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Temporal response 
characterization across individual 
multiomics profiles of prediabetic 
and diabetic subjects
Minzhang Zheng1,2, Carlo Piermarocchi3 & George I. Mias1,2,3*

Longitudinal deep multiomics profiling, which combines biomolecular, physiological, environmental 
and clinical measures data, shows great promise for precision health. However, integrating and 
understanding the complexity of such data remains a big challenge. Here we utilize an individual-
focused bottom-up approach aimed at first assessing single individuals’ multiomics time series, and 
using the individual-level responses to assess multi-individual grouping based directly on similarity 
of their longitudinal deep multiomics profiles. We used this individual-focused approach to analyze 
profiles from a study profiling longitudinal responses in type 2 diabetes mellitus. After generating 
periodograms for individual subject omics signals, we constructed within-person omics networks and 
analyzed personal-level immune changes. The results identified both individual-level responses to 
immune perturbation, and the clusters of individuals that have similar behaviors in immune response 
and which were associated to measures of their diabetic status.

The development of novel technologies in personal health monitoring devices, high throughput sequencing and 
computational methods has generated massive omics data, and provides both a great opportunity and challenge to 
precision  health1–5. The big data provides plentiful health information ranging from biomolecular, physiological, 
and environment data to clinical measures. This information helps identify potential deviations from a healthy 
baseline and improves health risk  predictions1. A big challenge of a big data approach to precision health is how 
to integrate and understand these multi-dimensional, extremely diverse sources, with highly heterogeneous 
 data3. Early efforts by Chen, Mias, Li-Pook-Than et al. focused on assessing the feasibility of integrated Personal 
Omics Profiling (iPOP), by utilizing a multiomics integration framework to interpret healthy and diseased states 
followed through an individual’s blood-based multiomics  assessment6. More recent efforts by Sara Ahadi et al. 
revealed personal aging markers by using deep longitudinal  profiling7, Abdellah Tebani et al. discovered how 
the personal cohort changes during the wellness  period8. Environmental effects have also been studied by M. 
Reza Sailani et al., revealing two biological seasonal patterns in California by multiomics  profiling9. Wearable 
sensors have also been used in digitalized health in tracking physiomes and  activity10. Other implementations 
have used multiomics to monitor the drug  responses11. Non-invasive longitudinal saliva multiomics have been 
recently used by Mias et al. to monitor immune responses in a vaccinated  individual12. Although these efforts have 
shown the great promise of deep multiomics profiling, the complexity of data presents limitations for practical 
implementations. Deep multiomics data come from diverse sources, and have different types, sizes and ranges, 
which complicates comparisons between different individuals’ personal multiomics. In the Pioneer study by 
Price et al.13 dynamic data clouds were used for longitudinal monitoring of individual subjects, in a study that 
also incorporated behavioral coaching to improve clinical biomarkers. In recent work, Zhou et al.14 carried out 
iPOP across multiple individuals, and built correlation networks of molecular associations. However, to the 
best of our knowledge, direct networks of individuals associated with longitudinal individual deep multiomics 
profiles have not been constructed.

In this investigation we took an individual-focused approach to categorize personal longitudinal deep multi-
omics profiles and group individuals into communities, using spectral representations of individual multiomics 
time series. In taking this individual-focused approach, one of our goals was to perform an analysis closer to 
clinical applications, where inherently the individual is monitored over time to enable a personal diagnosis. We 
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implemented this approach on personal multiomics profiling data from prediabetic or diabetic individuals (type 
2 diabetes mellitus, T2D) at its earliest stage from the study by Zhou et al.14. We first identified individual-level 
molecular responses to immune perturbation associated to individual physiological state changes. Based on 
the individual temporal responses, we built clusters across individuals showing similar trends. The microscopic 
molecular behavior was linked to phenotypic differences, including body mass index and insulin resistance, with 
the immune response dominating differences attributed to diabetic status.

Methods
Summary of cohort details and data. The original data used in this analysis comes from the study by 
Zhou et al.14, that focused on multiomics characterization of host-microbe dynamics in prediabetics. The meas-
ures, SSPG, Matsuda, DI and isrMax, came from the other paper of the same project by Shussler-Fiorenza Rose 
et al.4. All data obtained were made publicly available by the original  authors4,14 as described therein (under 
Stanford IRB No. 23602), and no additional institutional review board approvals (IRB) were required for this 
investigation.

The participants had been classified as diabetic or prediabetic in the original study according to one of the 
following three  criteria14: (i) haemoglobin A1C (A1C; diabetic ≥ 6.5% > prediabetic ≥ 5.7% ), (ii) fasting glu-
cose (diabetic ≥ 126 mg dl−1 > prediabetic ≥ 100 mg dl −1 ) and (iii) based on an annual oral glucose tolerance 
test (OGTT; diabetic ≥ 200 mg dl−1 > prediabetic ≥ 140 mg dl−1 at 2 h). The different subjects in the study 
had highly heterogeneous visit records: some subjects only had one visit record but one subject has more than 
150 visit records (time points), which is about 15 times more than the average of 10 visits per subject. Multi-
ple omics were generated from the subjects including blood based transcriptomics, microbiome data (nares/
gut), cytokine measurements and clinical measures. To ensure the individual omics profiles had enough time 
points and time series, we filtered records from individuals so that the number of time points Nt >= 4 and the 
number of omics No > 500 , across participants from the data  source14. We also excluded the subject with the 
150+ visits records, as this was not comparable directly to other subjects in our analysis, given the density of 
points. Our final filtered dataset contained 69 subjects from the original data source. Figure 1a shows the age 
distribution across sexes for the subjects. We had 34 males and 35 females, and most subjects were older than 
50. Summary distributions of the subjects’ observation window are shown in Fig. 1b. The observation window is 
heterogeneous, ranging from 200 to 1200 days. During the observation window, there were a total of 846 visits 
with different conditions, including: 486 healthy visits as baseline, 148 visits when subjects got infected, 119 visits 
had immunization effects, 43 visits with subject weight gain or loss period, 18 visits with subjects on antibiotics, 
and 32 other healthy conditions, summarized in Fig. 1c. Overall we analyzed 733,425 time series across 5 datasets: 
713,874 RNA-sequencing (RNA-seq) data, 3221 clinical measures, 4554 cytokines, 6336 Gut and 5440 Nares 
measurements. The majority ( > 90 %) of the time series comes from RNA-seq, Fig. 1d. As RNA-seq provides 
a comprehensive and accessible map of the transcriptome, with more omics profiled (by number comparison) 
compared to other-omes (e.g. proteomes/metabolomes, etc.) we expect that the majority of future omics profiling 
studies data will follow similar trends (as has been the case so far), though we do expect more microbiome data 
to emerge, as the host-microbiome interaction is still under considerable investigation.

Data preprocessing. To obtain an individual’s omics profile, we combined all the omics source dataset into 
a dataframe, then separated into dataframes for each individual. Since our workflow has two branches: single 
subject analysis and multi-subject similarity analysis, as seen in Fig. 2, the following data preprocessing was car-
ried out for the two branches: (i) For the single subject analysis, we selected the signals with less than 25% time 
points missing from each individual’s dataframe as the input for single subject analysis, using each individual’s 
time points as possible measurement points. (ii) For multi-subject analysis, we sorted each individual’s time 
frame from their dataframes, then combined all individual time frames to get all the possible time points as the 
common time frame. We then calculated Lomb–Scargle periodograms from each individual’s dataframe using 
this common time frame as the set of possible measurement points. The transformed dataframe was then used 
as the input for the multi-subject analysis.

Individual subject analysis. Time series categorization. Individual subject analysis was carried out in 
Python, with the package PyIOmica utilities for time series  categorization15 (command calculateTime-
SeriesCategorization). Briefly, for each subject s, for each omics i its time series X was analyzed over its 
constituent timepoints. The individual omics intensities at timepoint j were compared to the initial timepoint by 
subtracting its intensity from all values, X̃is(tj) = Xis(tj)− Xis(0) . The data were then normalized to a time series 
Q, using the Euclidean norm, so that Qis(tj) =

X̃is(tj)
√

∑

k

(

X̃is(tk)2
)

.

The algorithm’s classification of signals into trends uses spectral methods, as previously  described12,15. Briefly, 
for each signal a Lomb–Scargle periodogram is calculated as a list Pis . The inverse Fourier transform of Pis returns 
a list of autocorrelations, {ρisk} , where k ∈ {0, . . . ,N/2} is the lag. In parallel with the original time series signals, 
a bootstrap set of 105 time series was generated by sampling from the original data with replacement. The auto-
correlations at different lags of the bootstrap set were computed to generate an autocorrelation null distribution 
for each lag from which a set of cutoffs {ρck} were obtained corresponding to a 0.95 quantile. A time series was 
then assigned to a class labeled with the lowest Lag l for which the series’ autocorrelation ρisl is larger than the 
cutoff, i.e., where l = Min

[{

j : ρisj ≥ ρcj
}]

 , and j ∈ 1, . . . , k.
If a time series X̃is does not have autocorrelations that satisfy the cutoff criteria, the algorithm then checked 

if the series has a pronounced peak or trough at any time point. The time series’ maximum, maxis = max X̃is , 
and minimum, minis = min X̃is were compared to {maxcn, mincn} , which are maxima and minima cutoffs from 
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null distributions again computed using the bootstrap time series for all possible time series lengths n. X̃is is 
then labeled as a SpikeMax signal if maxis > maxcn , or as a SpikeMin if minis < mincn . A time series that did not 
meet any of the cutoff criteria was not labeled as having a statistically significant trend. The approach categorizes 
each omics signal based on its own trend, and is thus not affected by differences in the omics modality, making 
it directly extensible to incorporating different kinds of time series  data16.

Clustering and heatmaps. After classification, and using PyIOmica’s clusterTimeSeriesCategoriza-
tion function, we carried out a two-tier hierarchical clustering (agglomerative; complete linkage) for each tem-
poral class, to identify groups (G) and sub-groups (S). The clustering grouping used a similarity based on {ρisk} 
(for the autocorrelation classification) and {Qis} for the second tier. Groups and subgroups were determined 
using a silhouette  algorithm17. The results were visualized for each subject and every temporal class identified 
using PyIOmica’s visualizeTimeSeriesCategorization. Example outputs are shown in Fig. 3 and 
included in the Online Data Files (ODFs). The first tier of clustering aims at capturing the autocorrelation struc-
ture, and hence the dominant pattern in the data. The second tier clustering based on the data values can dis-
tinguish pattern variations, and particularly sign differences that the autocorrelations (being the inverse Fourier 
transform of the periodogram frequencies) would not  capture16.

Reactome enrichment analysis. Reactome18 pathway enrichment analysis was carried out for each Group/Sub-
group and each subject using the Reactome application programming interface (API) in PyIOmica. Examples 
are shown in Table 1 for two subjects, and complete output for all subjects is included in the ODFs.

Across subject comparisons. Individual results aggregation. The individual subject omics that showed 
statistically significant trends were aggregated to identify consistency across individuals. Signals identified as 
having statistically significant trends, FDR < 0.05 , in more than 50% of the individuals, are shown in Table 2.

Figure 1.  Cohort description. Summary distributions across sexes for (a) Age, (b) observation window, and (c) 
visits for different conditions. (d) Proportion of time series from different data modalities.
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Network construction. The network analysis was carried out in Python, using networkx19 and scikit-
network20. First the time series periodograms for all the omics time series were computed for all subjects using 
the LombScargle function in PyIOmica. Next, for pairs of subjects p, q and for each omics time series i, a 
Spearman correlation matrix Si was constructed. In parallel, a bootstrap simulation of 50,000 time series was also 
generated from the data, as a null distribution, and the pairwise Spearman correlations were computed for these 
as well to determine a Spearman correlation cutoff for significance, sc at the 0.99 quantile level. Entries were kept 
that were most correlated to each other, by creating a restricted distance matrix Ri , such that

A weighted network was then constructed, with the subjects represented as nodes, with an adjacency matrix A, 
constructed as A =

∑

i Ri . The entries p, q of the adjacency matrix represent the connections in the network. A 
nonzero entry Ap,q means there is an edge connecting nodes (subject) p and q. The magnitude of Ap,q provides 
a weight of the edge. In summary, the edges connecting pairs of nodes (subjects) were added to the network if 
there was at least one omics for which the Spearman correlation between the subjects was greater than sc , and 
the edges were weighted by the number of omics that met this criterion for each pair of subjects. Thus, the net-
work captures the similarity between subjects, putting more weight on edges connecting subjects with a higher 
number of similar omics signals.

Network communities calculation. To determine the network community structure, a k-means approach was 
used. The computation used scikit-network’s clustering.kmeans, applying an embedding, and utilizing 
singular value decomposition with dimension one. The number of communities (4) was selected based on the 
elbow and silhouette  methods17, and the sklearn.metrics.silhouette_score21 was used for the sil-
houette scores calculation.

Mann‑Whitney U tests. Subject measurements were compared between members of the communities in the 
network calculations (see above). We used non-parametric Mann–Whitney U  tests22, to test for statistically sig-
nificant pairwise differences across communities (p value < 0.05). The results shown in Table 3 were computed 
using the scipy.stats.mannwhitneyu Python  functionality23.

Results
Single subject analysis. We used PyIOmica’s15 spectral methods to classify the time series for each indi-
vidual’s omics into temporal trends. The objective is to identify sets of omics that show similar temporal behav-
ior that deviates from each individual’s own baseline. The PyIOmica categorization algorithm generates 3 sets 
of classes from an individual’s omics time series: (i) Lag classes, of time series showing statistically significant 
autocorrelation at different lags, (ii) Spike Maxima class of time series with no autocorrelation but with positive 

(1)[Ri]p,q =

{

1, if [Si]p,q > sc
0, if [Si]p,q ≤ sc .

Figure 2.  Workflow. Following the initial parsing of multiple omics datasets (i), our workflow has two main 
branches: (ii) single subject analysis and (iii) multi-subject similarity analysis, with examples of the output 
shown and relevant figures and tables.
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Figure 3.  Single individuals’ multiomics clusters. Two examples of Lag 1 classification outcomes are shown 
for (a) Subject ZKFV71L and (b) Subject ZTMFN3O. In these examples the information is summarized as 
follows: Left panel: the cluster of groups/subgroups for Lag 1 class are shown in the visits time frame. The visit 
time points have been labeled by healthy status, where H: Healthy, W: Weight gain/loss, Im: Immunization, 
In: Infection. Middle panel: the community structure of visits within each subgroup, where the community 
structure is based on our visibility-graph-based community detection  algorithm24. Right panel: corresponding 
autocorrelations for the time series shown.
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spikes (high intensity pulses), and (iii) Spike Minima class of time series with no autocorrelation but with nega-
tive spikes (low intensity pulses)15,16. Then within each class, the algorithm separates time series into groups 
and subgroups based on the autocorrelation patterns and signal intensities. Further details are provided in the 
“Methods” section.

All analyses and results from each individual’s classifications are provided in the Online Data Files (ODFs). 
Here we show examples of Lag1 classification for two subjects, ZKFV71L (Female, 66-year old, Prediabetic) and 
ZTMFN3O (Female, 40-year old, Prediabetic), Fig. 3a and b respectively. The Lag 1 class for subject ZKFV71L 
has 323 time series, which were assigned to 1 group and 3 subgroups, shown in Fig. 3a left panel. The intensity 
changes of the 3 subgroups represented the healthy status changes, indicating the systemic immune responses 
in the subject. Within each subgroup, we created a mean time series, whose intensities of each time point equals 
to the average intensity of the time series at this time point within the subgroups. These are used to obtain the 
time points community structure using our visibility-based community detection  algorithm24. The communities 
of each subgroup were related to the health status changes, as indicated in Fig. 3 middle panel (circular visibility 
graph layouts are shown for each subgroup’s mean time series). The autocorrelation heatmap corresponding to 
the time series in this category is also shown in Fig. 3 right panel. Similar results were found in subject ZTMFN30, 
Fig. 3b. The results for all other subjects, including corresponding omics in each class and group/subgroup clas-
sifications, and visualizations are all available in the ODFs.

Once sets of omics that show similar profiles in time are identified, we can assess the biological significance 
of these temporal associations. Following classification, we carried out Reactome  pathway18 enrichment analy-
sis for the genes that showed statistically significant trends for each subject. The statistically significant (False 
Discovery Rate, FDR <  0.05) pathways results for subject ZKFV71L and ZTMFN3O for the autocorrelation 

Table 1.  Statistically significant (FDR < 0.05) Reactome pathways results for subject ZKFV71L and 
ZTMFN3O for autocorrelation Lag 1.

Reactome pathway Matched IDs p value FDR

A. Subject ZKFV71L

Endosomal/Vacuolar pathway 14 1.10E−13 3.05E−11

Antigen Presentation: Folding, assembly and peptide loading of class I MHC 15 1.17E−13 3.05E−11

Interferon alpha/beta signaling 16 4.90E−11 8.48E−09

ER-Phagosome pathway 14 1.82E−09 2.37E−07

Interferon gamma signaling 16 3.32E−09 3.45E−07

Antigen processing-Cross presentation 14 8.14E−09 7.00E−07

Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 15 4.82E−07 3.56E−05

Interferon Signaling 16 1.49E−06 9.71E−05

Class I MHC mediated antigen processing and presentation 17 3.52E−06 0.000200

Adaptive Immune System 23 9.36E−05 0.00487

RUNX3 regulates RUNX1-mediated transcription 2 0.000718 0.0337

B. Subject ZTMFN3O

Attenuation phase 7 2.415E−10 5.121E−08

HSF1-dependent transactivation 7 1.152E−09 1.221E−07

Regulation of HSF1-mediated heat shock response 7 9.528E−08 6.670E−06

Cellular response to heat stress 7 3.135E−07 1.462E−05

HSF1 activation 5 3.482E−07 1.462E−05

Cellular responses to stress 12 4.469E−05 0.002

Cellular responses to stimuli 12 5.365E−05 0.002

RMTs methylate histone arginines 3 7.407E−04 0.019

Interleukin-10 signaling 7 2.416E−07 8.408E−05

Signaling by Interleukins 13 1.283E−05 0.0022

NR1H3 and NR1H2 regulate gene expression linked to cholesterol transport and efflux 4 0.00032 0.0353

Signaling by Nuclear Receptors 8 0.00057 0.0353

Cytokine Signaling in Immune system 14 0.00073 0.0353

Signaling by Overexpressed Wild-Type EGFR in Cancer 2 0.00073 0.0353

Inhibition of Signaling by Overexpressed EGFR 2 0.00073 0.0353

NR1H2 and NR1H3-mediated signaling 4 0.00083 0.0353

NR1H2 and NR1H3 regulate gene expression to limit cholesterol uptake 2 0.00114 0.0353

NR1H2 and NR1H3 regulate gene expression linked to gluconeogenesis 2 0.00114 0.0353

NR1H2 and NR1H3 regulate gene expression linked to triglyceride lipolysis in adipose 2 0.00114 0.0353

EGFR interacts with phospholipase C-gamma 2 0.00137 0.0357

Interleukin-18 signaling 2 0.00137 0.0357
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Lag 1 class are shown in Table 1. The over-representation for subject ZKFV71L included Endosomal/Vacuolar 
pathway (14 genes), Antigen Presentation: Folding, assembly and peptide loading of class I MHC (15 genes), 
Interferon alpha/beta signaling (16 genes), ER-Phagosome pathway (14 genes), Interferon gamma signaling (16 
genes), Antigen processing-Cross presentation (14 genes), Immunoregulatory interactions between a Lymphoid 
and a non-Lymphoid cell (15 genes), Interferon Signaling (16 genes), Class I MHC mediated antigen process-
ing and presentation (17 genes) and Adaptive Immune System (23 genes), etc. These Reactome pathways indi-
cated immune responses of this subject (ZKFV71L) corresponding to the health status change from Healthy 
to Immunization. Similarly, we also found statistically significant Reactome pathways for subject ZTMFN3O, 
including: Cellular response to heat stress (7 genes), Cellular responses to stress (12 genes), Cellular responses 
to stimuli (12 genes), Interleukin-10 signaling (7 genes), Signaling by Interleukins (13 genes) and Cytokine 
Signaling in Immune system (14 genes). These pathways are also indicative of an immune response of this subject 
(ZTMFN3O) corresponding in this case to a health status change from Healthy to Infection. Reactome Pathway 
enrichment analyses for all subjects including all subgroups are included in the ODFs.

Multi-subject similarity analysis. Based on the individual results, we first aggregated the omics that 
showed statistically significant trends in each individual to identify the signals that are consistent across the 

Table 2.  Frequency of signals with statistically significant temporal trends in individuals.

ID Source # Occurrences

genus_Streptococcus Nares 43

IP10 Cytokine 43

class_Gammaproteobacteria Nares 42

family_Streptococcaceae Nares 39

phylum_Proteobacteria Gut 38

IL13 Cytokine 38

PDGFBB Cytokine 37

class_Bacilli Gut 35

family_Streptococcaceae Gut 35

genus_Streptococcus Gut 35

order_Lactobacillales Gut 34

class_Betaproteobacteria Nares 34

genus_Dorea Gut 33

TGFA Cytokine 33

IL27 Cytokine 33

TGFB Cytokine 33

phylum_Bacteroidetes Nares 33

genus_Blautia Gut 33

ALKP Clinical 32

family_Micrococcaceae Nares 32

MCP1 Cytokine 32

genus_Flavonifractor Gut 32

class_Bacteroidia Nares 32

order_Bacteroidales Nares 32

family_Propionibacteriaceae Nares 32

genus_Propionibacterium Nares 32

genus_Clostridium.XlVa Gut 32

GCSF Cytokine 31

MIG Cytokine 31

genus_Oscillibacter Gut 31

IL22 Cytokine 31

genus_Clostridium.IV Gut 31

CD40L Cytokine 30

VEGF Cytokine 30

order_Lactobacillales Nares 30

SCF Cytokine 30

EGF Cytokine 30

family_Coriobacteriaceae Gut 30

order_Coriobacteriales Gut 30
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majority of individuals ( > 50 % of subjects, number of occurrences ≥ 35 ), included in Table 2. We found that 
high frequency signals came from 3 data sources: cytokines, nares and gut microbiome. Many studies have now 
shown that cytokines have a profound relationship with type 2  diabetes25–27, our findings are consistent with 
these previous works and provide potential biomakers for type 2 diabetes (see also Discussion).

To further investigate common responses across individuals, we created a multi-subject similarity network. 
The network was constructed by comparing the Spearman correlation of the spectral time series representation 
(periodogram) across common omics between every pair of subjects. The network, shown in Fig. 4a, has nodes 
corresponding to the 69 subjects, with weighted edges corresponding to the number of omics that showed similar 
temporal behavior. We used a k-means algorithm to calculate communities of the network (see “Methods” sec-
tion for details). Four communities were identified, denoted as Community 0, Community 1, Community 2 and 
Community 3. Community 0 has 28 individuals, 15 Females and 13 Males, ages from 29 to 69, with disease status 
including 19 Prediabetic, 1 Diabetic, 5 Crossover and 3 Control. Community 1 has 16 individuals, 6 Females 
and 10 Males, ages from 33 to 75, 12 Prediabetic, 1 Crossover and 3 Control. Community 2 has 15 individuals, 9 
Females and 6 Males, age from 39 to 67, 13 Prediabetic, 2 Crossover. Community 3 has 10 individuals, 5 Females 
and 5 Males, age from 39 to 70, 6 Prediabetic, 2 Crossover and 2 Control. We then compared clinical measures 
between the subjects in the community, including body mass index (BMI), disposition index (DI), steady-state 
plasma glucose (SSPG), Matsuda index (Matsuda), and maximum insulin secretion rate (isrMax). The violin 
plots show group separated by community and sex, Fig. 4b–f. These 5 distribution figures qualitatively indicate 
that the Community 0, Community 1 and Community 2 have similar distribution but have large differences 
with Community 3. We also found that the female and male subjects have different distributions, even within 
the same community for BMI, DI and isrMax measures. We carried out non-parametric Mann–Whitney U 
 tests22,28 to compare across the different communities for statistical significance (p value < 0.05), with the results 
summarized in Table 3. The 5 measures do not show statistical significant differences between Community 0 
and Community 1,Community 0 and Community 2, and Community 1 and Community 2. The BMI and SSPG 
distributions between Community 0 and Community 3, and between Community 2 and Community 3 have 
statistically significant differences, the BMI distributions between Community 1 and Community 3 also have 
statistically significant differences, indicating that the subjects in Community 3 have statistical difference in 
physiological states comparing with Community 0, Community 1 and Community 2. Differences in Male vs. 
Females in the comparisons, particularly for BMI, DI and isrMax, suggest that even though overall subjects in 
these three communities may have similar physiological states and responses, females and males still display 
different physiological states (though the low number of subjects is affecting power in further breaking down 
of community differences).

We next ranked the omics in each community (represented by the weighted edges), by their frequencies of 
occurrence. We then carried out Reactome Pathway Enrichment analysis for the top 25% ranked genes of each 
community (to reduce noise effects from low frequency genes). The statistically significant pathway results 
(FDR < 0.05) are shown in Table 4. Community 0 has 16 statistical significant Reactome pathways, related to 
immune response. For Community 2 the statistically significant Reactome pathways include TRKA activation 
by NGF, DDX58/IFIH1-mediated induction of interferon-alpha/beta, Activation of TRKA receptors, and Ca2+ 
activated K+ channels. Community 1 and Community 3 did not have statistically significant Reactome results. 

Table 3.  Mann–Whitney U test for different measures between two different communities. The labels C0, C1, 
C2,C3 correspond to Community 0, Community 1 Community 2 and Community 3, respectively. Statistically 
significant (p value < 0.05) results are shown in italics.

Comparison BMI SSPG Matsuda Index Disposition Index isrMax

C0 vs C1 Female 0.79 0.95 0.62 0.87 0.87

C0 vs C1 Male 0.60 0.91 0.76 0.90 0.27

C0 vs C1 Total 0.26 0.82 0.50 0.27 0.61

C0 vs C2 Female 0.09 0.90 0.70 0.97 0.77

C0 vs C2 Male 0.97 0.32 0.77 0.77 0.95

C0 vs C2 Total 0.19 0.57 0.53 0.97 0.91

C0 vs C3 Female 0.015 0.0044 0.43 0.14 0.14

C0 vs C3 Male 0.049 0.91 0.95 0.64 1.00

C0 vs C3 Total 0.0017 0.012 0.68 0.013 0.053

C1 vs C2 Female 0.39 0.83 0.26 1.00 0.91

C1 vs C2 Male 0.71 0.58 0.52 0.52 0.52

C1 vs C2 Total 0.086 0.67 0.17 0.23 0.56

C1 vs C3 Female 0.43 0.10 0.80 0.40 0.40

C1 vs C3 Male 0.019 1.00 0.68 0.93 0.15

C1 vs C3 Total 0.033 0.083 1.00 0.16 0.037

C2 vs C3 Female 0.0040 0.017 0.29 0.29 0.29

C2 vs C3 Male 0.052 0.57 1.00 0.29 1.00

C2 vs C3 Total 0.00079 0.019 0.51 0.0087 0.15
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Table 4.  Statistically significant (FDR < 0.05) Reactome pathways results of top quartile highest genes for 
Communities 0 and 2.

Reactome pathway Matched IDs p value FDR

A. Community 0

Antigen Presentation: Folding, assembly and peptide loading of class I MHC 35 1.11E−16 3.77E−15

Endosomal/Vacuolar pathway 35 1.11E−16 3.77E−15

Class I MHC mediated antigen processing and presentation 35 1.11E−16 3.77E−15

ER-Phagosome pathway 35 1.11E−16 3.77E−15

Antigen processing-Cross presentation 35 1.11E−16 3.77E−15

Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 36 1.11E−16 3.77E−15

Interferon gamma signaling 36 1.11E−16 3.77E−15

Interferon alpha/beta signaling 36 1.11E−16 3.77E−15

SARS-CoV-2 activates/modulates innate and adaptive immune responses 35 1.11E−16 3.77E−15

Interferon Signaling 36 1.11E−16 3.77E−15

SARS-CoV-2-host interactions 35 1.11E−16 3.77E−15

SARS-CoV-2 Infection 35 1.11E−16 3.77E−15

SARS-CoV Infections 35 1.11E−16 3.77E−15

Cytokine Signaling in Immune system 39 1.54E−11 4.94E−10

Adaptive Immune System 37 2.03E−11 6.10E−10

Infectious disease 35 1.63E−05 4.56E−4

B. Community 2

TRKA activation by NGF 2 1.49E−4 0.0400

DDX58/IFIH1-mediated induction of interferon-alpha/beta 4 4.98E−4 0.0400

Activation of TRKA receptors 2 5.88E−4 0.0400

Ca2+ activated K+ channels 2 5.88E−4 0.0400

Figure 4.  Similarity analysis across individuals. (a) The k-means based community structure of the subjects’ 
similarity network (nodes represent subjects and weighted edges omics showing similar temporal behavior 
across individuals). (b)–(f) Distributions of five types of measures in the 4 network communities by gender: 
(b) BMI; (c) DI, disposition index; (d) SSPG, steady-state plasma glucose; (e) Matsuda index and (f) isrMax, 
maximum insulin secretion rate.
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The Reactome pathway Enrichment analysis, along with the subjects’ BMI, DI, SSPG, Matsuda and isrMax dis-
tributions differences indicate that these affect temporal immune responses in different detected Communities, 
and also have sex differences (BMI and SSPG) between two of the identified communities (Community 0 and 
Community 3).

Result summary. In summary, our results separate individuals with different physiological conditions and 
immune response based on the multiomics time series similarity of individual profiling analyses. We can detect 
changes in each individual compared to their own baseline that coincide with immune responses in each sub-
ject, and correspond to the individual time of onset per individual. The groups of genes discovered are associ-
ated with immune-relevant pathways, including antigen processing and presentation, interferon signaling and 
interleukin signaling (e.g., Table 1). The trends detected are consistently detected across multiple individuals 
(Table 2), and include multiple cytokines (IP10, IL13, PDGFBB, TGFA, IL27, TGFB, MCP1, GCSF, MIG, IL22, 
CD40L, VEGF, SCF and EGF) as well as bacterial signals (with top results by occurrence in the highest number 
of individuals including genus Streptococcus in both nares and gut and Blautia in gut, classes Gammaproteobac‑
teria and Betaproteobacteria in nares, family Streptococcaceae in both nares and gut, and phyla Proteobacteria 
in gut and Bacteroidetes in nares, and order Lactobacillales in gut). Finally, a network with nodes representing 
subjects and weighted edges omics with similar temporal behavior across individuals, shown in Fig. 4, separated 
the individuals in 4 communities, with statistically significant differences (p value < 0.05) detected in BMI, SSPG, 
DI and isrMax, including sex differences, Table 3. The network communities detected involve different pathways 
for the top genes (highest weight edges) with similar behavior between subjects, Table 4. This involves in one 
group of subjects (Community 0) several immune responses (antigen processing and presentation, interferon 
and cytokine signaling, and several pathways also identified in SARS-CoV2-2 immune responses, as multiple 
immune-related genes are involved), and different pathways in a second group (Community 2, including TRKA 
activation by NGF, DDX58/IFIH1-mediated induction of interferon-alpha/beta, Activation of TRKA receptors 
and Ca2+ activated K+ channels).

Discussion
In this manuscript, we applied spectral methods to analyze multiomics individual profiles from public data for 
69 individuals. Our goals were to take an individual-focused approach and: (i) detect molecular-level deviations 
from each individual’s own baseline in response to dynamic changes in their physiological states, and (ii) build 
on the individual results to compare across subjects in a bottom-up approach and identify common molecular 
signatures. We generated periodograms for individual subject omics time series categorization, constructed 
within-person omics networks and detected personal-level immune changes corresponding to the individual’s 
physiological state changes. We identified similar individual-level responses to immune perturbation across 
multiple subjects. We then used the periodograms across subjects to identify network clusters of individuals with 
similarities across their common omics temporal patterns. The multi-individuals’ similarity network revealed 
different communities within which the molecular behavior was linked to phenotypic differences, including 
body mass index and insulin resistance, with the immune response dominating differences attributed to diabetic 
status, Table 3.

Our results are consistent with and extend previous research that has reported several cytokines with impor-
tant roles in type 2 diabetes development, including cytokines from our findings across individuals in Table 2, 
with some examples highlighted below. Elevated concentrations of IP10 (CXCL10) have been reported in type 2 
diabetes, and are associated with higher diabetes  risk29,30. The IL13 pathway is a potential therapeutic target for 
glycemic control in type 2  diabetes31. IL27 has been implicated in insulin resistance in genome wide association 
 studies32. Wang et al. had reported the pathogenic role of IL27, using diabetic NOD mice to investigate T-cell 
mediated autoimmune  diabetes33, but recently the role of IL27-IL27Rα in promoting adipocyte thermogenesis 
has been investigated in the context of treating insulin  resistance34. Decreased plasma IL22 level was found to 
be a potential trigger of impaired fasting glucose and type 2 diabetes, in a retrospective study of Han Chinese 
 subjects35. PDGFBB is reported as associated with type 2 diabetes mellitus and  complications36,37.  TGFA38 and 
 TGFB39 have shown a pathologic contribution in diabetic kidney disease. TGFB is also reported associated with 
type 2 diabetic  nephropathy40. ALKP has been investigated as an independent predictor for diabetes  incidence41,42. 
MCP1 has been found significantly increased in patients with type 2  diabetes43. Furthermore, through rat stud-
ies GCSF has been reported as a potential novel therapeutic drug in early diabetic nephropathy  patients44. The 
involvement of MIG (CXCL9) in the progression of type 2 diabetes nephropathy has been  reported45. CD40-
CD40L has been associated with type 2 diabetes  mellitus46, VEGF is involved in the pathogenesis of diabetic 
 complications47, c-Kit and its ligand, stem cell factor (SCF) have been reported as a potential novel target for 
treating  diabetes48. Finally, chemotactic cytokines, including eosinophil chemotactic factors (ECFs), have been 
shown to be related to type 2 diabetes  mellitus49. In our results, the cytokines above had high occurrence rates 
with statistically significant trends across the diabetic and prediabetic individuals. The findings suggest that our 
approach has potential application in clinical trials to identify disease biomakers and treatment targets.

In our analysis we used unsupervised methods to classify time-resolved trends in each subject, as well as 
to construct the network and identify the communities that showed differences in different diabetes-relevant 
measures (BMI, SSPG, DI and isrMax), Fig. 4 and Table 3. As the analysis did not depend on prior knowledge 
of the prediabetes/diabetes status of the subject, and given that the prediabetes-diabetes distinction is a rather 
continuous spectrum this suggests that potential pathophysiological signals are playing a part, and merits further 
future investigation.

Our study has limitations: In the current study we focused on immune changes and perturbations as these 
were available in the source data. As there are multiple other pathogenic factors that contribute to T2D, the data 
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do not offer a complete picture and will need to be supplemented with additional followup studies. The data 
used in this investigation contained fine-grained omics data, and comparatively crude phenotypic data. Future 
investigations can address this at the outset of the experimental design prior to data collection. Furthermore, 
we have focused on immune markers, as these were the perturbation data available. To comprehensively study 
T2D more kinds of perturbations from baseline need to be investigated, including other disorders. Furthermore, 
the transcriptomic data used were generated from bulk RNA-sequencing, and hence do not allow for cell-type 
specific analyses, which are important is evaluating T2D. We expect that cell-type-specific studies with longi-
tudinal data will become more prevalent with the recent focus on single-cell RNA-sequencing approaches. In 
terms of the data, there is uneven sampling (inherent in any real-world/subject based study), which we have 
addressed with our approach, as well as having different lengths of time series across individuals. Also, the 
RNA-seq data modality dominates in terms of number of omics. Our approach is robust as it analyzes single 
omics signals when assigning autocorrelation classes, irrespective of modality and hence is not affected by the 
unevenness between modality sizes. In the dendrogram constructions of determining groups and subgroups, it 
is possible that the trends are dominated by the large RNA-seq data, and potentially overfitting to a particular 
trend (i.e. missing subtle trend variation). Still, in this unsupervised clustering approach any distinct singleton 
omics patterns will be displayed.

Furthermore, environmental measures are not included and the low number of participants does not allow 
for a nuanced analysis of heterogeneity across subjects. For example, different subjects received different treat-
ments which are analyzed in bulk. In terms of broad applicability of data collection and analysis, the data are 
obtained using invasive approaches (at least for blood components), which should improve with non-invasive 
transcriptomic mapping, such as using saliva. While our analysis included microbiome data (nares and gut), their 
association with transcriptome results, the cytokines and other measurements noted in Table 2, and their mecha-
nistic role still requires further model-based experimentation. Finally, time series analyses with multiomics are an 
evolving area of research. We currently do not have T2D datasets that can be used for validation of findings. We 
anticipate that more studies will be generated that will also provide the necessary data to enable validation beyond 
the discovery approach in this investigation. Such data will also allow us to evaluate different methodologies, as 
there are many approaches to time-series analysis that we intend to continue investigating. In this investigation 
we have used the spectral methods as a first approach to detect data patterns in an unsupervised analysis. The 
spectral methods aid in addressing missing data/uneven sampling while maintaining the statistical properties of 
the data, and provide a streamlined pattern recognition based on frequency/autocorrelation behavior which is 
often used in time series analyses. Future work can also employ different approaches, especially for longer time 
series and with higher sampling rates to aid in the development of differential equation models of departures from 
signal baselines in response to perturbations, that provide more mechanistic interpretations of T2D dynamics.

In this manuscript we performed an individual-focused analysis of a prediabetes study  cohort4,14, which 
revealed insights from this longitudinal dataset and can lead to actionable health discoveries, providing rel-
evant information for precision health monitoring. Our approach is the first, to our knowledge, with a tempo-
ral bottom-up/individual focus. Starting from individual microscopic measurements (molecular level omics), 
intra-subject immune responses can be characterized. Then, building on the individual responses, a macroscopic 
inter-subject temporal clustering of subjects based on temporal similarity provides information on how immune 
responses can be related to diabetic states, consistent with and supplementing the original work.

In summary, our findings utilize personal temporal omics to identify collective responses across individuals 
associated with macroscopic characteristics, and provide an approach that can potentially help predict disease 
responses and outcomes towards clinical implementations. The approach is non-disease specific, and extensible: 
any time signal measurement can be incorporated and any number of individuals can be compared spanning 
periods of individualized wellness and departures therefrom. Additionally, real-world application limitations of 
missing data and uneven sampling can be addressed. Beyond identifying trends within an individual, expanding 
to larger cohorts can eventually provide individual temporal signatures of specific disease onset. Such tempo-
ral disease signatures can be used to train models for monitoring departures from a healthy baseline, towards 
prevention or minimally timely treatments. Coupling multi-timepoint monitoring with non-invasive sampling 
(e.g.  saliva12) can help eventually provide affordable population-level precision health.

Data availability
The original data analyzed in this investigation were made publicly available by Zhou et al.14 and Schussler-
Fiorenza Rose et al.4 as described therein, on https:// med. stanf ord. edu/ ipop. html. All data files used in this 
investigation, including original code and results files have been released on Github (https:// github. com/ gmias 
lab/ Tempo ralMu ltiom icsDi abetes), and also deposited on Zenodo (https:// doi. org/ 10. 5281/ zenodo. 67519 60), 
and are referred to as Online Data Files (ODFs) in the manuscript.
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