understanding of the mode of action of certain proteins of interest. 
In this context, AAV’s low immunogenicity in mice is an important property, as it allows for specific modulation 
of pathways without interference by vector-targeted immune responses. Since its development, the AAV-TGFβ1 
model has been frequently used to study drug candidates and explore target function in our  group68–70. Further 
technological refinement of the model might be achieved in the future by using self-complementary AAV vec-
tors, which lead to a faster onset of transgene  expression71. Moreover, our previously obtained dose–response 
data suggest that further fine-tuning of the AAV dose enables establishing fibrosis at a milder degree that might 
allow studying disease progression beyond four weeks, which was limited in the current study due to the severe 
effects on body weight at late time points (Fig. 1). Finally, the implementation of gene regulatory elements, such 
as artificial riboswitches, was shown to increase AAV-TGFβ1 vector  production11 and could potentially be used 
to regulate AAV-mediated TGFβ1 expression using small  molecules72.

In summary, our study provides a detailed characterization of the pathogenic processes underlying AAV-
TGFβ1-mediated lung fibrosis development in comparison to the well-established Bleomycin lung injury model. 
The integration of longitudinal transcriptome and lung function data enabled the identification of mRNA-miRNA 
networks directly associated with disease development in mice. Our data will therefore be of value for drug 
discovery and biomarker research in the context of progressive fibrosing interstitial lung disease.

Methods
AAV vectors. Expression constructs harboring the murine TGF-β1 cDNA (NCBI Ref Seq NM_011577.2) 
with the constitutively activating mutations C223S and  C225S73 under the control of a CMV promoter or non-
coding “stuffer”  DNA5 were synthesized at Life technologies and cloned into a pAAV vector harboring AAV2 
ITR sequences. For the production of recombinant AAV6.2 vectors, the AAV2 cap gene in pAAV-RC (Agilent 
Technologies, Waldbronn) was replaced by the AAV6.2 cap gene (GenBank: EU368910.1). HEK-293 cells were 
triple-transfected with pAAV-AAV6.2cap, pHelper (Agilent Technologies) and either the TGFβ1 or stuffer con-
structs, using the calcium-phosphate transfection method. The vectors were purified using the iodixanol-based 
protocol described in detail  before74.

Animal studies. All animal experiments were approved by the local authorities (Regierungspräsidium 
Tübingen, Germany) and performed and reported in accordance with the German law on animal welfare and 
under consideration of the ARRIVE guidelines. Male 9–12 wk. old C57Bl/6 mice (120 in total) were obtained 
from Charles River Laboratories (Sulzfeld, Germany) and allowed to acclimate for one week prior to intratra-
cheal administration of either 2.5 ×  1011 vg of AAV-TGFβ1 or AAV-stuffer, 1 mg/kg Bleomycin or NaCl solution 
in a volume of 50 µL, which was carried out under light anesthesia (3–4% isoflurane). For pharmacological 
inhibition of the type I TGFβ1 receptor (ALK5), the inhibitor SB-525334 was diluted in 0.5% Natrosol and 
orally administered to the mice (28 in total) from day seven after AAV administration at 30 mg/kg in a once or 
twice daily dosing regimen. Body weight was monitored daily and animals with a loss of body weight greater 
than 20% were taken out of the experiment and euthanized. Fibrosis was assessed at day 3, 7, 14, 21 and 28 after 
AAV/Bleomycin administration and on day 21 in the ALK5 inhibitor experiment, respectively. Lung function, 
µCT, immune cell, histological and bronchoalveolar lavage (BAL) analyses were described in detail in one of our 
previous  publications5. Briefly, for µCT imaging, mice were anesthetized using 4% isoflurane and kept under 
1.5% isoflurane anesthesia during CT scanning, which was carried out on a Quantum FX µCT (Perkin Elmer). 
To assess lung function, mice were anesthetized by i.p. administration of pentobarbital/xylazine hydrochloride, 
cannulated intratracheally and treated with pancuronium bromide by i.v. administration. Lung function meas-
urement was then conducted using the flexiVent FX system (Scireq). Mice were euthanized by a pentobarbital 
overdose, the lung was dissected and weighed prior to flushing with 2 × 700 µL PBS to obtain BAL fluid. Differ-
ential BAL immune cell counts were determined using the Sysmex XT1800 iVet cell analyzer and cytospins. BAL 
TGFβ1 levels were measured using the Mouse TGF-beta 1 Quantikine ELISA (#MB100B, R&D Systems, Min-
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neapolis, MN) according to the instructions provided with the kit. The right lung of each mouse was processed 
for histological assessment by a histopathologist according to the Ashcroft  criteria75. The left lung was used for 
total RNA extraction, as detailed below.

RNA preparation. For total lung RNA preparation, the left lung was flash frozen in liquid nitrogen imme-
diately after dissection. Frozen lungs were homogenized in 2 mL precooled RLT buffer (Qiagen, Hilden, Ger-
many) + 1% β-mercaptoethanol (Sigma-Aldrich) using the Peqlab Precellys 24 Dual Homogenizer and 7 mL-
ceramic bead tubes (#91-PCS-CK28L, Peqlab, Erlangen). 150  µL homogenate were then mixed with 550  µL 
QIAzol Lysis Reagent (#79306, Qiagen). After addition of 140 µL chloroform (Sigma-Aldrich), the mixture was 
shaken vigorously for 15 s and centrifuged for 5 min at 12,000 xg and 4 °C. 350 µL of the upper aqueous phase 
(containing RNA) were then further purified using the miRNeasy 96 Kit (#217061, Qiagen) according to the 
manufacturer’s instructions. After purification, RNA concentration was determined using a Synergy HT mul-
timode microplate reader and the Take3 module (BioTek Instruments, Winooski, VT, USA). RNA quality was 
assessed using the 2100 Bioanalyzer (Agilent Technologies).

Library preparation and sequencing. cDNA libraries were prepared using the TruSeq Stranded Total 
RNA Sample Preparation Kit (Illumina, San Diego, CA, USA) and 200 ng of total RNA. Following purification 
and PCR enrichment of the cDNAs, the library was diluted to 2 nM and clustered on the flow cell at 9.6 pM, 
using the TruSeq SR Cluster Kit v3-cBot-HS (#GD-401-3001, Illumina) and the cBot instrument (Illumina). 
Sequencing of 52 bp single reads and seven bases index reads was performed on an Illumina HiSeq 2000 using 
the TruSeq SBS Kit v3-HS (#FC-401-3002, Illumina). Approximately 20 million reads were obtained per sample. 
For miRNA, the TruSeq Small RNA Library Preparation Kit was used (Illumina) to prepare the cDNA library: As 
a result of miRNA processing by Dicer, miRNAs contain a free 5’-phosphate and 3’-hydroxal group, which were 
used to ligate specific adapters prior to first and second strand cDNA synthesis. By PCR, the cDNAs were then 
amplified and indexed. Using magnetic Agencourt AMPure XP bead-purification (#A63881, Beckman Coulter), 
large DNAs were separated and small RNAs were enriched. Similar to mRNA, the samples were finally clustered 
at 9.6 pM and sequenced, while being spiked into mRNA sequencing samples.

Read mapping and quality control. RNA-Seq reads were aligned to mouse genomes using the STAR 
Aligner v2.5.2a76 with their corresponding Ensembl 86 reference  genomes77. Sequenced read quality was checked 
with FastQC v0.11.2 (http:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/) and alignment quality met-
rics were calculated using the RNASeQC v1.1875. Following read alignment, duplication rates of the RNA-Seq 
samples were computed with bamUtil v1.0.11 to mark duplicate reads and the dupRadar v1.4 Bioconductor R 
package for  assessment78. The gene expression profiles were quantified using Cufflinks software version 2.2.179 
to get the Reads Per Kilobase of transcript per Million mapped reads (RPKM) as well as read counts from the 
featureCounts software  package80. Differential expression analysis was performed with the uniquely mapping 
read counts as input for the Bioconductor LIMMA analysis R package with voom  normalization81. Descrip-
tive analyses such as PCA and hierarchical clustering were carried out to identify possible outliers. Differential 
expression between treatment and respective controls at each time points were carried out using limma with a 
significance threshold of p adj ≤ 0.05 and abs(log2FC) ≥ 0.5. Two samples out of 120 in total were excluded for 
not passing QC criteria.

miRNA‑Seq reads. Sequenced read quality was checked with FastQC (FastQC version 0.11.2). Subse-
quently, miRNA-sequencing read adapters were detected using minion and trimmed using reaper from the 
kraken package, version 13–27482. The trimmed reads were aligned to the Ensembl v86 mouse genome using 
the STAR Aligner (version 2.5.2a) using the following parameters:—outFilterMismatchNoverLmax 0.05—out-
FilterMatchNmin 16—outFilterScoreMinOverLread 0—outFilterMatchNminOverLread 0—alignIntronMax 1 
(parameters taken from personal communication with the STAR author A. Dobin). Aligned reads were filtered 
for mature miRNA lengths of between (or equal to) 16 and 26 bp in size. The SAM files from STAR were con-
verted to BAM files using samtools 0.1.1883. The aligned miRNA reads were then quantified using subread from 
the featureCounts package (version 1.4.5-PR1)80 and the miRBase 21 as a  reference84.

Mouse‑human conservation of miRNA sequences. For all murine and human miRNAs from miR-
Base 21 seed regions (position 2 to 7) were extracted. For all combinations of murine and human miRNAs global 
alignments between the seed regions and the mature were calculated using the pairwiseAlignment function 
from the Bioconductor Biostrings package (v2.46.0). We applied the Needleman-Wunsch algorithm using an 
RNA substitution matrix with a match score of 1 and a mismatch score of 0. We assigned two categories to the 
miRNA candidates—“conserved” for miRNAs with an alignment score of 6 in the seed region for mouse-human 
pairs of miRNAs with the same name, “non-conserved” for miRNAs with an alignment score < 6 in the seed 
region for mouse-human pairs of miRNAs with the same name. In addition, miRNAs with an alignment score 
for the alignment of the respective mature sequences above 20 is assigned to the category “mature high similar-
ity”.

Determination of putative miRNA‑mRNA target pairs. To determine mRNA targets of miRNAs, 
a stepwise approach has been carried out. First, lowly expressed miRNAs and mRNAs were removed from the 
expression matrix. Subsequently, the Spearman’s rho was calculated between voom transformed log(CPM) of 
each miRNA vs. each mRNA across all samples of both models and all time points, using the corAndPvalue 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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function from WGCNA v. 1.6085.The set of correlation based putative miRNA-mRNA pairs is defined as all 
combinations with a correlation ≤ − 0.6. To add sequence-based prediction of putative miRNA-mRNA pairs, 
all combinations with predictions in at least two out of five most cited miRNA target prediction algorithms 
(DIANA, Miranda, PicTar, TargetScan, and miRDB) available in the Bioconductor package miRNAtap v. 1.10.0 / 
miRNAtap.db v. 0.99.10 were taken as sequence-based pairs. The final set of miRNA-mRNA pairs is the intersec-
tion of anticorrelation based and sequence-based interaction pairs, reducing the number of predictions signifi-
cantly to a high-confidence subset.

An integrated miRNA-mRNA network was built using the high-confidence miRNA-mRNA interactions 
as well has highly correlated mRNA-mRNA edges (correlation ≥ 0.75). Node annotation consists of number of 
contrasts with significant differential expression of the respective miRNA or mRNA and log-fold change in the 
various contrasts described above. In addition, each node is annotated with the correlation to the functional 
parameters. The network was imported into Cytoscape for node selection and visualization purposes.

Pathway analysis. Pathway analyses for differentially expressed mRNAs were carried out using  EnrichR86,87 
and Ingenuity Pathway Analysis. For EnrichR analyses, gene lists obtained from either heatmap cluster extrac-
tion (Fig. 2b) or analyses of differences and commonalties between the models (Figs. 2f, 3a and 4b) were defined 
as described in the results section or Figure legends and subsequently applied as input search terms. Enriched 
 Reactome88 and KEGG  pathways89 as well as GO Biological  Processes90, and  ARCHS491 transcription factors, 
kinases, and tissues, respectively, were then extracted from the respective EnrichR results sections. Selected 
pathways along with their corresponding adjusted p-values, which are calculated using the Benjamini–Hoch-
berg method for correction for multiple hypothesis testing, are displayed in Figs. 2, 3 and 4. Ingenuity Pathway 
Analysis was used to predict putative upstream regulators and downstream functions. Upstream regulator pre-
diction was limited to the categories cytokines, growth factors, kinases and others and restricted using p-value 
cutoffs of 3 (log10) and a Z-score cutoff of 2. From the resulting list of potential regulators, several were selected, 
and their enrichment p-values were plotted over time (Fig.  3b). The same approach was applied to identify 
downstream functions, using Ingenuity’s Diseases & Functions analysis.

Statistics and data visualization. Log2-fold changes for Bleomycin samples were calculated relative to 
NaCl treatment, whereas AAV-TGFβ1 values were calculated relative to AAV-stuffer treatment. Genes with an 
absolute log2-fold change ≥ 0.6 and an adjusted p-value ≤ 0.05 were called differentially expressed, unless stated 
differently in the main text or figure legends. Statistical significance for phenotypic readouts (Fig. 1) was assessed 
by either one-way ANOVA and Sidak’s post-test or two-way ANOVA and Tukey’s post-test. *p < 0.05, **p < 0.01, 
***p < 0.001. Data  were86,87visualized using GraphPad Prism, Tibco Spotfire and Cytoscape.

Data availability
Sequencing data have been deposited in NCBI’s Gene Expression Omnibus and are accessible through GEO Series 
accession number GSE195773 [https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? & acc= GSE19 5773].
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