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Bubble velocimetry using 
the conventional and CNN‑based 
optical flow algorithms
Daehyun Choi1,4, Hyunseok Kim1,3,4 & Hyungmin Park1,2*

In the present study, we introduce new bubble velocimetry methods based on the optical flow, which 
were validated (compared) with the conventional particle tracking velocimetry (PTV) for various gas–
liquid two‑phase flows. For the optical flow algorithms, the convolutional neural network (CNN)‑based 
models as well as the original schemes like the Lucas‑Kanade and Farnebäck methods are considered. 
In particular, the CNN‑based method was re‑trained (fine‑tuned) using the synthetic bubble images 
produced by varying the density, diameter, and velocity distribution. While all models accurately 
measured the unsteady velocities of a single bubble rising with a lateral oscillation, the pre‑trained 
CNN‑based method showed the discrepancy in the averaged velocities in both directions for the dilute 
bubble plume. In terms of the fluctuating velocity components, the fine‑tuned CNN‑based model 
produced the closest results to that from PTV, while the conventional optical flow methods under‑ 
or over‑estimated them owing to the intensity assumption. When the void fraction increases much 
higher (e.g., over 10%) in the bubble plume, the PTV failed to evaluate the bubble velocities because 
of the overlapped bubble images and significant bubble deformation, which is clearly overcome by 
the optical flow bubble velocimetry. This is quite encouraging in experimentally investigating the 
gas–liquid two‑phase flows of a high void fraction. Furthermore, the fine‑tuned CNN‑based model 
captures the individual motion of overlapped bubbles most faithfully while saving the computing 
time, compared to the Farnebäck method. 

Interfacial momentum exchange between continuous and dispersed phases is very important in understanding 
the physics of multiphase flows, in particular, for the gas–liquid two-phase flows, where the gas–liquid inter-
face deforms in a complex manner and the mutual interaction between the phases is  correlated1–10. Since the 
interfacial forces (e.g., drag, lift, added mass, and basset history forces) acting on the rising bubbles in a liquid 
 flow11–13 and the bubble-induced agitation (pseudo-turbulence) to the liquid  flow5,8,14–19 are strongly determined 
by the bubble velocity (motion) relative to the liquid-phase, it is critical to have the detailed information of 
bubble velocities. To cope with this, the image-based velocimetry techniques (e.g., two-phase particle image 
velocimetry and shadowgraphy) to obtain the gas-phase statistics have been proposed widely. Recently, Kim and 
 Park7 developed a universal and automated bubble detection method based on the Mask R-CNN deep-learning 
algorithm, which was shown to be very successful in extracting and tracking the bubble shapes in the images 
obtained from different flow geometries and optical configurations.

In addition to the bubble shape (i.e., interface morphology), on the other hand, it is also important to measure 
the bubble velocity, as it is relevant to the interfacial forces. Most of the previous studies have used the particle 
tracking velocimetry (PTV) algorithm to evaluate the bubble velocity, based on the centroid of each bubble on 
the images obtained optically. The typical process of PTV applied for the shadow image (taken for the bubbly 
flow) consists of the binarization, identification, and evaluation, as shown in Fig. 1a–d. First, the bubble is indi-
vidually recognized and tagged as an identical object in the images that were successively obtained (Fig. 1b,c). 
Next, the distance traveled by each bubble centroid is divided by the time interval between consecutive images, 
which results in the bubble velocities (Fig. 1d). The bubble velocity from the PTV is obtained from a clear 
physical background and thus guarantees the high accuracy, if specific conditions are satisfied such as the low 
void fraction (< 2.5%) and mild shape deformation, enabling the exact matching of each  bubble4,5,8. In other 
words, this conventional method has limitations to be applied to wider circumstances: (i) the computing costs 
to evaluate the whole velocity fields get increasing significantly with increasing the number of images, (ii) it is 
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difficult to reflect the effect of local deformation of the bubble (only a single velocity vector is obtained for one 
bubble), and most importantly (iii) it cannot be used for the bubbly flows with a higher void fraction, i.e., for 
highly overlapped bubbles. The computing cost of the PTV is mainly consumed during the process of identifying 
individual bubbles. As noted in Table 1, for processing one pair of images, the step of individual object (bubble) 
identification costs 0.812 s, which is 95% of the entire procedure. On the other hand, the PTV only tracks the 
bubble centroid to obtain the velocity, and thus, the bubble deformation is ignored, which is known to affect the 
interaction between the bubble and the surrounding  flow8,20–24. It would be important as well as interesting to 
investigate the velocity of the local bubble surface, which is different from that of the  centroid25–27.

The most critical drawback of the PTV would be the difficulty in calculating the bubble velocity of highly 
overlapped and deformed bubbles (e.g., see Fig. 2c for the dense bubble plume). Here, the overlap denotes the 
actual contact of bubbles (or their projections) on the two-dimensional image (see the dashed box in Fig. 1b). 
Previous studies tried to deal with this issue by dividing the overlapped bubbles using the watershed  transform28 
or ignoring the overlapped bubbles  altogether8. Watershed transform is a method of recognizing and classifying 
bubbles based on the bright local maxima that appear at the bubble center  region5. However, if multiple (more 
than three) bubbles are simultaneously overlapped or there are multiple maxima in one bubble (typically this 
happens when the bubble size becomes larger), the bubbles are not clearly distinguished based on the  maxima7. 
For the PTV, the identification of the individual bubble is a prerequisite for the velocity evaluation and it can 
significantly deteriorate the reliability of the calculated velocity vectors. Therefore, the PTV has been mostly 
used for the case of the relatively small bubble (less than 4 mm of the diameter) experiencing the milder shape 
deformation, with a lower volume void fraction (Fig. 2a–b and Table 2). However, the bubbly flows that are 
easily found in nature and industry have a higher volume void fraction, which requires a new method that can 
accurately and systematically measure the velocity field from a number of deformable and overlapped bubbles.

Figure 1.  Typical procedure of evaluating the bubble velocities from the shadowgraph image of the bubbly 
flow: (a–d) conventional PTV and (e–h) optical flow (Farnebäck) method.

Table 1.  Comparison of the computing costs of each method for evaluating the bubble velocities in a single 
pair of dilute plume images (size of 400 × 608 pixels; see Fig. 7).  The PTV and the conventional optical flows 
are operated by CPU  (Intel® Core™ i7-5960X CPU @3.00 GHz), whereas the CNN-based optical flow uses 
GPU (GeForce RTX2080 12 GB). It is noted that only the PTV method requires the step of object (bubble) 
identification.

Cost PTV Lucas-Kanade method Farnebäck method CNN-based model

Object identification 0.812 s – – –

Vector evaluation 0.041 s 0.025 s 0.155 s 0.033 s

Total 0.853 s 0.025 s 0.155 s 0.033 s
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As a promising solution to this problem, we propose the optical flow algorithm as a bubble velocimetry 
method. The optical flow is a technique to evaluate the velocity field based on the change of the light intensity 
(not dependent on the object) in the consecutive images with the assumptions that (i) the brightness of each 
material point has a constant value in the consecutive images, i.e., brightness constancy, (ii) the displacement is 
sufficiently small, and (iii) the flow field is smoothly  evolving29–31. Here, we brief the general procedure to obtain 
the vector field using the optical flow algorithm, and the details can be found in  elsewhere32,33. If the gray value 
I(x, y, t) on the position of (x, y) at any time t moves to (x + δx, y + δy) after the time interval of δt, the brightness 
constancy condition can be expressed as the Eq. (1).

Applying the first-order Taylor series expansion to the left-hand side of the Eq. (1), we have

When the Eq. (2) is replaced into the Eq.  (1), it is further simplified to Ixu+ Iyv = −It , where 
Ix = ∂I/∂x, Iy = ∂I/∂y , It = ∂I/∂t , and (u, v) denotes the velocity field on the (x, y) plane. In order to solve 
this equation, the information about two or more points (x, y), i.e., the gradients, is required, and it is applied 
on the window basis, instead of a single point. Let’s consider a window of N × M size (i.e., it consists of points 
of q1, q2, … qN×M). If each point on the window has the same velocity (u, v), then the Eq. (3) can be established.

Here, we have N × M equations for two unknowns, and thus the single solution (u,v) can be determined 
through the least-square method. As noted, the key element of the Lucas-Kanade algorithm is that it approximates 
the image intensity using the first-order Taylor series  expansion32. On the other hand, Farnebäck33 modified the 
algorithm such that it can measure the displacement of each point in the consecutive images by assuming that 
the image intensity is a quadratic function with respect to the position (x, y). This method costs quite more than 
the Lucas-Kanade model (see Table 1), but it was shown to provide more accurate and detailed velocity fields.
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Figure 2.  Bubbly flows from different environments: (a) single bubble rising near the vertical wall, (b) dilute 
bubble plume (void fraction of 1.13%), (c) dense bubble plume (void fraction of 58%). The scale bar at the 
bottom of each figure denotes 10 mm.

Table 2.  Comparison of the tested conditions for measuring the bubble velocities in the bubbly flow using the 
PIV and/or PTV.

Literatures Method Flow type Bubble shape Bubble diameter Local void fraction

Cheng et al.43 PIV Bubble plume Spherical–ellipsoidal 1.0–2.5 mm  < 30%

Ryu et al.40 PIV Plunging wave –  ~ 3 mm  ~ 4%

Seol et al.41 PIV + PTV Bubble plume Spherical–ellipsoidal 1.5–2.0 mm 0.2–1.8%

Chung et al.44 PIV + PTV Stirred vessel Spherical  ~ 0.5 mm  < 5.4%

Teodori et al.45 PIV Pool boiling Spherical 1.0–1.3 mm –

Murgan et al.42 PIV + LIF Bubble plume Spherical–ellipsoidal 1.1–6.1 mm –

Cerqueira et al.46 PIV + PTV Bubbly pipe flow Spherical–ellipsoidal 1.5–4.1 mm 0.7–11.4%

Watamura et al.47 PIV + PTV Micro bubbles Spherical  ~ 0.01 mm  < 0.11%

Present study Optical flow Bubble plume Spherical–irregular 0.1–20 mm  < 58%
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Recently, the convolutional neural network (CNN)-based optical flow has been suggested to elevate not 
only the spatial resolution but also the accuracy, compared with the conventional optical  flow34,35. For example, 
the series of convolutional networks (FlowNet) with converging and diverging structures have been proven to 
produce more accurate velocity fields of the single-phase flow with a higher resolution than the conventional 
optical  flow34. On the other hand, Sun et al.35 proposed the system of the convolutional network (PWC-Net), 
analogous to the coarse-to-fine adaptive approach of the conventional optical flow (which obtains the velocity 
fields of the higher spatial-resolution using the pre-calculated velocity field from the under-sampled image), and 
used it to obtain the velocity field of daily objects (e.g., SINTEL animation, the KITTI dataset, and flyingchairs 
dataset). It was shown that it is cost-effective and more accurate than the FlowNet and conventional optical flow 
models. In the present study, we selected this PWC-Net to evaluate the bubble velocity and also re-trained it 
with the synthetic bubble images.

The network architecture of PWC-Net comprises two fixed-parameter layers consisting of the warping and 
cost volume, and three trainable-parameter layers consisting of the feature extraction, velocity field estimator, 
and context network. First, the two consecutive raw images are inserted into the feature extracting layer that is 
the converging convolutional networks with n-levels, and each level of the layer produces a different resolution 
of ‘features’ (i.e., the product of each convolutional filter). At the lowest-resolution feature, the cost-volume layer 
and the velocity field estimator evaluate the draft of the velocity field, which is finally converted to the velocity 
field data through the context layer. This coarser version of velocity data is subsequently updated to the next level 
of layer and is used to deform one of two features to achieve the better prediction of the velocity field. Likewise, 
the two features from the consecutive images at the next level of the layer are converted to the velocity vector with 
a higher resolution. The number of layers for each network and their architecture are explained in the “Method” 
section. The weights are pre-trained with the KITTI and 3D-FlyingChair datasheet (for the detailed procedure, 
please refer to Sun et al.35), since the application of the CNN-based optical flow has been mainly focused on the 
identification of large objects such as humans in the avenue, vehicles, and daily objects. However, it has been 
reported that the CNN-based model can perform like the particle image velocimetry (PIV) and significantly 
enhances the spatial resolution by fine-tuning (i.e., further training with the dataset of interest)36,37, compared 
to the conventional  PIV38,39. As an advantage of the optical flow method, they pointed out that it can account 
for the non-linear deformation of the flow, and claimed that the CNN-based optical flow is capable of measur-
ing the velocity field based on the particle distribution. We are interested in investigating how this CNN-based 
model would perform in measuring the velocity of highly deformable bubbles, which is more complicated than 
the translational particle movement.

Previously, the PIV-PTV hybrid algorithm was also proposed as an alternative tool to overcome the limitation 
of  PTV40–42. That is, the PIV and PTV were selectively applied in dense and sparse bubble region, respectively, 
to obtain the bubble velocity field. However, there are two issues in this approach. First, the premise that target 
particle (or bubble) is drifted by a continuum must precede for the PIV, meaning that two closest particles (which 
faithfully follow the background fluid) should not intersect to each other and satisfy a continuity, i.e., particle 
velocities in the interrogation window should be comparable to each other when the window is smaller than the 
smallest eddy. However, being different from tracing particles, bubble has a slip velocity against the background 
flow, thus violating the continuity condition. Bubbles often meet or cross each other within the interrogation 
window, showing the discontinuous velocity distribution (see Fig. 9a). If the PIV is applied to the consecutive 
bubble-image pair, thus, the inherent dynamics of bubbles (i.e., independent directions and speeds of bubbles) 
in the same window will be ignored and smoothed, which is not physically acceptable. Secondly, the PIV-PTV 
hybrid algorithm requires the designation of the threshold to determine which technique to be applied to cal-
culate the velocity of each bubble, which depends on the type of bubbly flow and the optical configuration. 
Despite this limitation, many previous studies have successfully obtained the bubble velocity using the PIV or 
PTV(or LIF)-PIV hybrid algorithm for a range of flow conditions such as the flow type, bubble shape, diameter, 
and local void fraction, as summarized in Table 2. For dense bubbly flows such as the bubble  plume41–43, stirred 
 vessel44, pool  boiling45, bubbly pipe  flow46, plunging  wave40, and ascending microbubbles near the vertical  wall47, 
it is found that the bubble size and void fraction considered in the previous studies using the PIV or PTV(or 
LIF)-PIV hybrid algorithm is less than 10 mm and 30%, respectively. Regarding this, Chung et al.44 mentioned 
that the significant overlapping of the bubble for the higher void fraction (> 30%) greatly reduces the correlation 
peak of the PIV and ruptures the spatial continuity, which forces the PIV to produce non-physical vectors. Also, 
it has been reported that the PTV (also PIV) has a difficulty in matching the highly distorted bubbles of larger 
Weber  number44,46. On the other hand, the present method is capable of computing the bubble velocity for the 
void fraction as high as 58% and the bubble size as large as 20 mm, at which the bubbles are irregular-shaped 
and densely overlapped, which will be discussed later.

Considering the characteristics of above-mentioned approaches, therefore, in the present study, we consider 
the Lucas-Kanade and Farnebäck models as representatives of the conventional optical flow algorithm, two 
CNN-based models (PWC-Net) that are pre-trained and fine-tuned, and their applications to some bubbly flows 
(the rise of a single bubble, dilute bubble plume, and dense bubble plume; Fig. 2) are compared with the results 
from the PTV. The synthetic bubble images were separately created for the fine-tuning (training), which has been 
proven to significantly enhance the accuracy of the  model7. For the validation, the experiments were performed 
to generate the bubble shadow images in different environments using a high-speed camera. Each optical flow 
algorithm, together with the PTV, is assessed in terms of the accuracy and time cost. We hope the present results 
will be widely utilized in relieving the difficulties in the dynamic analysis of the optical images having multiple 
objects, and accelerating the experimental studies of bubbly flows in complex geometries.
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Configuration of the optical flow model
Conventional optical flow model. For the conventional optical flow, two consecutive bubble images are 
segmented into a small window, in which the displacement vectors are generated. Therefore, the density of the 
window determined by its size and overlap ratio is related to the spatial resolution of the velocity field, and thus, 
they should be carefully selected. To examine the dependency on the window size, the vertical velocity of the 
bubbles in a dilute plume, shown in Fig. 2b, is measured with three different window sizes of 7 × 7, 21 × 21, and 
31 × 31 pixels using the Lukas-Kanade method. Figure 3a shows that the vertical velocity tends to be underesti-
mated as the window size becomes smaller, compared to the result of the PTV. This indicates that there exists a 
certain threshold of window size above which the optical flow would perform well, which is found to depend on 
the bubble size. The probability density function of the measured bubble size distribution is plotted in Fig. 3b, 
together with the relative position of three window sizes. As shown, the window size of 7 × 7 pixels is smaller 
than the averaged bubble size of 3.4 mm, but two larger windows are comparable (or larger) than that. Thus, it is 
learned that the window size should be at least as large as the average size of the bubbles that are to be measured. 
Based on this finding, we tested various sizes of windows for Lukas-Kanade and Farnebäck methods, by applying 
them to the flows with lower number density of bubbles (Fig. 2a,b). For the Lukas-Kanade method, as we have 
discussed, the accuracy of the measured bubble velocity was enhanced as the window size is slightly larger than 
the averaged bubble diameter, while the Farnebäck method was less sensitive to the window size. As a result, the 
window size for the Lukas-Kanade method was set to 21 × 21 pixels for the single bubble (Fig. 2a) and 31 × 31 
pixels for bubble plumes (Fig. 2b,c). It was fixed as 7 × 7 pixels for the Farnebäck method. The overlap ratio of 
50% and 0% was applied for the Lukas-Kanade and Farnebäck methods, respectively. Since the conventional 
optical flow evaluates the velocity vector by the window, velocity fields cover a slightly larger area than the bub-
bles (Fig. 1f), and a simple masking process is applied afterward to remove the velocity vectors located outside 
of the bubble. Here, the binarization process is the same as that of the PTV (Fig. 1b). Since the optical flow tech-
nique does not require the object identification (Fig. 1c), it costs much less time (see Table 1).

CNN‑based optical flow model. In contrast to the conventional optical flow, the PWC-Net35 is free from 
the window size because the whole velocity vector field is obtained at once. Instead, the hyperparameter (e.g., 
number of layers, epochs, and batch size) for the networks may affect the estimation. The model is trained fol-
lowing the learning schedule, as introduced in Sun et al.35, which reduces the learning rate (initially starting from 
 10–5) by half at 160 k, 240 k, 320 k, and 400 k epochs, with the batch size of 4. As the trainable layers, the convolu-
tion filters of feature extraction, context section, and velocity field estimator and their network are used, of which 
the details are described in the Method section. To examine the effect of such parameters, we used the weights 
of the model both pre-trained by the previous  work35 and fine-tuned with the synthetic bubble images and their 
velocity fields, generated by the in-house Python code. While developing the deep learning-based algorithm, it is 
regarded that the generation of proper set of synthetic (or natural) data for training and validation is important 
as much as the development of the architecture of the neural network, especially, when the labeled dataset is not 
sufficiently available 7,48. To the best of our knowledge, the dataset (the bubble image and its velocity field) suit-
able for the present study does not exist, indicating that even if there are good architectures for the optical flow 
model, it is not feasible to be applied as a bubble velocimetry. Therefore, it is required to generate the bubble-
image-velocity dataset that enables the model to operate in the real bubble images. By delicately synthesizing 
and evenly distributing the dataset, the neural network can also avoid the biased prediction and increase the 
robustness to the corner  case48. Figure 4 shows the representative synthetic bubble images and the corresponding 
velocity contours. The shape of the synthetic bubble was designated to be a randomly deformed ellipse with the 
size of 10–130 pixels, including the local maxima (i.e., the bright area inside the bubble shadow image caused by 
the refraction of background light) at its center region (Fig. 4a,d). The number of bubbles is 50–200 in one image 
pair. The synthetic bubbles are displaced with the random displacement of 10–50 pixels per frame (Fig. 4b,e), 

Figure 3.  Effect of window size on the optical flow measurement: (a) averaged vertical velocity (filled circle, 
PTV; open triangle, Lukas-Kanade method with the window size of 7 × 7; open diamond, 21 × 21; inverted filled 
triangle, 31 × 31 pixels); (b) probability density function of measured bubble size (solid lines denote the tested 
window sizes). Here, the measurements were done for the dilute bubble plume (Fig. 2b) with the mean bubble 
diameter of 3.4 mm and void fraction of 1.13%.
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by which the corresponding velocity fields can be obtained as shown in Fig. 4c,f, respectively. To enhance the 
robustness to the noises that can exist in bubble images, the intensity of the background was varied in the range 
of 0.1–0.9 (0 and 1 stands for the darkest and brightest intensity, respectively) at each pair, and the transparent 
rectangular bars, thin solid lines, and particles with the size of 1–5 pixels are also positioned at random, to repre-
sent the possible noise that can be intervened in the optical imaging. Finally, 100,000 pairs of bubble images (and 
the velocity fields) were generated and used to fine-tune the weights of the networks. The optimizer is selected as 
the ADAM scheme. The specification of the workstation that we have used is a single NVIDIA RX 2080 Ti GPU, 
and the calculation procedure (velocity field is calculated from the network and masked based on the binariza-
tion) is similar to the conventional optical flows (Fig. 1e–h).

Comparison on the computational costs. The computational cost of each method is summarized in 
Table 1. Processing a single pair of images taken for the dilute plume (Fig. 2b) to obtain the bubble velocities 
took 0.85, 0.025, 0.16, and 0.033 s for the PTV, Lukas-Kanade, Farnebäck, and CNN-based models, respectively. 
Here, the CNN-based model used the GPU (GeForce RTX2080 12 GB) to calculate the vector field, whereas the 
other models used the CPU  (Intel® Core™ i7-5960X CPU @3.00 GHz). As explained, the PTV method requires 
the longest computational time, mainly originating from the bubble identification step. The Lukas-Kanade takes 
the smaller cost than the CNN-based model, thanks to its simple assumption on treating the image intensity. 
On the other hand, the cost of the Farnebäck method is much greater than the CNN-based model, due to the 
higher-order modeling. Together with this comparison, we will discuss the reliability (accuracy) of the measured 
bubble velocities in the below. Here, the computational cost based on the sampling time (or the total amount of 
processed bubbles) is not compared, because such comparison would be unfair in accordance with the acqui-
sition scheme. The sampling time (ts) required for the converged statistics will increase with decreasing time 
interval (dt) between two paired images, when the bubble images are measured at regular time intervals (say, 
for dt). Since, in general, the time interval (dt) for the conventional optical flow method is shorter than that of 
the PTV, thus, the required number of frames and the time cost will be larger for the conventional optical flow 
method, given the same sampling time. However, this kind of simple acquisition scheme is avoided when using 
the high-speed imaging for the sake of converged statistics. For example, the double-shutter acquisition enables 
the long sampling time by distancing the pairs of bubble image while shortening the time interval (dt) between 
two images, which is commonly performed in measuring the turbulent bubbly  flow8. Through this, the sampling 
time can be decoupled with the time interval (dt) between consecutive images, which could be realized to be 
sufficiently small for the specific algorithm such as the conventional optical flow methods. Therefore, the most 
relevant source of the computing cost will be fairly judged by the processing cost consumed for single pair of 
bubble images.

Figure 4.  Example of synthetic bubble image pairs used for the fine-tuning dataset for the PWC-Net: (a,b) 
small bubbles (bubble size = 10–60 pixels); (d,e) large bubbles (bubble size = 40–130 pixels); (c,f) contour of 
bubble velocity corresponding to each pair. The inset figure in (c) shows the direction and magnitude of velocity, 
expressed in terms of the hue and saturation, respectively.
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Results and discussion
Evaluation of the optical flows as a bubble velocimetry. To compare the characteristics and per-
formance of optical flow methods, each algorithm is applied to the bubbly flows of different conditions (Fig. 2). 
First, we will start with the simplest case of a single bubble rising near the vertical wall, with the periodic lateral 
oscillation (Fig. 2a), and next discuss the results with the rise of several bubbles (without a significant overlap) in 
a dilute plume (Fig. 2b). Finally, the case of large population of deformable bubbles (with a significant overlap) 
in a dense plume (Fig. 2c) will be tested.

Single bubble rising near the vertical wall. Figure 5 compares the velocity vector of a single bubble 
near the vertical wall, obtained by each method. As noted, one velocity vector at the bubble centroid is captured 
from the PTV (Fig. 5b), while the optical flow algorithms provide multiple velocity vectors, i.e., including the 
information about the local movement (deformation), assisted by the intensity-based measurement mechanism 
(Fig. 5c–f). Regardless of the method used, it is observed that the velocity vectors are oriented along the same 
direction, while the detailed pattern of velocity distribution differs. With the Lucas-Kanade method, velocity 
vectors located at the periphery of the bubble, characterized by the large curvature, tend to tilt toward the aver-
aged travel direction of the bubble (Fig. 5c), whereas they are directed outward with the Farnebäck and two 
CNN-based models (Fig.  5d–f). Observing the interfacial deformation of the bubble, the peripheral regions 
expand while the middle area of the bubble tends to bulge up (see the arrows in Fig. 5a), which is more reliably 
detected by the Farnebäck and CNN-based models than the Lucas-Kanade method.

For further quantitative evaluation, the time history of horizontal and vertical velocity components (for the 
same bubble in Fig. 5) is plotted in Fig. 6. For the data obtained from the optical flow methods, the averaged 
value of the velocities inside the bubble is used as a representative velocity. As shown, it is found that optical flow 
methods can accurately measure the temporally varying velocities of a moving bubble, being compared with the 
conventional PTV data. It is interesting to see that the pre-trained PWC-Net35 can reasonably provide the bub-
ble velocity data suggesting its versatility, although it was not trained (or optimized) for the bubble velocimetry. 
However, the pre-trained CNN model predicts the slightly lower horizontal velocity at t = 0.08 and 0.22 s, which 
correspond to the instances when the bubble collides with the wall, and it is thought that the pre-trained model 
is limited in distinguishing the wall and bubble shadow (Fig. 6b). On the other hand, the fine-tuned model (re-
trained with the synthetic bubble images) seems to overcome this limitation and predicts the bubble velocities 
better at the instants of bubble-wall collision. For the vertical bubble velocity, the CNN-based models tend to 
slightly underestimate, compared to other methods when the bubble deformation is the largest (e.g., at t = 0.03 s 

Figure 5.  Evaluation of the velocity of a single bubble (size of 3.5 mm): (a) the instant raw image with the 
bubble morphology at the next time step (after 30 ms) overlapped with a solid line; (b) result of the PTV; (c) 
Lukas-Kanade method; (d) Farnebäck method; (e) pre-trained CNN-based model; (f) fine-tuned CNN-based 
model. The gray shadow in (b–f) corresponds to the bubble shadow in (a).
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and 0.18 s in Fig. 6b). At this time, the bubble aspect ratio increases rapidly, i.e., the bubble shape shrinks abruptly 
along the rising (vertical) direction, by which the larger drag force acts on the bubble decelerating its movement. 
As noted, each method tested in the present study has a different dependency (or sensitivity) on the local bub-
ble deformation (Fig. 5), and the traditional PTV cannot reflect the localized interfacial movement. It is noted 
that the relatively larger scatter in the data obtained by the CNN-based algorithms is attributed to the enhanced 
sensitivity to the bubble deformation. This also indicates that it would require additional caution to interpret 
the velocity vectors obtained by the optical flow methods. Although they were averaged just for the purpose 
of comparison in Fig. 6, it is clear that the averaged velocity would not represent the actual bubble dynamics. 
After it is confirmed that the optical flow-based bubble velocimetry is feasible, it will be interesting as a future 
work to define each velocity and how they can be applied to the complex problems such as the mechanism of 
wobbling  bubble49–51.

Dilute bubble plume (void fraction < 10%). Figure 7 shows the time-averaged and root-mean-squared 
(r.m.s.) fluctuating velocities for the case of the dilute bubble plume (void fraction of 1.13%). The representative 
bubble shadow images evaluated are shown in Fig. 7a, and the velocity profiles are obtained by averaging along 
the vertical (y) direction, as well. The time-averaged horizontal and vertical velocities were around 0 and around 
0.3 m/s, which agrees with the previous result of the bubble plume with a similar condition (void fraction of 
0.5–10%) (Riboux et al.1). The conventional optical flow methods and fine-tuned CNN-based model provided 
quite accurate time-averaged velocities in both directions, compared to the PTV (Fig. 7b,c). However, unlike 
the case of a single bubble velocimetry, the mean bubble velocities estimated by the pre-trained PWC-Net tend 
to deviate a lot; in particular, the horizontal velocity did not represent the statistically symmetric nature of the 
uniform bubbly plume. This discrepancy clearly implies the importance of choosing the proper set of data to 
train the deep learning model. The pre-trained model (in this case, the original model was trained by the KITTI, 
SINTEL, and flyingchair dataset (Sun et al.35) is optimized for calculating the velocities under the limited condi-
tions (e.g., small void fraction of < 0.2%) since it was trained with the image of objects with number of less than 
10. In contrast, the re-trained PWC-Net was shown to measure the velocities of moving multi-objects (~ O(102)), 
as seen in Fig. 7b,c. In terms of the vertical velocity (v), compared to the PTV data, the maximum deviation of 
the Lucas-Kanade, Farnebäck, pre-trained PWC-Net, and fine-tuned PWC-Net were 9.5, 8.8, 16.8, and 12.4%, 
and the average errors were 5.4, 4.6, 6.9 and 4.7%, respectively. Thus, it can be said that all the models except for 
the pre-trained CNN-based one showed a reasonable accuracy for the estimation of the first-order statistics of 
the bubble velocity.

In terms of the r.m.s. vertical and horizontal velocity fluctuation (Fig. 7d,e), interestingly, the performance 
of tested models is quite different. Following the mean vertical velocity, the pre-trained PWC-Net showed the 
most unreliable prediction, i.e., over- and under-estimation of the horizontal and vertical velocity fluctuations, 
respectively. It was found that the Lucas-Kanade method and the fine-tuned PWC-Net measure the r.m.s. velocity 
fluctuation quite accurately; the horizontal component agrees with the result of PTV while the vertical velocity 

Figure 6.  Evaluation of the velocity of a single bubble rising (with bouncing) near the wall: (a) sequential 
bubble shadow images with the time interval of 20 ms. The dotted line denotes the bubble trajectory. (b) 
Corresponding time history of the horizontal (u) and vertical (v) bubble velocities: filled circle, PTV; open 
triangle, Lukas-Kanade method; open diamond, Farnebäck method; filled square, pre-trained CNN-based 
model; inverted filled triangle, fine-tuned CNN-based model.
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fluctuation is slightly lower. This is related to the nature of the optical flows to capture the interfacial velocity, 
not the velocity of the bubble centroid, as we have discussed in Fig. 6b. With the Farnebäck method, the r.m.s. 
fluctuation velocities in both directions were estimated to be quite higher compared to the PTV, which is attrib-
uted to the wide spatial variation in the calculated velocity, indicating that the assumption of the higher-order 
distribution of intensity would be over-specified and degrade the bubble velocity measurement. Similarly, the 
Lukas-Kanade method recognizes the image intensity as a smoothed image, resulting in the underestimation 
of r.m.s. fluctuation velocity (Fig. 7e). However, the CNN-based models are free from these assumptions and 
provide the results closest to the PTV.

Dense bubble plume (void fraction > 10%). Encouraged by the performance of optical flow algorithms 
as a bubble velocimetry, we applied the methods to the highly dense bubble plume with the void fraction of 58% 
(Fig. 2c), for which the conventional PTV-based approach is expected to suffer from the highly overlapped bub-
bles. Thus, the evaluation on the accuracy based on the comparison with the PTV would not be valid, and we will 
focus on examining how the measured bubble velocity using the optical flows is physically acceptable. In previ-
ous studies, the relative bubble velocity was assumed to be constant in such a highly dense bubble  plume22. Obvi-
ously, they did not consider the spatial distribution of bubble size or void fraction, which affects the force acting 
on the bubbles and determines the interfacial momentum transfer. Naturally, this strong assumption makes only 
the analysis of flow characteristics on a large scale (say, plume scale) possible. In this background, the bubble 
velocimetry suggested in the present study would make it possible to quantify the relative bubble velocity in time 
and space, enabling the more accurate analysis of bubbly flow phenomena in terms of not only the plume scale 
but the smaller scales. The velocity fields (and the corresponding contour of horizontal bubble velocity) obtained 
by applying each method to the instantaneous flow (Fig. 8a) are shown in Fig. 8b–f. With the PTV (Fig. 8a), the 
highly entangled bubbles make it almost impossible to identify the individual bubbles and they are recognized 
as one big object (represented by the large rectangular contours, of which the shape and size change inconsist-
ently), and the non-physical velocity vectors (indicated by the arrows in Fig. 8b) directing the opposite direction 
to the bubble movement are obtained. On the other hand, the optical flow methods are capable of revealing the 
unsteady kinematics and dynamics of the bubble plume as well as the bubble velocity distribution (Fig. 8c–f). 
Actually, to the best of our knowledge, this kind of quantitative characterization of the bubble velocities in the 
bubbly flow at the void fraction as high as 50% was not attempted and successful so far. Comparing the results 
among optical flow models, the details of the spatial variation in the measured velocity fields are found to be 
different. For the Lucas-Kanade method (Fig. 8c) and pre-trained PWC-Net (Fig. 8e), the spatial distribution of 
velocity is smoothed out (for example, see the area noted with dashed circle in the figure) at the positions with 
many overlapped interfaces (Fig. 8a). This is, respectively, attributed to the low-order assumption applied to the 
image intensity and the lack of relevant training with the multibody-velocity data, which were compensated by 
the Farnebäck and fine-tuned PWC-Net, respectively. As shown in Fig. 8d,f, their results are relatively successful 
in detecting the sharp interfacial variations.

To examine this in detail, the bubble velocity distribution in the areas marked with dashed and solid boxes in 
Fig. 8a are shown in Fig. 9b–f and h–l, respectively. The tested instantaneous images are again shown in Fig. 9a,g, 

Figure 7.  Evaluation of the bubble velocity in the dilute bubble plume (1.13% void fraction): (a) instantaneous 
image of the dilute bubble plume; (b) horizontal velocity; (c) vertical velocity; (d) horizontal root-mean-square 
(r.m.s.) velocity; (e) vertical r.m.s. velocity. All velocity components were averaged in time and y-direction. filled 
circle, PTV; open triangle, Lukas-Kanade; open diamond, Farnebäck; filled square, pre-trained CNN-based 
model; inverted filled triangle, fine-tuned CNN-based model.
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respectively, which show that the individual bubbles in the bubble cloud move in different directions to each 
other (see the supplementary movies 1 and 2, respectively). With the PTV (Fig. 9b,h), the overlapped bubbles are 
again recognized as a large area with the same horizontal velocity, failing to represent the actual bubble move-
ments. The Lucas-Kanade (Fig. 9c,i) and pre-trained PWC-Net (Fig. 9e,k) produce the velocity vectors on each 
bubble to be directed along the same orientation, i.e., smoothed out artificially, and the horizontal movements 
of each bubble observed in supplementary movies 1 and 2 cannot be captured. On the contrary, the Farnebäck 
method (Fig. 9d,j) and fine-tuned PWC-Net (Fig. 9f,l) are capable of faithfully tracking and quantifying the 
movements of each bubble independently. Surprisingly, it is found that they can measure the velocity of the 
small bubble partially or fully covered by the larger ones (Fig. 9j,l), which is quite promising to consider that 

Figure 8.  Evaluation of the bubble velocity distribution in the dense bubble plume (58.1% void fraction): (a) 
raw image; (b) PTV; (c) Lukas-Kanade; (d) Farnebäck; (e) pre-trained CNN-based model; (f) fine-tuned CNN-
based model. In (b–f), the color contour denotes the magnitude of the horizontal bubble velocity.

Figure 9.  Instantaneous velocity field with the horizontal velocity contour for the local areas highlighted in 
Fig. 8a: (a,g) raw image; (b,h) PTV; (c,i) Lukas-Kanade; (d,j) Farnebäck; (e,k) pre-trained CNN-based model; 
(f,l) fine-tuned CNN-based model.
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the conventional particle image velocimetry (PIV) is limited in evaluating the velocities across a wide range of 
scales  simultaneously37,38 and the similar issue was raised in the recent deep- learning based bubble  detection7. 
For example, the bubble indicated by the dashed arrow in Fig. 9a solely translates to the right direction, while 
the surrounding bubbles are moving left (see the supplementary movie 1). This movement can be detected by 
the Farnebäck method (Fig. 9d) and fine-tuned PWC-Net (Fig. 9f), evidenced by the contour of horizontal 
velocity. As another example, the smaller bubble noted by a solid arrow in Fig. 9g) is located inside the larger one 
and they have opposite horizontal velocities (see the supplementary movie 2). For this case, only the re-trained 
CNN-based model can accurately identify the velocity of the small bubble (Fig. 9l), while others produced unre-
alistic results. Thus, it is understood that the well-trained CNN-based optical flow, which is independent of any 
assumptions on the image intensity and the size effect of interrogation window, is the most robust and reliable 
on the interfacial complexity of bubbly flow.

Finally, the quantitative comparison of the velocity statistics obtained by each approach is provided in Fig. 10, 
which were spatially and temporally averaged. For the time average, we measured the bubble plume for 6000 s 
and averaged all obtained instantaneous flows, consisting of 20,600 image pairs. For the spatial average, the data 
point at each x (horizontal) position was obtained by averaging the bubble velocities along the vertical range of 
y = 0–120 mm (see Fig. 8). First, it is found that the time-averaged horizontal (Fig. 10a) and vertical (Fig. 10b) 
velocity components in general show the symmetric distribution with respect to the plume center at x ≈ 110 mm. 
The mean horizontal velocity represents the well-known diverging tendency of the bubble plume, which is 
negative (positive) at the left (right) side of the plume. It is noted that the pre-trained PWC-Net measures the 
horizontal velocity that is biased to the negative value, indicating the limitation in the multi-body identification. 
On the other hand, the fine-tuned CNN model is capable of capturing the stiff gradient (change) of the horizontal 
velocity across the center, another well-known feature of the bubble  plume52, compared to other methods. From 
all the methods, the profiles of mean vertical velocity follow the bell shape, typically reported in the  literature22. 
The results from the Farnebäck method and the fine-tuned PWC-Net are similar to each other, whereas the 
velocities obtained by the pre-trained PWC-Net are slightly lower than those from other algorithms. For the root-
mean-squared velocity fluctuation (Fig. 10c,d), the results of the Farnebäck method and fine-tuned PWC-Net are 
higher than the others in both directions, since they are capable of reflecting the localized flow variations while 
the others make the velocity field smoothed, as discussed above. It is again noted that the Farnebäck method 
provided the highest root-mean-squared velocities, which is attributed to its sensitivity to the noise caused by 
the high-order assumption in intensity. Interestingly, depending on the methods, the r.m.s. velocity fluctuation 
is distributed in different manners; for example, the vertical component follows the concave (Lucas-Kanade 

Figure 10.  Bubble velocity profiles in the dense bubble plume: (a) time-averaged horizontal velocity; (b) 
time-averaged vertical velocity; (c) horizontal r.m.s. velocity fluctuation; (d) vertical r.m.s. velocity fluctuation. 
Open triangle, Lukas-Kanade; open diamond, Farnebäck; filled square, pre-trained CNN-based model; inverted 
filled triangle, fine-tuned CNN-based model. All velocities were averaged along the vertical (y) direction in the 
measurement plane.
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method) or convex (others) profile (Fig. 10c). Currently, it is not clearly understood how this change is incurred 
and it would an interesting topic to investigate as a future work.

Concluding remarks
In the present study, we have successfully demonstrated that the optical flow algorithms can be utilized as a 
new bubble velocimetry in experimentally investigating the gas–liquid two-phase flows in a very complex envi-
ronment, such as the high-volume void fraction. As candidates for the potential algorithm, the conventional 
methods of Lucas-Kanade and Farnebäck model and CNN-based models of pre-trained and fine-tuned PWC-
Net were tested using the high-speed bubble shadowgraph images obtained for three different configurations 
(single bubble rising near the solid wall, dilute bubble plume, and dense bubble plume). To optimize the optical 
flows, the effect of the interrogation window size (for the conventional optical flow) and the fine-tuning with the 
synthetic bubble images (for the CNN-based model) were systematically performed. Compared with the result 
of the PTV, it is found that the proposed optical flows, in general, correctly measure the temporal variation of 
the bubble velocity, in particular when there is only one bubble in the image. However, as the bubble number 
density increases substantially, which is our major motivation to develop new bubble velocimetry, the optical 
flow algorithms performed differently depending on their assumptions and level of training. For example, the 
CNN-based model that was not properly trained with the bubbly flow data did not perform well to capture the 
locally varying nature of bubble interface even in the case of dilute bubble plume, in which multiple bubbles 
simultaneously rise but rarely overlap. However, the re-trained CNN-based model (PWC-Net) was shown to be 
fully applicable even to the dense bubble plume, for which the traditional PTV approaches cannot produce any 
physically meaningful data (see the regions highlighted by dashed arrows in Fig. 8b). In overall, the Farnebäck 
and fine-tuned (re-trained) PWC-Net models tend to faithfully reflect the detailed spatial variation of each bub-
ble velocity, being rigorously checked by comparing with the bubble motion from the raw image. Considering 
the accuracy of statistically higher-order flow variations and lower computational cost, on the other hand, it is 
concluded that the fine-tuned PWC-Net is recommended over the Farnebäck method as a new bubble veloci-
metry (see the supplementary move 3).

We have shown that the intensity-based (optical) algorithm can be very useful as an accurate measurement 
tool of bubble velocity, and hopefully replaces the traditional method (e.g., PTV), which uses the identification-
based principle. To guarantee better accuracy and applicability, the physical relation between the interfacial 
deformation and the calculated velocity field inside the bubble should be elaborated, which may require detailed 
information and mechanism involved in bubble deformation (wobbling). This will be also useful to overcome the 
inherent limitation of the intensity-based algorithm such that it is hard to define the exact physical meaning of the 
evaluated velocity. Also, the change in the architecture of the CNN-based model should affect the performance 
significantly, which will be an interesting topic for future work.

While we have explained the possibility of the present velocimetry, it might be also worthy presenting the 
case in which the CNN-based optical flow fails to compute the velocity field correctly. Figure 11 shows the 
images of a rising cap bubble (with a lateral diameter of ~ 40 mm) and a few smaller bubbles (with a diameter 
of ~ 2 mm) around it, together with the entrained dye around the bubbles. Using the CNN-based optical flow 
(fine-tuned), the velocities of the large and small bubbles (denoted by the solid and dashed lines, respectively) 
are calculated (Fig. 11c). It is measured that the CNN-based optical flow provides the qualitatively reasonable 
velocity vectors according to the bubble motion: for example, the lateral motion of the small bubble is captured 
despite having a blurred edge due to the dye-induced light refraction. For the quantitative analysis, vertical (u) 
and horizontal (v) velocities of each bubble are calculated from the particle tracking velocimetry (PTV) and the 
CNN-based optical flow: for large bubble, (u, v) = (0.00 m/s, 0.28 m/s) with the PTV and (−0.02 m/s, 0.35 m/s) 
with the CNN-based optical flow; for small bubble, (u, v) = ( −0.22 m/s, 0.28 m/s) with the PTV and (−0.17 m/s, 
0.18 m/s) with the CNN-based optical flow. Compared to the PTV result, thus the deviation of the CNN-based 
optical flow ranges 24–31%, which is not negligible. Especially, the largest error occurs for the small bubble, 
which suffers from the dye-induced refraction. This is quite large compared to the error (12.4%) for the dilute 
bubble plume (see Fig. 7). This is attributed to the light noise from the dye-induced refraction, which aggravates 
the vector calculation for all bubbles in the figure. This suggests that more rigorous preparation of the training 
data (for example, specified for the irregular shapes, existence wide range of scales, and noisy backgrounds) will 
be necessary to overcome this limitation.

Figure 11.  (a,b) Consecutive images (with a time separation of 2.5 ms) of the cap bubble and a few smaller 
bubbles. (c) Corresponding velocity field obtained by the fine-tuned CNN-based optical flow (the contour 
denotes the horizontal velocity). The solid bar in (c) denotes 10 mm.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11879  | https://doi.org/10.1038/s41598-022-16145-y

www.nature.com/scientificreports/

Finally, we believe that the optimized CNN-model in the present study will also perform well for the other 
bubbly flows, since it was shown to successfully evaluate the two-phase flow (dense bubble plume) although it 
was not trained with the same data set. The optimized bubble velocimetry algorithm is available online (https:// 
github. com/ dae416/ DeepB ubble Veloc imetry), and we hope it can accelerate the further experimental investiga-
tions of the gas–liquid two-phase flows of a higher void fraction in a complex geometry.

Methods
The apparatus for bubbly flows and shadowgraphy. To establish the bubbly flows, the rectangular 
reservoir with the size of 1000 × 1000 × 1000  mm3 is filled with tap water and the air is injected through the 
sparger placed at the bottom of the reservoir, which is pressurized by the 4-HP air compressor (Airbank; AB350). 
The flow rate of air is controlled by the pressure regulator, through which the three different void fractions (α) 
are achieved: ~ 0 (single rising bubble), 1.13% (dilute bubble plume), and 58% (dense bubble plume) (Fig. 2a–c). 
With increasing α from 1.13 to 58%, the size distribution of bubble, which follows the typical log-normal  curve22, 
broadens from 2.1 to 4.9 mm (where the median diameter, d50, is 3.25 mm) to 1.6–5.4 mm (d50 = 3.47 mm). 
Here, we used Sauter mean diameter for the size of deformable ellipsoidal bubble. For the dimensionless param-
eter, the Reynolds number ( Re = ρld50vavgµ

−1
l  ), Weber number ( We = ρlv

2
avgd50σ

−1
l  ), and Froude number 

(Fr = v2avg/(gd
2
50) ) ranges as 750–1,910, 2.4–15.0, and 510–2850, respectively. Here, ρl , µl , and σl , denotes the 

density, dynamic viscosity, and surface tension of the liquid, respectively. And, g and vavg corresponds to the 
gravitational acceleration and the averaged vertical velocity of the bubble, respectively. The ratio of maximum 
and minimum size of the bubbles contained in the same image is around 29.5. To capture the bubble image, the 
light source and the diffusion plate are placed at one side of the reservoir, and the high-speed camera (Speed-
sense M310; Dantec Dynamics) is located at the opposite side, of which the spatial resolutions are 800 × 304 
pixels (for the rising single bubble), 400 × 608 pixels (for dilute bubble plume), and 800 × 1280 pixels (for dense 
bubble plume) and the sampling rate is 1000 Hz (sufficient to capture the unsteady bubble shape and motion). 
Based on the convergence test, we have found that the bubble statistics are converged when they are averaged 
over 200 pairs of bubble images, which were adopted in this study to validate the measured bubble velocities.

Conventional particle tracking velocimetry (PTV). The PTV is performed using the in-house code, 
which consists of the binarization, identification, and evaluation, as shown in Fig. 1a–d. First, the shadow image 
of bubbles (or the bubble plume) is binarized using the Sauvola adaptive  algorithm7. Then, the bright area inside 
the bubble is filled to avoid underestimating the bubble size. Next, the out-focused bubbles are excluded by 
thresholding the lower magnitude of intensity gradient at the bubble edge, and the overlapped bubbles are sepa-
rated with the watershed  transform5. For each time interval, the center locations of identified bubbles are col-
lected. To evaluate the velocity vector, the bubble centers at two consecutive time instants are matched with the 
assumption that they are closest than others, while the outlier vectors are eliminated when the vector magnitude 
exceeds the prescribed threshold. Finally, the distance between location pairs is calculated and divided by the 
time interval between consecutive images, resulting in the bubble velocities (Fig. 1d). The procedure of the PTV 
is performed by CPU  (Intel® Core™ i7-5960X CPU @3.00 GHz), and the time costs for each sub-process are 
outlined in Table 1.

Estimation of the uncertainty propagation. The uncertainty in the velocity measurement based on 
digital image acquisition comes from various hardware and software  sources53. Since the velocity (u) is assumed 
to be a function of (M, Δs, Δt), the uncertainty is evaluated as δ(u) =

√

δ(M)2 + δ(�s)2 + δ(�t)2 , based on the 
error  propagation5,8,53–55. Here, M is the magnification factor, Δs is the object displacement during the time dif-
ference of Δt, and δ(∗) is the relative uncertainty of the variable ‘*’. The magnification factor is determined by the 
calibration and its relative uncertainty was found to be approximately 0.7%. The relative uncertainty in the object 
displacement and the time separation of our setup was 1.8% and 0.05%, respectively. Finally, it is estimated that 
the uncertainty in measuring the velocity from the present optical figuration is around 1.93%.

Architecture and detailed setting of PWC‑Net (CNN). Although some details about the tested CNN 
(i.e., PWC-Net), such as the number of layers, learning rate, and batch size were given in the main text, here we 
explain the detailed architecture and calculation procedure. Figure 12 shows the architecture of the PWC-Net 
proposed by Sun et al.35, which consists of the feature extractor, warping, cost volume, velocity field estimator, 
and context network. Based on this configuration, first, the two consecutive bubble images are fed into the same 
series of the convolution filters (i.e., Siamese network), which increases the depth of the feature (by increasing 
the number of the channel for the convolution filter) and coarsens its spatial resolution (by setting the stride as 
2), resulting in 6 features for each bubble-image. At the 7th level (i.e. the lowest resolution), the correlation field 
( c7 ) is evaluated by the partial cost volume function, expressed as c7 = 1/N ·

(

f 7
1

)T
f 7
2

 , where f and N denote 
the feature and its length while the sub- and super-scripts correspond to the image order and the level of the 
feature, respectively. The correlation field padded with the f 71  is converted to the draft of the velocity field ( d7 ) 
through the series of the convolution filters where the leaky ReLU is used as the activation function except for 
the last layer, which produces the d7 . And, as a post-processer, the context network finally generates the velocity 
field ( v7 ) using the feed-forward CNN based on dilated convolutions to increase the receptive field size of the 
 output35,56. Next, at the next-lower level (i.e.  6th level), the two features ( f 71,2 ) from the feature extraction are fed 
into the cost volume; however, in advance, the warping of the second feature, f 62  , is implemented to compensate 
for the large motion and increase the precision, expressed as f 62w = f 62 (x + 2 · v7up(x)) , where x denotes the pixel 
location with fixed depth and v7up is the formerly obtained velocity field which is up-sampled using the bilinear 
interpolation. And then the correlation field ( c7 ) added with the first feature ( f 71  ) and the upscaled velocity field 

https://github.com/dae416/DeepBubbleVelocimetry
https://github.com/dae416/DeepBubbleVelocimetry
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( v7up ) from the higher level is converted to the velocity field ( v6 ) through the velocity field estimator and the 
context network (Fig. 12). This procedure is repeated until the velocity field ( v3 ) at the third level is generated in 
this study. Since the spatial resolution is a quarter of the original image, v3 is finally up-sampled by the bilinear 
interpolation to have the same resolution as the bubble image. Additionally, the training loss ( L ) during the fine-
tuning is computed by L(�) =

∑7
l=3αl

∑

x

(

vl�(x)− vlS(x)
)

+ γ |�|22 , where x, l, and � , respectively, denote the 
pixel location, the feature level, and the set of every learnable parameter included in the feature extractor, veloc-
ity estimator, and context network. vl� and vlS , respectively, mean the predicted and supervised velocity field at 
the lth feature level. The weights ( αl ) for each level is set as 0.005, 0.01, 0.02, 0.08, and 0.32 for l = 3, 4, 5, 6, and 
7, respectively. |·|2 corresponds to the L1 norm, which regularizes networks’ parameters. The trade-off weight 
( γ ) is selected as 0.0004.

Data availability
All data generated or analyzed during this study are included in this published article and supplementary infor-
mation files.
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