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Spatial organization 
of hydrophobic and charged 
residues affects protein thermal 
stability and binding affinity
Fausta Desantis1,3,4, Mattia Miotto1,4*, Lorenzo Di Rienzo1, Edoardo Milanetti1,2 & 
Giancarlo Ruocco1,2

What are the molecular determinants of protein–protein binding affinity and whether they are 
similar to those regulating fold stability are two major questions of molecular biology, whose 
answers bring important implications both from a theoretical and applicative point of view. Here, 
we analyze chemical and physical features on a large dataset of protein–protein complexes with 
reliable experimental binding affinity data and compare them with a set of monomeric proteins for 
which melting temperature data was available. In particular, we probed the spatial organization of 
protein (1) intramolecular and intermolecular interaction energies among residues, (2) amino acidic 
composition, and (3) their hydropathy features. Analyzing the interaction energies, we found that 
strong Coulombic interactions are preferentially associated with a high protein thermal stability, while 
strong intermolecular van der Waals energies correlate with stronger protein–protein binding affinity. 
Statistical analysis of amino acids abundances, exposed to the molecular surface and/or in interaction 
with the molecular partner, confirmed that hydrophobic residues present on the protein surfaces are 
preferentially located in the binding regions, while charged residues behave oppositely. Leveraging 
on the important role of van der Waals interface interactions in binding affinity, we focused on the 
molecular surfaces in the binding regions and evaluated their shape complementarity, decomposing 
the molecular patches in the 2D Zernike basis. For the first time, we quantified the correlation 
between local shape complementarity and binding affinity via the Zernike formalism. In addition, 
considering the solvent interactions via the residue hydropathy, we found that the hydrophobicity of 
the binding regions dictates their shape complementary as much as the correlation between van der 
Waals energy and binding affinity. In turn, these relationships pave the way to the fast and accurate 
prediction and design of optimal binding regions as the 2D Zernike formalism allows a rapid and 
superposition-free comparison between possible binding surfaces.

Interactions between biomolecules are at the basis of every cellular process, from DNA replication to protein 
 degradation1–3. To ensure a proper molecular recognition/function, proteins need to have a stable  fold4,5 and 
form stable  complexes6.

In both the cases of protein folding and protein–protein interaction indeed, the spatial arrangements of resi-
dues side chains give rise to a complex network of non-bonded atom-atom interactions, whose characteristics are 
expected to influence structure stability. The question arises of whether the structural and energetic properties 
of protein folding and binding are  interrelated7. Indeed, the non-bonded (nb) intramolecular interactions in 
proteins, both in terms of their spatial and energetic arrangements, play a key role in the thermal stability of the 
protein  structure8–11. Similarly, protein–protein intermolecular interactions are important for the binding affinity 
between the two interacting  molecules12–16. To quantify the degree of folding and binding stability, two experi-
mental descriptors are usually adopted: (1) the thermal resistance of each protein is typically evaluated through 
the melting temperature ( Tm)8, while (2) the affinity of the interaction between two proteins is described by 
means of the equilibrium dissociation constant ( Kd)14, often considered in logarithmic scale, i.e Ba = log10(Kd).
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At the theoretical/computational level, instead, the prediction of the stability of a protein, even knowing 
its 3D structure, is still largely an open challenge since a complete understanding of the relationship between 
thermal resistance and the reorganization of the internal energies of the protein is still  lacking8. In this context, 
some recent studies reported differences in terms of amino acid composition or spatial arrangement of residues, 
characterizing pairs of homologous proteins belonging to thermophylic and mesophylic  organisms17,18.

In this respect, it must be noted that while proteins belonging to thermophilic organisms must have a Tm 
higher than the optimal growth temperature of the organism, protein of mesophilic organisms can in principle 
have a much higher melting temperature than the one in which the organism thrives. Thus particular care should 
be used when performing such comparative  analyses9.

Other studies showed that, even if core packing is related to thermal  resistance19, the hydrophobicity of the 
residues plays a major effect in promoting/guiding the folding process while its contribution is smaller on protein 
 stabilization20,21: the pivotal role for increasing the stability seems to be played by electrostatic residues on the 
protein  surface9. Similarly, many computational methods have been developed to try to understand and, pos-
sibly, predict the basic mechanisms of the binding affinity between  molecules14,22,23. For example, it was found 
that the presence of alanine residues anti-correlates with affinity, suggesting that such a residue will not provide 
favorable  interactions13. On the contrary, the overall packing between two chains has been found similar to the 
packing observed within  monomers24.

Studies on the role of salt bridges on the stabilization of binding proved that they can contribute significantly 
to the stabilization of some complexes while they produce destabilization of  others7.

Altogether, the comprehension of the structural determinants of protein–protein binding is still far from being 
achieved. And this is also testified by the difficulties of predictive methods, principally those based on empirical 
functions typically used in molecular  docking25–27, to successfully reproduce the results, especially when a large 
dataset is  considered28. Therefore, the investigation of the energetic-structural properties that directly impact 
the binding affinity of a molecular complex plays a key role in understanding the nature of protein–protein 
interactions. Indeed, most of the effort in this field has been devoted to building energy functions for predictive 
 purposes12,29–31. Moreover, many of these methods rely on a continuum framework and make use of molecular 
surfaces, the computation of which could affect the outcome depending on the used  parameters15. On the other 
hand, to our knowledge, very few works have dealt with this problem under a statistical perspective or formal-
izing energetic properties in a set of  descriptors13,15. To this end, here, we investigate the relationship between 
non-bonded intramolecular and intermolecular interactions that take place between the residue side chains to 
better elucidate their effect in structural  stabilization32 of both protein folding and protein–protein  binding33. 
In this scenario, the energetics of nonbonded atomic interactions can be summarized mainly by Coulomb and 
van der Waals forces.

To do so, we assembled two datasets of experimentally resolved molecular structures, the first composed 
of single-chain proteins for which the melting temperature value is reported ( Tm dataset)9 and the second one 
composed of protein–protein complexes of known experimental dissociation constant Kd ( Ba dataset)34. We 
found that the more stable the monomeric structure the more it possesses favorable Coulomb interactions, 
while high favorable van der Waals interactions are associated to less stable proteins. A quite opposite behavior 
is present in relation to the binding affinity between two interacting molecules, where van der Waals’s contribu-
tion positively correlates with the complex stability. Moreover, an analysis of the amino acid composition of the 
binding sites confirmed a higher presence of hydrophobic residues and we quantitatively show that the higher 
the hydrophobicity of the residues the more van der Waals interactions account for the observed binding affinity. 
Finally, we focus on the role of van der Waals energy in the binding affinity, and on the connection between the 
van der Waals description of the molecular interfaces and the corresponding shape complementarity between 
the two interacting molecular surfaces.

In this framework, it is worth noting that several methods have been developed to measure geometric com-
plementarity, ranging from the Katzir molecular  surface35 to the Sc surface complementarity  parameter36 or to 
the calculation of van der Waals intermolecular  energies37. Here, we used the Zernike 2D  method38, which can 
compactly and efficiently describe the geometric properties of portions of the molecular surface without the 
need of superimposing the two interacting protein structures.

Results
Intra- and intermolecular interaction energies in thermal stability and binding affinity. Firstly, 
we evaluated the Coulombic (C) and Lennard Jones (LJ) interaction energies between all couples of residues of 
the structures forming the Tm dataset, i.e. all the non-bonded intramolecular interactions, and between all the 
residues of the Ba dataset complexes, which will be referred to as intermolecular interactions. Details on how 
these energies were computed are reported in the “Methods” section.

Next, we compared the measured energies with experimental data of melting temperature and binding affinity 
for the Tm and Ba datasets, respectively. In particular, Fig. 1a and b show the total Coulombic and Lennard-Jones 
energies measured in each protein as a function of its experimental Tm . As one can see, a negative (respectively 
positive) linear correlation is present between the experimental thermal stability and the Coulomb (resp. Len-
nard-Jones) energy of each protein. More specifically, the Pearson’s correlation values are − 0.32 (with a p value 
of 0.03) and 0.30 (with a p value of 0.04) for the two cases.

Figure 1c and d, instead, report the total intermolecular Coulomb and Lennard-Jones interactions as a func-
tion of the experimental binding affinity, Ba (defined as the log10 of the Kd).

Even in this case, linear correlations are studied between the two kinds of potential energies. In fact, a weak 
anti-correlation exists between the Coulombic intermolecular interactions and the experimental binding affin-
ity values (Pearson correlation of − 0.08, with a p value of 0.056); while a positive Pearson correlation of 0.41 (p 
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value < 10−6 ) is found between the van der Waals intramolecular interactions and the Ba values of each protein 
complex. We note that although the signs of the correlations are the same, intra- and intermolecular interactions 
behave in the opposite manner. Indeed, lower values of Ba correspond to higher binding affinity while higher 
values of melting temperature indicate a more stable complex. We extensively elaborate on this aspect in the 
“Discussion”.

Interestingly, results on the thermal stability hold also considering couples of homologous proteins coming 
from thermophilic/mesophilic organisms (see Supplementary materials for details).

Along the line of Miotto et al.9, we proceeded to examine the organization of the measured interactions, 
starting from an analysis of the probability distributions of finding a certain interaction energy between two 
residues. In Fig. 1e, we show the probability distribution of both LJ intramolecular (green line) and intermo-
lecular (yellow line) interactions. The two curves are characterized by similar trends, where most of the area 
under the curve corresponds to negative (favorable) energy values. Therefore, both types of interaction show 

Figure 1.  Comparison between intra and intermolecular interaction energies with respect to folding and 
binding stability. (a) Total Coulombic energy as a function of Tm for each protein of the Tm dataset. The Pearson 
correlation is reported in the legend. Energies are normalized by the protein size, N. (b) Total Lennard Jones 
potential energy as a function of Tm for each protein of the Tm dataset. The Pearson correlation is reported in 
the legend. (c) Same as in (a) but for the complexes of the Ba dataset. (d) Same as in (b) but for the complexes 
of the Ba dataset. (e) Probability density distributions of Lennard-Jones potential energy for the Tm dataset 
(‘Intra’, green line) and between each couple of proteins of the Ba dataset (‘Inter’, yellow line). Energies are 
considered only between couples of residues whose minimum distance is lower than 4 A, while energies 
regarding interactions between two close Cys residues have not been considered (see “Methods” for details). (f) 
Probability density distributions of Coulombic interaction energies for the protein of the Tm dataset stratified 
from lower (blue) to higher (red) average Tm . Each distribution is built using a group of proteins whose melting 
temperatures lie in the same range; the average Tm value of each group is reported in the legend. The inset 
shows the probability of finding a strong favorable/unfavorable interaction as a function of the average melting 
temperature of each subset. (g) Same as in (f) but for the complexes of the Ba dataset.
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how the side chains optimize their spatial rearrangement to minimize the energetic contribution. However, there 
is a higher probability of observing strong favorable intramolecular interactions with respect to intermolecular 
ones. Repeating the same analysis on the Coulombic energies, we found that the distributions for the thermal 
stability and affinity datasets display the same overall shape. In particular, it is possible to identify four ranges 
of energies that correspond to four peaks of probability density, i.e. very strong favorable region ( < −100 kcal/
mol), a strong favorable energy region ( −100 < E < −10 kcal/mol), a strong unfavorable interaction region 
( E > 10 kcal/mol), and an intermediate region characterized by weaker (but much more probable) interactions 
(see insets on the right in Fig. 1f,g). The high favorable/unfavorable regions are centered around ∼ ± 25 kcal/mol.

To better investigate the relationship between thermal stability and Coulomb energy distribution of intra-
molecular interactions, as well as the relationship between binding affinity and Coulomb energy distribution 
of intermolecular interactions, we divided the Tm dataset into four groups according to protein Tm . Then, the 
energy distribution was evaluated for each group. Similarly, the Ba dataset was divided into five groups accord-
ing to the binding affinity experimental values. Both temperature and affinity ranges were chosen in such a way 
to guarantee that each group was composed of a balanced number of proteins (or complexes), so as to allow 
consistent statistics when comparing the respective distributions.

Looking specifically at Fig. 1f, one can see that there is a marked dependence between thermal stability and 
the percentage of strong interactions. This is evident looking at the disposition of the density curves (Fig. 1f): 
the higher the thermal stability the higher the probability of finding strong interactions. On the contrary, less 
thermostable proteins possess a larger number of weak interactions.

Indeed, the probability of finding a high favorable/unfavorable interaction linearly depends on the protein 
melting temperature with a Pearson correlation coefficient of 0.97 and a p value of 0.03 (see inset in Fig. 1f).

Conversely, the probability density of Coulombic energies stratified by binding affinity ranges shows a trend 
opposite to that of the Tm dataset. Indeed, as shown in Fig. 1g, the higher the binding affinity, the lower the maxi-
mum of the distribution peak in the range of strong interactions. As in the case of thermal stability, this behavior 
can be better observed in the inset, where the probability of finding high energy is shown as a function of the 
mean binding affinity of the complexes comprising each range. Also in this case, there is a Pearson correlation 
of 0.92 with a p value of 0.03. Again we note that more stable complexes have a lower Ba value.

Finally, no appreciable trends were observed stratifying Lennard-Jones’ potential energy distributions accord-
ing to thermal or affinity data.

Energy organization at residue level. Next, we moved to consider a higher level of organization of the 
energies: instead of considering single interactions, we looked at how these interactions localize in each resi-
due. With this aim, we computed a compact descriptor usually studied in network theory: the node strength. 
Thinking of residues in a protein as nodes in a network and of energies as the weights of the links connecting 
couples of nodes, we can define the node  strength9 as si =

∑Ni
aa

j=1 Eij , where Ni
aa is the number of residues found 

in interaction with residue i and Eij is the energy (i.e. the weights) of all the interactions that residue i shares with 
the nearby residue j.

Similarly to what we have done for the interaction energies, in Fig. 2a (respectively Fig. 2b) we reported the 
probability density distributions of the strengths values for all the residues of the Tm (green line) and Ba (yellow 
line) datasets using Coulombic (resp. Lennard-Jones) potential energies as link weights.

Comparing the strength distributions with the ones in Fig. 1, one can see that the overall shapes of the dis-
tributions are similar, while they differ from the shapes of the interaction distributions, especially in the case of 
Coulombic potential energies. The latter in fact presented three distinct peaks in place of the single peak displayed 
by the strength distributions. Conversely, the shift between inter and intramolecular interactions are preserved 
for Lennard-Jones’ potential energies.

In all cases, the probability of finding residues with negative (i.e. favorable) strengths is higher than the one 
of finding residues with positive strength values, as one would expect in the case of stable folds and bindings. 
Interestingly, the distribution has tails that exhibit an exponential decay toward zero both for favorable and unfa-
vorable strength values. This can be seen looking at the overall linear trend of the distribution tails in Fig. 2a,b, 
whose y-axis has been set to log-scale.

Even though the probability of finding high favorable strength values becomes exponentially smaller the 
more the strength is favorable, such probabilities show well-defined dependencies with respect to both thermal 
and binding stability.

In particular, Fig. 2c,d (respectively Fig. 2e,f) show the probability of finding a highly favorable Coulomb 
and Lennard-Jones strength as a function of the average melting temperature (resp. binding affinity) obtained 
stratifying the two datasets as done for the interaction energy distributions. High strengths are defined as all 
the strength values lower than the gray dotted lines in Fig. 2a,b), that mark the beginning of the favorable tails 
of the distributions.

It is interesting to note that the organization of the energies, measured by the network strength parameter, 
confirms the overall behavior observed when looking at total energies. More specifically, for protein structures 
with different thermal resistance, the greater the value of Tm , the greater the probability of finding high favora-
ble strengths (see Fig. 2c). Contrary to the observed trend for Coulomb strengths, the greater the probability 
of finding negative Lennard-Jones strengths, the lower the thermal stability of the protein. Opposite trends are 
found in the case of binding, where the greater the probability of finding strong Coulomb strength, the lower 
the binding affinity of the complex (see Fig. 2e). Finally, Fig. 2f displays that the higher the probability of finding 
a residue with high favorable strength, the higher the complex binding affinity.
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Amino acid composition and hydropathy properties of the residues involved in intra- and 
intermolecular interactions. Given the different trends observed between Coulombic and Lennard-Jones 
interactions with respect to thermal stability and binding affinity, we investigated the amino acid composition of 
the proteins in the Tm and Ba datasets. In particular, we analyzed the frequency of occurrence of each amino acid 
and its hydrophobic/hydrophilic properties.

Figure 3a shows a general overview of the amino acid abundances using all the proteins in the two datasets. 
In dark red, the overall frequencies of residues occurrence in proteins are reported. In red, we recorded the 
values restricting to solvent-exposed residues (see "Methods" for the definition of superficial residue). In pink, 
we showed the frequencies of the amino acid observed to be in interaction in the Ba dataset, where a residue is 
considered to be in contact if it has at least one atom closer than 4 Å to its molecular partner. This first analysis 
confirmed the well-known results that hydrophobic amino acids, such as Val or Leu, or Ile, are poorly present 
in the solvent-exposed surface of proteins. However, when a hydrophobic amino acid is present in the exposed 
regions it has a high probability of interacting with the corresponding molecular partner. On the contrary, 
charged amino acids, such as Lys or Glu, are typically more present in the superficial protein regions. This not-
withstanding, the fraction of these actually participating in interaction is relatively small.

In addition, we studied the frequencies of amino acids found in protein binding sites, separated according 
to the binding affinity with partners (see Fig. 3b). Each bar represents a quartile of the distribution, meaning 
that the dark green to yellow bars regard the 25% of protein–protein complexes in our dataset with the lowest or 
highest Ba , respectively. No appreciable trends can be spotted between any amino acid abundance and the binding 
affinity classes. Lastly, in Fig. 3c, we investigated the frequencies of the amino acids in proteins characterized by 
different Tm . As in the previous plot, each bar represents a quartile of the Tm distribution, from dark blue (very 
low Tm ) to light blue (very high Tm ). Interestingly, we found that a high presence of Cys is typical of proteins 
with very high Tm since such a residue is responsible for the formation of stabilizing disulfide bridges. Moreover, 
the presence of a high number of charged residues, such as Arg or Glu, seems to be associated with a higher Tm.

Since we did not observe any robust trend between the amino acid composition of binding regions and the 
recorded binding affinity of the complex, we refined the analysis by dividing the Ba dataset according to the 
average hydrophilic/hydrophobic properties of the complexes’ binding regions.

In order to do this, we associate each amino acid with a hydropathy index (H) according to the scale provided 
by Di Rienzo et al.39 (similar results were obtained considering canonical scales such as Kyte-Doolittle40 or Hessa 
et al.41; data not shown). The hydropathy scale is defined on the basis of a statistical analysis of the water molecule 

Figure 2.  Energy reorganization at the residue level. (a) Probability distribution of the Strength values 
obtained using the Coulombic energies as network weights for the proteins of the Tm dataset (green curve) and 
the complexes of the Ba dataset (yellow curve). The grey dotted line delimits the left region of high favorable 
strengths. (b) Same as in (a) but considering Lennard Jones’s potential energy. (c) Relative probability of finding 
a residue with a high Coulombic strength value [dashed line in panel (a)] obtained stratifying the Tm dataset 
in four intervals of increasing thermal stability (see “Methods” section). Relative probabilities are obtained 
dividing each probability by the probability of the group with the lowest mean thermal stability. (d) Same as in 
(c) but considering Lennard-Jones potential energies as network weights. (e,f) Same as in panel (c) and (d) but 
considering the complexes of the Ba dataset, i.e. intermolecular interaction energies as network weights.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12087  | https://doi.org/10.1038/s41598-022-16338-5

www.nature.com/scientificreports/

orientation and disposition around each kind of amino acid residue during molecular dynamics simulations. 
Thus the resulting hydropathy index depends on the environment usually found around each type of amino acid 
and not on the sole amino acid’s chemical-physical properties.

Ultimately, this scale indicates the propensity of the residues to interact with water and it is such that the 
higher the index the more hydrophilic is the residue, with H = 0.0 being the lowest value of the scale and associ-
ated with a purely hydrophobic behavior.

Figure 3d shows the total Lennard-Jones potential energy as a function of the complex binding affinity select-
ing the complexes in the dataset according to four different ranges of the mean hydropathy of their interface 
residues. One can clearly see that the Pearson correlation between the two quantities decreases the more the 
considered complexes have—on average—hydrophilic binding regions (see also Fig. 3e). That is, the affinity of 
complexes whose interfaces are mostly composed of hydrophobic residues is better described by van der Waals’s 
favorable energy with respect to hydrophilic ones.

Figure 3.  Comparing amino acid composition and hydropathy properties in proteins with different thermal 
stability and binding affinity. (a) Relative abundances of each of the twenty natural amino acids in the Tm and 
Ba datasets (see “Methods” section for details). For each kind of amino acid, the red bar corresponds to the 
abundance found in the solvent-exposed residues; the pink one refers to the residues found in interaction with 
the molecular partner, and dark red bars are computed considering all residues. (b) Relative abundances of each 
of the twenty natural amino acids found in the binding site regions of the Ba dataset stratified by four groups 
of different binding affinities. Bar colors range from green to yellow as the Ba of the considered complexes 
increases. (c) Relative abundances of each of the twenty natural amino acids found in the Tm dataset, stratified 
by four groups according to the protein melting temperatures ( Tm ). Bar colors range from dark to light blue 
as the thermal stability of the considered proteins increases. (d) Total Lennard-Jones energies as a function 
of experimental binding affinity, Ba , considering only the complexes having mean hydropathy coefficient (H) 
within overlapping intervals of width 0.6. The Pearson correlation coefficients are reported for each plot. (e) 
Pearson coefficients against the mean hydropathy value of the window with respect to which the coefficient was 
calculated.
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Binding region shape complementarity versus binding affinity. Finally, leveraging on the results 
of the previous sections, we looked at the overall spatial organization of the interface residues of the complexes 
of the Ba dataset. To do so, we evaluated the molecular surfaces of the two proteins forming the complex and 
measured the shape complementarity between the binding regions (see Fig. 4a). In particular, we use an algo-
rithm, based on the formalism of Zernike polynomials in two  dimensions38, which allows us to quantitatively 
characterize the morphological properties of small portions of molecular surface: the molecular patches are 
projected into a basis of orthogonal polynomials and the distance between the resulting vectors of coefficients 
representing the patches is evaluated. The shorter the distance between the Zernike descriptors, the greater the 
shape complementarity (see "Methods" for further details on the Zernike formalism). Operatively, we sampled a 
set of interaction patches from each binding region and we calculate the minimum distance between the vectors 
of the Zernike coefficients associated with corresponding patches.

Figure 4b shows the minimum Zernike distance as a function of complexes’ binding affinity. The two quan-
tities share a linear relationship with a Pearson correlation of ~0.30 (p value < 10−5 ), confirming that shape 
complementarity is a key factor for tuning binding affinity. It is worth noticing that shape complementarity is 
in turn linked to van der Waals interactions (see Fig. 4c). Finally, we note that shape complementarity is higher 
in complexes whose binding site is mainly composed of hydrophobic residues. This can be seen comparing the 
distributions of the Zernike minimum distances for complexes having low (hydrophobic behavior) or high 
(hydrophilic behavior) means Hydropathy index (see inset in Fig. 4c).

Discussions
Several key structural features have been investigated and found to be related to the degree of protein thermal 
stability and protein–protein binding affinity. The former, in fact, increases as the protein packing  decreases42, 
with the number of salt-bridges8, and thus with the presence of strong Coulombic  interactions9. Binding affin-
ity instead depends—among others—on the number of interactions taking place in the binding  region14, the 
hydrophobic degree of the residues in interactions, and their  distances43.

Intuitively, all the aforementioned descriptors are linked with the protein side-chain composition and organi-
zation, which is ultimately reflected in the interactions energies among residues and between residues and solvent. 
Here, we propose a comprehensive investigation and comparison between those aspects with respect to fold 
and binding stability. In particular, we collected two large datasets, one composed of monomeric proteins with 
known melting temperatures and another of dimeric complexes with recorded experimental binding affinity. 
Through those two refined collections of protein structures, we were able to perform a comparative analysis of 
the side-chain composition and organization, both in terms of amino acid abundances, chemical behavior, and 
interaction energy organization. In particular, the comparison between non-bonded interactions -the only kind 
of interaction present both in single-chain proteins and complexes—highlighted a clear difference in the role 
of Coulombic and van der Waals potential energies, which reflects also in the disposition of amino acids in the 
protein structures.

Indeed, the analysis of the interaction energies (see Fig. 1) clearly shows that both kinds of interactions are 
needed to ensure proper fold and binding. However, a marked difference is present between Coulombic and 
van der Waals interactions when one looks at the degree of stability of the fold/binding. In fact, boths present a 
correlation with the melting temperature (an indicator of the thermal stability of the fold) and the dissociation 
constant (a proxy for the stability of the protein complex), but the trends of those correlations are opposite. The 
higher the favorable Coulombic interaction energy the higher the thermal stability of the protein while to lower 
favorable van der Waals interactions correspond higher experimental Tm . Notably, this behavior of Lennard-Jones 
interaction is in agreement with previous observations about side chains packing: indeed, thermophilic proteins 
are less dense than their mesophilic  counterparts42, i.e they possess a lower packing of the side chains which 
reflects in weaker LJ potential energies. The trend of Coulomb energy together with preferential localization 

Figure 4.  Comparison between shape complementarity and complex binding affinity. (a) Cartoon 
representation of the molecular surface of the binding region for a protein–protein complex (PDB id: 1TM1). 
(b) Minimum Zernike distance between the molecular surfaces of the binding regions as a function of the 
experimental binding affinity. (c) Box plot representation of the distributions of the total Lennard-Jones energy 
for different ranges of Zernike minimum distance. The inset reports the distributions of the Zernike values for 
the complexes whose binding region is mainly hydrophobic ( H < 1.3 ) and mainly hydrophilic ( H > 1.7).
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of charged amino acid on the protein surface (see Fig. 3a) further suggests a cage-like effect of Coulomb inter-
action, which leads to an increased  stabilization9,44. These conclusions are further strengthened by results on 
homologous proteins (see Supplementary materials). In particular, Supplementary Fig. 1 clearly shows that 
residues forming strong C interactions are preferentially located on the protein surface and that those residue 
are subject to evolutionary pressure.

In addition, we note that the Coulombic energies were computed without considering the solvent effect, 
thus this produced higher surface interactions than one would measure in more physiological conditions. How-
ever, since all our results stem from comparisons between protein groups we expect our result not to change 
qualitatively.

Notably, we found an opposite effect of Coulombic and van der Waals interactions when we looked at bind-
ing stability data. The presence of strong Coulombic interactions involving binding site residues seems to have a 
destabilizing effect on the complex stability. This is evident looking at the probability of finding high Coulombic 
energies, which strongly anti-correlates with the binding affinity (see Fig. 1g); it is also confirmed from strength 
data (Fig. 2e) and by the fact that even if charged residues are preferentially located on the protein surface, they 
are scarcely present in binding regions. Again, this is probably due to the fact that the function of these superficial 
charged residues is linked mainly with protein thermal stability and less with the strength of protein–protein 
 binding9. It must be noted, however, that such charged residues could play a role in other phases of the binding 
process. For instance, the long-range nature of the electrostatic interactions is expected to be a driving force in the 
recognition  step45. Moreover, a favorable electrostatic interaction may allow the two proteins to be in proximity 
of each other for a time long enough to permit the structural rearrangements necessary to  bind46.

Complex with high favorable Lennard-Jones potential energies tend, instead, to be more stable than those 
having low van der Waals  interactions43. A trend that is preserved also at the level of network strengths. At odds 
with what is observed for thermal stability, where the greater the probability of finding negative Lennard-Jones 
strengths, the lower the thermal stability of the protein.

These findings can be interpreted by looking at the dependence of the van der Waals interactions (modeled 
via the Lennard-Jones potential) on the distance between the interacting atoms. In fact, such potential is charac-
terized by roughly three regimes: a strong repulsion at a low distance, an intermediate region of attractive force 
(around the characteristic radius of the interaction), and a third region where the interaction rapidly decays to 
zero. In this framework, our results confirm that thermostable proteins have an overall less dense packing since 
residues form weaker LJ interactions.

Moreover, since van der Waals interactions act on a short range, the interface protein atoms must be arranged 
in such a way that protein surfaces are compatible. The more the atoms are disposed around their respective 
Lennard-Jones characteristic radii the higher the van der Waals interaction and the higher the binding affinity. 
Notably, these relationships strengthen when the binding regions are composed of hydrophobic residues. The 
higher the hydrophobicity of the binding site residues, the more this behavior is evident (see Fig. 3d,e).

Altogether, our analyses identify van der Waals interactions as a key component to modulate complex stabil-
ity. The relationship between shape complementarity, binding energy, and the van der Waals potential shown in 
Fig. 4 in turn confirms that shape complementarity is one of the key parameters to account for binding affinity.

As a corollary, we note that the found relationship may have important practical implications. In fact, to 
evaluate the shape complementarity between two interacting regions of each protein, we used the 2D Zernike 
 formalism38. This procedure has an advantage over the direct computation of intermolecular interactions: the 
compactness of the description, as well as the low computational cost required, allows a direct comparison 
between all the possible interacting sub-regions belonging to the binding site. Moreover, the rotational invariance 
of the Zernike descriptors permits a super-position-free comparison between portions of the molecular surface 
of different proteins, i.e. there is no need to roto-translate the protein in space as needed for the evaluation of 
interaction energies. Those properties could allow for a direct application of the Zernike algorithm to the blind 
estimation of binding affinity on both experimental and/or docked protein complexes, at least for those where 
a lock-and-key mode of binding can be assumed.

Finally, one must consider that protein–protein interaction is a complex process that consists of various steps: 
distant proteins must recognize themselves in a crowded cellular space, sometimes large conformational changes 
must take place during the docking process, etc. Here, we only focused on the stability of the resulting complex, 
thus all our results do not necessarily hold for the other phases of the binding process. Moreover, it must be 
pointed out that the present study was carried out on sets of proteins having well characterized 3D structures, 
i.e. folding states, so again our results may not comprise the case of disordered proteins (even if evidences of 
ordering after interaction with partners have been reported for several disordered  proteins47,48).

In conclusion, we proposed a comparative analysis of the composition and organization of the residues with 
respect to protein thermal or binding stability properties. We assembled two datasets with known experimental 
data of melting temperature and binding affinity and studied the influence of the chemical composition, energy/
structural organization of residue/residue, and residue-solvent non-bonded interactions. In a nutshell, our work 
highlighted a prominent role of Coulomb interactions for thermal stability modulation, while the binding affin-
ity between molecular complexes is mainly regulated by Lennard-Jones interactions. Finally, leveraging on the 
results of the energetic analyses, we compared the shape complementarity of the binding regions of the protein 
complexes, measured via the Zernike 2D method, and the experimentally measured binding affinities, finding 
a significant relationship between the two quantities. Overall, our results offer an overview of the molecular 
mechanisms that mediate protein/complex stability and may help guide novel predictive methods.
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Methods
Datasets. To compare the residue organization and composition between protein fold stability and com-
plexes with stable binding, we collected two datasets:

• The Thermostability ( Tm ) dataset, which consists of 49 monomeric structures with known melting tempera-
ture, Tm (measured in Celsius degrees). To see how the different descriptors we defined (see next sections) 
on the Tm dataset proteins, we grouped the structures according to their experimental melting temperature 
values. In particular, we defined four ranges, i.e very low thermal stability ( Tm < 55 ), low thermal stability 
( Tm ∈ [55, 60] ), high thermal stability ( Tm ∈ [60, 70] ), and very high thermal stability ( Tm > 70).

• The Affinity ( Ba ) dataset consists of 567 complexes of known dissociation constant (measured in Molar 
units). Namely, the dissociation constant Ba , the inhibition constant Ki , and the half-maximal inhibitory 
concentration IC50 were reported. To study how the investigated properties of the Affinity dataset’s complexes 
scale with complex stability, we grouped the structures according to their experimental binding affinity 
values. In particular, we defined five ranges, i.e very high binding affinity ( log10(Kd) < −9 ), high bind-
ing affinity ( log10(Kd) ∈ [−9,−8] ), medium binding affinity ( log10(Kd) ∈ [−8,−7] ), low binding affinity 
( log10(Kd) ∈ [−7,−5] ), and very low binding affinity ( log10(Kd) > −5).

The above ranges were chosen such that each contained a comparable number of items, in order to achieve 
consistent results.

The Tm dataset was extracted from the most recent version of the proTherm  database49. Filtering the database 
entries for crystallographic resolution (better than 3.0), pH range ( 6.5 < pH < 7.5 ), known experimental Tm , 
absence of ions or/and ligands, absence of mutations and/or missing residues, and requiring that the structure 
is a monomer, we got 49 protein structures (11 novel monomer with respect to the dataset proposed in Miotto 
et al.9, where similar filters were used on a previous version of the ProTherm database) . In particular, 33 pro-
teins have a Tm lower than 70 ◦ C (i.e they are mesostable) and 16 have a higher one (i.e. they are considered 
thermostable). The ratio of found thermo/mesostable proteins is one over three, in accordance with what one 
would expect from literature knowledge.

The Ba dataset was assembled starting from the data proposed by Dias et al.34, which consists in 622 protein 
complexes with known binding affinity. All non-dimeric complexes of the Ba dataset were removed where no 
clear information was present on which couple of monomers the binding affinity refers to. From all proposed 
PDB structures, all heteroatoms were trimmed off. All PDB files were submitted to PDBfixer, which replaced 
non-standard residues and filled missing residues. After that, the datasets were subjected to renumbering of 
the sequence residues in order to remove all the inserts. Consequently, the complexes were minimized using 
GROMACS and the CHARMM force  field50,51 in vacuum in order to remove structural alterations (like crystal-
lographic clashes, etc.). Minimization was carried out using the steepest descent algorithm arresting the simula-
tion when the maximum force was less than 1 kJ/mol. As for the Ba dataset, structures having missing residues 
within 15 Å from the binding site were discarded. Distances were computed between the centroid of the missing 
residues and that of the binding site. The binding site was detected considering all the atoms placed at a distance 
lower than 4 Å from the atoms of the other chain, whereas a gap was represented as the centroid of the α-carbons 
belonging to the two residues at the edges of that gap.

After these procedures, the Tm dataset accounts for 49 protein structures while the Ba dataset consists of 567 
complexes. See Table I and Table II of the Supplementary materials for the PDB codes of the selected protein 
structures.

Interaction energy calculation. Intra and intermolecular interaction energies were computed using the 
parameters obtained from the CHARMM force field. In particular, given two atoms al and am holding partial 
charges ql and qm , the Coulombic interaction between them can be computed as:

where rlm is the distance between the two atoms, and ε0 is the vacuum permittivity. Van der Waals interactions 
can instead be calculated as a 12-6 Lennard-Jones potential:

where εl and εm are the depths of the potential wells of al and am respectively, Rl
min and Rm

min are the distances at 
which the potentials reach their minima.

The total interaction energy between each couple of residues is defined as:

where EXAAij
 is the energy between two amino acids i and j, obtained as the sum of the interactions between 

each atom of the two residues ( Ni
atom , Nj

atom ); X stands for the kind of interaction considered, either Coulombic 
( X = C ) or Lennard-Jones ( X = LJ).
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As for the distance between a pair of residues, this was assessed by selecting the minimum distance between 
the atoms composing them.

Hydropathy assessments. To assess the hydropathy of the interfaces, all the residues belonging to such 
regions were selected. Such selection was carried out considering all those residues on one protein partner hav-
ing at least one atom at a distance lower than 4 Å from the atoms of the other. After that, the hydropathy index 
provided by the scale of Di Rienzo et al.39 was associated with the selected interface residues. The hydropathy 
of the interface was computed as the mean of the collected indexes. This process was performed on both the 
interfaces of a complex.

The selection of the complexes with respect to hydropathy for the energetic study was executed considering 
overlapping hydropathy windows of width 0.6 in the case of the scale of Di Rienzo et al. shown in the “Results” 
and “Discussions” sections. For the analysis, we considered the complexes having hydropathy index of both the 
interfaces within the window. The window approach was chosen in order to have a reasonable number of items 
in each window so as to obtain reliable statistical analyses.

Computation of molecular surfaces and patch definition. The solvent-accessible surface for all pro-
teins structure, given their X-ray structure in PDB  format52, were computed through  DMS53, using a density of 
5 points per A2 and a water probe radius of 1.4 Å . The unit normals vector, for each point of the surface, was 
calculated using the flag −n.

A residue is considered superficial if it has a Relative Solvent Accessibility higher than 0.25, when the Solvent 
Accessibility is calculated with DMS and the maximum Solvent Accessible Surface Area, for each amino acid, 
is taken  from54.

The resulting molecular surface consists of a set of points in a three-dimensional Cartesian space (i.e. it is a 
discretization of the continuous molecular surface). Given a region of interest on this surface, we define a surface 
patch, � , as the points of the surface contained in the region of interest. In principle, the shape of the region of 
interest can be arbitrary, in this work we chose to use a spherical region of radius Rs = 8A , centered on one point 
of the surface. The chosen Rs has been found to yield optimum retrieval of the real binding region with respect 
to random ones in terms of shape  complementarity38. Once the patch is selected, we compute the average of the 
external normal vectors and reorient � in such a way that the average normal vector is aligned with the z-axis. 
Then, given a point C on the z-axis we define the angle θ as the largest angle between the perpendicular axis 
and a secant connecting C to any point of the surface � . C is then set so that θ = 45◦ . Let us call r the distance 
between C and a surface point. We then build a square grid, and we associate each pixel with the mean r of the 
points it contains. In this way, a 2D function of the patch is obtained, that can be expanded on the basis of the 
Zernike polynomials: taking the norm of the coefficients of this expansion gives a set of Zernike descriptors, 
invariant under rotations in space. In the next section, we provide a brief summary of the main features of the 
Zernike basis. For more details see Refs.38,55.

2D Zernike polynomials and invariants. Given a function f (r,φ) expressed in polar coordinates and 
defined inside a unitary circle ( r < 1 ), it is possible to represent the function in the Zernike basis as

with

being the expansion coefficients. Zernike polynomials are complex functions, therefore they hold a radial and 
an angular part,

where the radial part for a certain couple of indexes, n and m, is given by

In general, for each couple of polynomials, it can be shown that

which ensures that the polynomials can form a basis. Knowing the set of complex coefficients, {cnm} , a univocal 
reconstruction of the original image (with a resolution that depends on the order of expansion, N = max(n) ) 
is allowed. We found that with N = 20 , i.e 121 coefficients, a good visual reconstruction of the original image 
is achieved.

By taking the modulus of each coefficient ( znm = |cnm| ), a set of descriptors can be obtained which have the 
remarkable feature of being invariant for rotations around the origin of the unitary circle.
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The geometric similarity between the two patches can then be assessed by comparing the Zernike invariants 
of their associated 2D projections. In particular, the similarity between patch i and j is measured as the Euclidean 
distance between the invariant vectors, i.e.

Evaluation of local complementarity. When comparing patches, their relative orientation before the 
projection on the unitary circle must be taken into account. Intuitively, if we search for similar regions we must 
compare patches that have the same orientation once projected in the 2D plane, i.e. the solvent-exposed part of 
the surface must be oriented in the same direction for both patches, for example as the positive z-axis. On the 
contrary, if the complementarity between two patches is to be assessed, we must orient the patches contrariwise, 
i.e. one patch with the solvent-exposed part toward the positive z-axis (‘up’) and the other toward the negative 
z-axis (‘down’).

To evaluate the local complementarity of the Affinity dataset’s complexes, we first compute the molecular 
surfaces associated with each of the two protein structures forming the complex. Then, we identify the ‘template’ 
protein as the biggest of the two (in terms of the number of residues) while we refer to the smallest one as ‘ligand’. 
Next, we define the binding site of the template protein as the set of surface points whose minimum distance from 
any point of the ligand surface is lower than 3 Å. After that, for each point of the template binding region, we 
(1) define a template patch and its corresponding ligand patch taking all surface points that fall within a sphere 
of radius 8 Å centered in the considered template point. (2) we project the obtained patches in the 2D plane as 
described in the previous Section and expand them on the 2D Zernike basis. Finally, we compute the Euclidean 
distance between the 121 invariant coefficients associated with each patch.

Cycling over all the points of the identified binding regions, we end up with a set of Zernike scores (i.e. dis-
tances). Finally, for each complex, we compute the minimum of the found distances (see Fig. 4b).

Data availability
All codes and relevant data are within the Main Text, and at: https:// github. com/ matmi8/ Zerni ke2D.
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