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Comparing machine learning 
and deep learning regression 
frameworks for accurate prediction 
of dielectrophoretic force
Sunday Ajala1, Harikrishnan Muraleedharan Jalajamony1, Midhun Nair2, 
Pradeep Marimuthu3 & Renny Edwin Fernandez1*

An intelligent sensing framework using Machine Learning (ML) and Deep Learning (DL) architectures 
to precisely quantify dielectrophoretic force invoked on microparticles in a textile electrode-based 
DEP sensing device is reported. The prediction accuracy and generalization ability of the framework 
was validated using experimental results. Images of pearl chain alignment at varying input voltages 
were used to build deep regression models using modified ML and CNN architectures that can 
correlate pearl chain alignment patterns of Saccharomyces cerevisiae(yeast) cells and polystyrene 
microbeads to DEP force. Various ML models such as K-Nearest Neighbor, Support Vector Machine, 
Random Forest, Neural Networks, and Linear Regression along with DL models such as Convolutional 
Neural Network (CNN) architectures of AlexNet, ResNet-50, MobileNetV2, and GoogLeNet have been 
analyzed in order to build an effective regression framework to estimate the force induced on yeast 
cells and microbeads. The efficiencies of the models were evaluated using Mean Absolute Error, Mean 
Absolute Relative, Mean Squared Error, R-squared, and Root Mean Square Error (RMSE) as evaluation 
metrics. ResNet-50 with RMSPROP gave the best performance, with a validation RMSE of 0.0918 on 
yeast cells while AlexNet with ADAM optimizer gave the best performance, with a validation RMSE of 
0.1745 on microbeads. This provides a baseline for further studies in the application of deep learning in 
DEP aided Lab-on-Chip devices.

Tools like DL and ML are integral part of artificial  intelligence1–3. ML for image analysis typically involves extrac-
tion of important features from an image and training a machine learning  model4. Machine learning can be 
highly efficient when the extracted features distinctly represent a particular image. Images need to be converted 
into feature vectors and train a  model4–6. are examples of approaches where machine learning has been used to 
predict the presence, absence or possibility of an occurrence in images. However, extraction of significant features 
from complex images is intricate. Alternatively, deep learning does not depend on an input feature. Rather, DL 
models identifies significant features from processed images and classifies them based on the identified features. 
Feature maps extracted through deep learning from computed tomography (CT), magnetic resonance imaging 
(MRI), positron emission tomography (PET), mammography, ultrasound, and histopathology, provide valuable 
information 4,7,8. In cellular biology, DL-based approaches are primarily adopted to detect changes in cell mor-
phology and correlate them to the mechanisms governing drug  response7,8. Images of brain, prostate, retina, lungs 
are often combined with deep learning algorithms to predict medical conditions. U-Net, ResNet, and VGG are 
the most frequently used Convolutional neural network-derived networks for medical image segmentation and 
classification tasks. Recently, transfer learning and GAN-derived networks were widely applied in COVID-19 
studies. Although, DL training involves intense data processing and long training time, it gives accurate predic-
tions when used with high performance GPU and labelled data. In this study, we have designed models using 
both machine learning and deep-learning approaches to estimate the magnitude of dielectrophoretic force from 
microparticle alignment in a point-of-care device.
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Significance. Application of DEP in point-of care sensing devices demands two important requirements—
(1) Low voltage (< 10 Voltage) physical device (2) an intelligent system that can correlate microparticle pearl-
chain formation into dielectrophoretic force.

The dielectrophoretic force ( FDEP ) invoked on a microparticle can be directly correlated to its dielectric 
property changes (Eq. 1). The DEP force is also proportional to the electric field intensity, particle dimension and 
medium  conductivity9–12. Practically, particle alignment with respect to the electrodes, at a particular voltage and 
frequency is taken as an indicator of DEP force. Although particle alignment differs from experiment to experi-
ment, some of the features of the particle aggregates are dominant and unique. FDEP exerted on microparticles 
drive them into pearl chain assemblies which eventually will be aligned along the electric  field13,14. For instance, 
the number of particles in a pearl chain at an applied voltage has been found relatively constant. The pattern has 
been confirmed by several researchers in the past. In an experiment with 5 µm PS  beads15, pearl chains with 10–12 
beads where formed for an applied potential of 15  Vpp at 200 kHz. Likewise,10 µm PS beads formed pearl chains 
with 7–12 beads at 20  Vpp at 20 MHz in a low conductivity buffer (1.8 ×  10−4 S/m)13.  In16 negative DEP of the PS 
beads was observed when a voltage of 3.8  Vpp of 480 kHz frequency was applied, forming 6–7 beads-long pearl 
chain. Similar studies on yeast cells have been reported when voltage (3.7  Vpp) at a field frequency of 580 kHz 
exhibited positive DEP, the number of particles aggregated were found to be related to the applied  voltage16,17.

Most of the studies have been reported on Lab-on Chip devices with precise geometrical features. Electrode 
aided DEP systems are mainly based on planar  electrodes18–21 which require voltages between 10–20 V. Elec-
trodeless DEP (i-DEP) systems, operated at voltages in the 20–100 V range, are used for studying the dielectric 
variations of biological cells and polymer  beads22,23. Advances in nanofabrication and nanotechnology have 
resulted in several DEP aided Lab-on-a-chip (LOC) systems that are used for microparticle  separation24–26, 
 identification21,27,  concentration28. Several studies have reported dielectric characterization of biological particles 
such as viruses, bacteria, fungi, protozoa, proteins, lipids, and  DNA21,29–32 using DEP aided LOC systems. DEP 
aided immunological sensing is advantageous as they increase the local concentration of target particles thereby 
enhancing the overall device sensitivity and response  time33. DEP aided LOC has been utilized in conjunction 
with scanning electron microscopy (SEM) to capture and immobilize viable cells in the SEM region without the 
use of a chemical surface  modification34.

The requirement to precisely estimate FDEP induced on particles is critical in the development of efficient 
microfluidic systems. FDEP estimation is a necessity in DEP aided dielectric characterization systems used in 
clinical diagnostics of biological  cells32. Patterns of microparticle aggregation is a direct indicator of FDEP and 
can be correlated to the dielectric properties of microparticles including biological  cells21,22,31,35,36. However, due 
to drag force phenomenon, the yield of LOC devices is extremely low at higher flow  rates37. To circumvent this 
constraint, the FDEP induced on the particles should be increased  substantially31,32,38 resulting in a need for 3D 
microelectrodes. The cost of creating LOC systems with 3D electrodes involve nanofabrication techniques that 
are prohibitively high. We have developed an alternative by using textile electrodes that can invoke high FDEP 
due to its high surface area.

In our previous  work12,17, we have reported the use of textile electrode-based DEP device in conjunction with 
deep learning to predict the FDEP induced on PS microbeads where we cast the FDEP estimation task as a clas-
sification problem. Convolutional Neural Networks (CNNs) classifiers were used to estimate the applied DEP 
voltage from the pearl chain alignment of the microbeads. This was done to tackle the limitations in the existing 
FDEP estimation techniques such as the equivalent dipole (EDM)39,40, Maxwell stress tensor (MST)41–44, iterative 
dipole moment (IDM)9,40,45,46 or velocity tracking method. We had used a classification-oriented CNN method 
in training the CNN models, which though gave excellent training results, performed poorly on testing with 
adversarial  samples12,17. Also, classification paradigm may be inadequate for accurate FDEP computation as the 
spacing between distinct voltages is crucial. This can only be modeled accurately using a regression framework.

In this work we have treated the FDEP estimation task as a regression  problem47–49 and have used ML and DL 
models for analyses. Regression models in computer vision cover a wide range of scenarios, including head-
position  estimation50, face landmark  recognition51, and age  estimation52,53. Regression is commonly used to 
tackle problems requiring the prediction of continuous values. CNN-based deep regression approach has been 
adopted for cell counting using  micrographs48,54. In such situations, the softmax layer is often replaced with a 
fully connected regression layer with linear or sigmoid activations. Also, the softmax loss which is widely used 
for classification tasks is replaced with Euclidean loss for  regression48.

In this research, we have explored ML algorithms like Random Forest, KNN, MLP, SVM, and Linear Regres-
sion to determine the FDEP experienced by polystyrene beads and yeast cells in a low conductivity buffer. Because 
of the ML algorithms especially on out-of-sample and adversarial samples, we further experimented extensively 
with DL architectures which has the capacity to learn complex data representations with greater accuracy. Using 
ML approach as a bench mark we explain how deep learning may be used to accurately determine the FDEP . 
AlexNet, ResNet-50, MobileNetV2, and GoogLeNet are the four pre-trained CNN architectures in this study 
that were modified into deep regression CNN architectures. We trained the models to predict applied voltages 
from micrographs of polystyrene and yeast cell pearl chains generated during dielectrophoresis using transfer 
learning. The abbreviations and words listed in Table 1 will be used throughout the rest of the paper.

Materials and methods
Dielectrophoretic force estimation theory. The interaction of a non-uniform electric field with a 
dipole is known as dielectrophoretic force FDEP.To improve the approximation of the FDEP exerted on the parti-
cles in terms of the voltage applied, a more tangible and straightforward model is required to advance DEP aided 
sensing systems. The FDEP when the particle is significantly smaller than the non-uniformities in the electric 
field is given  in17 as:
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where a is the radius of spherical microparticles in a medium, under an alternating current (AC) field Erms ; FDEP 
depends on the product of the localized field with its gradient ( ∇E2rms ) and the frequency-dependent complex 
dielectric contrast of the particle versus the medium, as given by real-part of the Clausius–Mossoti factor Re

(
fcm

)
;

where ε∗p and ε∗m are the complex permittivities of the microparticles and the medium, respectively; and 
given as:

where i =
√
−1 and ω is the angular frequency of the applied AC field.

The DEP fingerprints, or dielectric properties, of a particle in a certain media can be determined by altering 
the AC signal frequency. Particles can be manipulated once their DEP fingerprints have been discovered. For 
particle chains, FDEP can be theoretically  calculated55 using multipole re-expansion and the method of images. 
FDEP on a particle chain is highly dependent on the angle between the applied field and the chain. The maximum 
attractive and repulsive forces in a chain grow significantly with the number of particles in the chain, but when the 
number of particles is large enough, they reach saturation. This FDEP was analytically calculated and given  as17:

(1)FDEP = 2πa3εmRe
(
fcm

)
∇E2rms

(2)fcm = Re

(
ε∗p − ε∗m

ε∗p + 2ε∗m

)

(3)ε∗p = εp − i
σp

ω

(4)ε∗m = εm − i
σm

ω

(5)FDEP = εEε0EEn −
1

2
εEε0E

2n

Table 1.  A list of abbreviations and terms used in the paper.

Abbreviation Meaning

ML Machine learning

DL Deep learning

DEP Dielectrophoretic

CNN Convolutional neural networks

PS Polystyrene

KNN K-nearest neighbor

SVM Support vector machine

MAE Mean absolute error

MRE Mean absolute relative

MSE Mean squared error

RMSE Root mean square error

CT Computed tomography

MRI Magnetic resonance imaging

PET Positron emission tomography

i-DEP Electrodeless DEP

LOC Lab-on chip

SEM Scanning electron microscopy

EDM Equivalent dipole

MST Maxwell stress tensor

IDM Iterative dipole moment

AC Alternating current

ID Inner diameter

OD Outer diameter

ReLU Rectified linear unit

ADAM Adaptive moments

RMSProp Root Mean square propagation

SGDM Stochastic gradient descent with momentum

AdaGrad Adaptive gradient

Li Pearl chain lengths
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where εE the relative permittivity of the medium, E is the electric field on the microparticle surface, En  is the 
normal component of E, and n is the unit normal vector on the surface. However, theoretical estimate of FDEP 
from micrographs is problematic due to discrepancies in the thread structure. At the microscopic level, the 
orientation of textile strands differs greatly. The calculated force becomes ambiguous as a result.

The applied voltages are predicted by examining the patterns of pearl chain orientation. From the micro-
graphs collected, the deep learning regression algorithms predicted the applied voltage on particles. The force on 
a chain of spherical dielectric particles in a dielectric fluid is proportional to the number of particles as well as 
its orientation to the electric field, according to various  studies55,56. As a result, a direct link between the applied 
voltage and the pearl chain formation has been established.

Problem formulation. Let us assume that the j − th image is defined in an input space xj ∈ X , and there is 
an output space yi ∈ Y = {u1, u2, · · ·, uk} with sorted ranks uk ≫ uk−1 ≫ · · · ≫ u1 . The symbol ≫ represents 
how different rankings are ordered. Given a training dataset χ = {xi , yi}Ni=1 , the goal of regression is to create a 
mapping from pearl chain images to ranks g(.) : X → Y  such that the risk functional R(g) is minimized using 
a specified cost c : X × Y → R . The cost matrix C  is used to calculate the difference in cost between predicted 
and ground-truth ranks in this  research53. C is a K × K matrix with Cy,u denoting the cost of predicting a sample 
(x, y) with rank u . Normally,

when u  = y , Cy,u > 0 and Cy,y = 0 are assumed. For general regression issues, the absolute cost matrix, which 
is defined as Cy,u = |y − u| , is a frequent choice. When applying regression techniques to FDEP estimation, each 
voltage is treated as a rank.

Machine learning aided pearl chain detection from DEP micrographs. The DEP framework device 
(Fig. 1) comprises flexible textile electrodes sewn through a silicon O-ring (ID: 1 mm, OD: 3 mm). The textile 
electrodes are silver-coated conductive string, 82% nylon, and 18% silver. This structure was mounted on a 1 × 1 
inch glass slide. Strings were secured using copper tape, which acted as an electrical contact. Tests were per-
formed by introducing 10 μL of fluid into the O-ring chamber. A 3D printed custom microscope stage encloses 
the whole gadget for recording pictures. The pearl chain formations were recorded at different voltages at a fixed 
frequency of 200 kHz (Fig. 1b). During our dielectrophoresis experiments with yeast cells and 10–20 µm sized 
PS microbeads using this setup, 200 micrographs were collected at each voltage level from 1–10 V for yeast cells 
and polystyrene microbeads, making a sum of 4000 images.

Yeast cells (Saccharomyces cerevisiae) are grown in an incubator at 30 °C. The growth medium yeast extract 
peptone dextrose consisted of 20 g/l peptone, 10 g/l yeast extract, and 20 g/l dextrose dissolved in deionized (DI) 

Figure 1.  (a) Textile electrode-based DEP device with the connection base (b) SEM micrograph of textile 
electrodes.
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water. The cells were collected at the stationary growth phase after 1 day of culture in shaking incubator, and 
they were harvested by centrifugation for 2 min at 3000 rpm and re-suspended in measurement buffers. Plain 
polystyrene (PS) beads (10, 20 µm) were purchased from Spherotech, Inc., USA. PS beads are charge neutral 
and are hydrophobic. There was no surface functionalization used. The buffer did not include any surfactant.

Low conductivity buffer: All the microparticles were suspended in an isotonic buffer consisting of 200 mM 
sucrose, 16 mM glucose, 1  MCaCl2, and 5 mM  Na2HPO4 in DI water (pH 7.4) for the experiments.

Feature extraction for machine learning based regression analysis. We designed a template matching algorithm 
for object detection using OpenCV  (algorithm I) to extract the total number of pearl chains in an image, count 
each pearl chain and map them into a matrix that represents these features. (Fig. 2). Pearl chains are identified 
within the image using reference shapes which are the cropped images of individual microparticles which is the 
recognition template. The image dimensions of the template image are also extracted i.e. height, width, to cal-
culate the radius of the microparticle. The radius of a sample pearl in unit of pixels is calculated as r = (l + b)/4 
where l  is the length and b is the breadth of the template image of microparticle. In the formula c is a constant 
which is fixed at 1/4 of r . The value of c can be corrected until the output data set includes the data of undetected 
pearl chains.

The input image is represented as I(x, y) , with (x, y) denoting the pixel coordinates. T
(
x
′
, y

′
)
 denotes the 

coordinates of each pixel in the template. Template-Based Matching is done by simply moving the center (or the 
origin) of the template T

(
x
′
, y

′
)
 over each (x, y)  point in the input image and calculate the sum of products 

between the coefficients in I(x, y) and T
(
x
′
, y

′
)
 , over the whole area spanned by the template. As all possible 

positions of the template with respect to the input image are searched, the position with the highest score is the 
best position. In the OpenCV implementation, for each location of T over I, we store the cross correlation metric 
(TM_CCORR_NORMED) in the result matrix R. The cross correlation metric (TM_CCORR_NORMED) used is 
depicted mathematically as R(x, y) in Eq. 6. Each location (x, y) in R contains the match or cross correlation score, 
which is the result of sliding the patch with a metric TM_CCORR_NORMED . The brightest locations indicate 
the highest matches.

The method matchTemplate() in the OpenCV  library was used to compare the template image with the input 
images. The external libraries cv2, numpy, glob and workbook were also used. The detected microparticles are 
marked and corresponding coordinates are stored. Individual pearls are marked in the image using imwrite() 
method. The coordinates obtained are combined with the value of the radius of the pearl, which is then used 
to identify the pearl chain. After the function finishes the comparison, the best matches can be found as global 
maximums (TM_CCORR_NORMED)  using the minMaxLoc function. In case of a color image, template sum-
mation in the numerator and each sum in the denominator is done for all the channels. The result will still be a 
single-channel image, which is easier to analyze. The center coordinate of each microparticle is extracted from 
the coordinate data set. Each coordinate is used to search for the adjacent microparticle using the condition 
2r + c . All the microparticles nearest to a chain are identified and grouped to a dataset, duplicates are removed, 
and pearl chains are categorized into pearl chain count, CL where L = [2, 3, 4 . . . 18] . Identified pearl chains are 
stored in a list, which at the end of processing the pearl chain length and count is stored in an excel sheet. The 

(6)R
(
x, y

)
=

∑
x
′
,y
′T

(
x
′
, y

′
)
· I(x + x

′
, y + y

′
)

√∑
x
′
,y
′T

(
x
′
, y

′)2 ·
∑

x
′
,y
′ I(x + x

′
, x + y

′
)
2

Figure 2.  Pearl chain analysis using a Template-Based Matching algorithm and particle coordinate search 
algorithm. A template image is shifted across the DEP micrographs by an offset (x, y) using the origins of 
the two images as reference points. Pearl chain lengths (Li) is determined using a particle coordinate search 
algorithm.
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precision of image detection can be controlled by changing the values of the threshold in the code. Method 
excelWrite() is used for representing the data of bulk image processed in excel sheet.

Machine learning models trainings. Prediction of target variable (applied voltage) was done using 18 predic-
tors—which are the pearl chain features. Each predictor represents the number of particles in a pearl chain. 
Predictors of our model were extracted from the micrographs (Fig. 2). The value of each predictor is the number 
of microparticles in a pearl chain at an applied voltage. Pearl chain count, CL where L = [2, 3, 4 . . . 18]  repre-
sents the number of pearl chains of a specific chain length L ,  CL values for all images taken at different voltages 
are stored in as a matrix and used as features or predictors in order to represent the DEP force. The pearl chain 
formations were recorded at different voltages. We hypothesize that pearl chain counts CL in a micrograph at 
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different voltages Vx where 1 ≤ x ≤ 10 , is a thorough representation of DEP micrographs. Evident from the 
micrographs, pearl chain formations were observed at voltages as low as 2 V. However almost all the pearl chains 
had not more than 2 microparticles ( C2 ). At 3 V, 84% of the pearl chains were C2 and 15% of them were C3 . For 
voltages beyond 5 V, ~ 40% of the pearl chains have more than 4 microparticles (C4) . Above 7 V, C8 − C10 is 
significant (6.7%). In the 7–10 V range, C2 − C5 percentages were very low and majority of the pearl chains had 
more than 8 microparticles C8.

ML analyses were performed using the Orange toolbox by writing Python scripts accessing the Orange API. 
Additional functionalities like feature importance were developed using Python Script widgets. 80% of dataset 
is assigned as training data set and 20% to testing. Missing values were replaced with the median value of the 
features. Features with higher dominance in predicting the targets are identified from training sets. As shown in 
Fig. S1, different ML architectures such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random 
Forest, Neural Networks, and Linear Regression were trained on the dataset extracted from the PS microbeads 
micrographs. The Python scripts used for the machine learning is made available via this Github Link (https:// 
github. com/ skmid hun09/ image_ detec tion_ python).

Feature importance estimation for maximum relevance and minimum redundancys. Extraneous features 
degrade the performance of a model while also increase computing costs. It is critical to find a subgroup of 
high-prevalence features. Some of the features have a considerable impact on the response model than others. 
We ranked the importance of features or predictors using RReliefF algorithm with k-nearest neighbors. RReliefF 
is a function that works with continuous target. RReliefF penalizes features who offer different values to neigh-
bors with the same response values, and rewards features who give different values to neighbors with different 
response values. Figure 3 shows the features importance ranking obtained by implementing RReliefF . Among 
the CL predictors where L = [2, 3, 4 . . . 18] , C8 was found to be the most important feature with a weight of 0.48, 
followed by C10 and C11 with importance weight value of 0.37 and 0.36 respectively. C1 had the least score of 0.06 
and C12 − C14 were found to be insignificant.

Convolutional neural networks as base architecture for deep regression. Convolutional Neural 
Networks (CNN) was used to extract local trends from spatio-temporal patterns of pearl chain formation. CNNs 
have at least one layer that uses the convolution operation to extract  features57,58. CNNs are used in image pro-
cessing applications, including automated histopathological image  segmentation59, automated reconstruction of 
low-contrast image such as magnetic resonance imaging (MRI)60,61, quantify cyanobacteria from hyperspectral 
 images62, medical image processing for direct disease  diagnosis63,64, as well as in other disciplines including 
speech  recognition58,65 and weather  forecast57,66.

We have used four pre-trained CNN architectures viz.  AlexNet67,  MobileNetV268,69,  GoogLeNet70 and 
ResNet-5071 as the base architectures for deep regression analysis. Table 2 presents a brief overview of these 
pre-trained CNN architectures. All these architectures were initialized as pre-trained version of the networks 
which were initially trained on ImageNet dataset for classification. As illustrated in Fig. 4, the pre-trained CNN 
architectures consist of an input layer, which represents the pixel matrix of an input image, followed by a series of 
convolution layers that uses Rectified Linear Unit (ReLU) activation. Between two convolution layers is a pooling 
layer, where max pooling operation is done to down-sample the convoluted image (feature map). Subsequently 
a fully connected layer where all the inputs are connected along with softmax layers. In order to retrain these 
pre-trained networks for regression, we remove the last softmax layers from the base architectures (AlexNet, 
MobileNetV2, GoogLeNet and ResNet-50), employed in the context of classification, and then replace the final 
fully connected layer, the softmax layer, and the classification output layer with a fully connected layer of size 
1 (the number of output variable) with linear activations and a regression layer. As a result, the last layer is a 
regression layer, whose output dimension corresponds to that of the target space.
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Figure 3.  Ranking the importance of the predictors using RReliefF algorithm to find a subgroup of high-
prevalence features.
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Notable hyperparameters such as the learning rate α and batch size nb were appropriately tuned to minimize 
the cost function and speedup optimization while ensuring the models converge to the global minimum, thereby 
solving the problem of  overfitting69,72. Table 3 presents the CNN hyperparameters used. A series of adaptive learn-
ing rate algorithms have recently been developed, Adaptive Moments (Adam)72, root mean square propagation 
(RMSProp)72,73, and stochastic gradient descent with momentum (SGDM)74 optimizers explored in this work are 
among the most widely used optimization algorithms. Table 4 presents a concise overview of these algorithms.

Table 2.  Brief overview of the pre-trained CNN architectures.

Architecture Main Finding Number of Parameters Depth Numbers of Layers Input Size Dataset Error Rate

AlexNet Uses Dropout and ReLU 61 million 8 25 227 × 227 ×  3 ImageNet 16.4

ResNet-50 Resistant to overfitting, due to symmetry mapping-based 
skip linkages 25.6 million 50 177 224 × 224 ×  3 ImageNet 3.57

MobileNetV2 Inverted residual framework 3.5 million 53 154 224 × 224 ×  3 ImageNet –

GoogLeNet Block and concatenation concepts, varied filter size, 
increased depth 7 million 22 144 224 × 224 ×  3 ImageNet 6.7

Figure 4.  Modification of the Convolutional Neural Networks base architectures (viz: AlexNet, MobileNetV2, 
GoogLeNet and ResNet-50) from the conventional classification framework to a regression framework.

Table 3.  Hyperparameters used.

Hyperparameters Value

Batch size ( nb) 10

Learning rate ( α) 0.0001

Optimizers RMSProp, SGDM, ADAM

Number of Epochs 100

Validation frequency 30

Execution environment CPU

Table 4.  Overview of optimization algorithms.

Optimizer Update Rule Description

RMSProp VdW = βVdW + (1− β)dW2

W = W − α dW√
VdW+ε

i. An extension of gradient descent called Adaptive Gradient, or AdaGrad
ii. It avoids drastically lowering learning rates by converting the gradient accumulation to an exponentially weighted moving aver-
age
iii. For that weight, RMSProp only considers recent gradients

ADAM

SdW = β1SdW + (1− β1)dW

VdW = β2SdW + (1− β2)dW
2

ScorrdW = SdW
(1−β1)

t

VcorrdW = VdW

(1−β2)
t

W = W − α
ScorrdW√
VcorrdW+ε

i. ADAM is an improvement to the RMSProp optimizer that incorporates momentum method
ii. It is an algorithm for handling sparse gradients in noisy problems
iii. ADAM is simple to set up, and the default settings work well for most problems

SGDM SdW = βSdW + (1− β)dW
W = W − αSdW

i. The SGDM approach aids in the acceleration of gradient vectors in the proper directions, resulting in faster convergence
ii. It requires more training time and requires hyperparameter tuning than ADAM and RMSProp
iii. It is more effective than traditional gradient descent
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The image files collected from micrographs of pearl chain formation at various voltages ranging from 1 to 
10 V were used to perform deep learning analysis.

Image preprocessing and segmentation. In order to improve the computational time and accuracy, we applied 
an optimum adaptive threshold method to reduce the complexity of pearl chain  images75. Figure 5 depicts the 
flowchart of the image analysis and segmentation technique. Also, we summarized all of the steps of the segmen-
tation process in Algorithm II.

The MATLAB Image Processing Toolbox was utilized to prototype the methods for image processing in this 
research. Grayscale conversion, adaptive thresholding segmentation, and morphological operations were all part 
of the image processing procedures were carried out systematically for 4000  images5,76–78.   I(u, v) are grayscale 
images of the pearl chains in a Euclidean space E . Through intensive thresholding of the pearl chain regions 
from the micrograph, adaptive global threshold was employed to accomplish segmentation of the pearl chains. 
The threshold value selected was obtained through image histogram to produce the binarized output Iβ(u, v).

α is the adaptive threshold value applied to original input image I(u, v) to get the resultant image, denoted 
with Iβ(u, v) . In the next steps, a morphological operation called dilation is applied on Iβ(u, v) using structur-
ing element S1 (an array of horizontal and vertical lines). The dilation of Iβ(u, v) by S1 is mathematically defined 
as  in76,77 by Eq. (8) and (9) below, where Ŝ1 is the translation of the array S1 by the vector z and ∅ is a null set:

Now, performing a morphological closing operation defined  in77,78 as the erosion of Iγ (u, v) by a horizontal 
structuring element S2 , followed by dilation of the resulting image by S2 , we obtain Iδ(u, v) as shown below:

Then, we fill the holes of the pearl chains and cleared its border. Then taking a morphological closing opera-
tion defined  in77 as the dilation of Iδ(u, v) by a horizontal structuring element S2 , followed by erosion of the 
resulting image by S2 , we obtain as shown below:

(7)Iβ(u, v) =
{
1 I(u, v) ≥ α

0 I(u, v) < α

(8)Iγ (u, v) = Iβ(u, v)⊕ S1

(9)Iγ (u, v) =
{
z ∈ E|

(
Ŝ1

)

z
∩ Iβ(u, v) �= ∅

}

(10)Iδ(u, v) = Iγ (u, v) ◦ S2

(11)Iδ(u, v) =
{
z ∈ E|

(
Ŝ2

)

z
∩
({

z ∈ E|Ŝ2 ⊆ Iγ (u, v)
}
�= ∅

)}

(12)Iθ (u, v) = Iδ(u, v) · S2

Figure 5.  A flowchart of morphological operations carried out on the micrographs for image segmentation, the 
output segmented image O(u, v) is generated by concatenating Iθ (u, v) thrice to form the equivalent true color 
(RGB) image.
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In the final step, the output segmented image O(u, v) is generated by concatenating Iθ (u, v) thrice to form the 
equivalent true color (RGB) image.

The MATLAB code used for the image processing task described above can be accessed through this Github 
link (https:// github. com/ Ajala Sunday/ Neural- Netwo rks- Fall- 2021/ blob/ 16ac1 70830 74312 72fc2 c5c72 ee255 94d0a 
81446/ Prepr ocess ingPC FImag es.m).

Results and discussion
Model testing and evaluation metrics. The models were assessed for their performance by testing if 
pearl chain arrangements in a micrographs can be correlated to input voltages to find the model with the best 
performance using these four key performance metrics: Mean Absolute Error (MAE), Mean Relative Error 
(MRE), Mean Squared Error (MSE), R-squared, and Root Mean Square Error (RMSE)48,49,57,79. They are math-
ematically expressed as given by Eqs. (15–20) where y , ŷ  , and y define the actual value, predicted value, and 
mean of the y values and n is the number of samples:

(13)Iθ (u, v) =
{
z ∈ E|Ŝ2 ⊆

({
z ∈ E|

(
Ŝ1

)

z
∩ Iδ(u, v) �= ∅

})}

(14)O(u, v) = Iθ (u, v) ∩ Iθ (u, v) ∩ Iθ (u, v)

(15)MAE =
1

n

n∑

i

∣∣yi − ŷi
∣∣

(16)MRE =
1

n

n∑

i

∣∣yi − ŷi
∣∣

yi

(17)MSE =
1

n

n∑

i

(
yi − ŷi

)2

(18)R − squared = 1−
∑n

i

(
yi − ŷi

)2
∑n

i

(
yi − y

)2

https://github.com/AjalaSunday/Neural-Networks-Fall-2021/blob/16ac1708307431272fc2c5c72ee25594d0a81446/PreprocessingPCFImages.m
https://github.com/AjalaSunday/Neural-Networks-Fall-2021/blob/16ac1708307431272fc2c5c72ee25594d0a81446/PreprocessingPCFImages.m
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The prediction accuracy of the models can be defined is given by Eq. (20):

The MAE assesses the average magnitude of errors in a group of predictions without taking into account their 
direction. It assesses the precision of continuous variables. MSE is often referred to as quadratic loss since the 
penalty is related to the square of the error rather than the error itself. When the error is squared, the outliers 
are given more weight, resulting in a smooth gradient for small errors. With an increase in error, MSE grows 
exponentially. The MSE value of a good model should be close to zero. RMSE is computed by taking the square 
root of MSE. RMSE is the more easily interpreted as it has the same units as the quantity. MAE, MSE, and RMSE 
can range from 0 to ∞. The goodness of fit of a regression model is represented by a statistical measure called 
R-squared. The optimal R-squared value is 1. The closer the R-square value is to 1, the better the model fits.

Deep regression model for dielectrophoretic force estimation. After image processing and seg-
mentation steps, the images are resized to fit the input layer dimension for each model (Table 2). These seg-
mented image datasets are then augmented using augmentation procedures, such as randomly flipping them 
along the vertical axis and randomly translating them horizontally and vertically up to 30 pixels for training 
and validating the deep regression models (Fig. 6). Data augmentation keeps the networks from overfitting and 
ensure they adequately generalized. AlexNet, ResNet-50, MobileNetV2, and GoogLeNet were the four CNN 
architectures examined in this study. During the training phase of the models, the image datasets (2000 image 
samples each for yeast cells and PS microbeads) were partitioned into 80% (i.e. 1600 image samples each for 
yeast cells and PS microbeads) for the training and 20% (i.e. 400 image samples each for yeast cells and PS 
microbeads) for validation. The training was done in MATLAB R2021a, and the deep learning experiments were 
done with its Deep Learning toolbox. A DELL laptop with a five-core Intel 8th Generation processor served 
as our development system. The MATLAB code used for the deep learning described above is made available 
in this Githublink (https:// github. com/ Ajala Sunday/ Neural- Netwo rks- Fall2 021/ blob/ 16ac1 70830 74312 72fc2 
c5c72 ee255 94d0a 81446/ Regre ssion Code.m).

By obtaining the R-squared, MAE, MRE, MSE, and RMSE values for the testing dataset base on the accuracy 
criteria, evaluation of the four architectures is performed. Tables 5 and 6 show the results achieved by the archi-
tectures and various optimizers in our experiments with yeast cells and microbeads respectively. As it can be seen 
in Table 5, all the models and optimization algorithms performed well above 95% based on the accuracy metric 
(also see Table S2). However, training the models on yeast cells dataset, ResNet-50 with RMSProp optimizer has 
the best validation RMSE of 0.0918 on test dataset, followed by the same ResNet-50 but with ADAM optimizer 
having a validation RMSE of 0.1241. This is also illustrated with the chart in Fig. 7. Figures S2 and S3 show the 
evolution of the validation RMSE for ResNet-50 with RMSProp optimizer and ResNet-50 with ADAM optimizer 
on the yeast cell dataset respectively while the regression lines are illustrated in Fig. 8a and b respectively.

On the microbeads dataset, as it can be seen in Table 6, all the models and optimization algorithms performed 
well above 90% based on the accuracy metric (also see Table S3 and S4). AlexNet with ADAM optimizer have the 
best validation RMSE of 0.1745 across all models on the PS microbeads dataset followed by ResNet-50 also with 
ADAM optimizer with validation RMSE 0.1869. This is also illustrated with the chart in Fig. 9. Figures S4 and 
S5 show the evolution of the validation RMSE for AlexNet with ADAM optimizer and ResNet-50 with ADAM 
optimizer on the PS microbeads dataset respectively while the regression lines are illustrated in Fig. 10a and b 
respectively. A look at the performances of adaptive learning rate optimization algorithms explored in this work, 
we found that ADAM has the least sum followed by RMSProp and then SGDM come last, having the highest 
sum of RMSE on both datasets as shown in Fig. 11a and b.

(19)RMSE =

√√√√ 1

n

n∑

i

(
yi − ŷi

)2

(20)Accuracy =
∑n

i

∣∣yi − ŷi
∣∣ < 0.5

n

Figure 6.  System overview showing the training phase of the models, the input image datasets were partitioned 
into 80% for the training and 20% for validation or testing.

https://github.com/AjalaSunday/Neural-Networks-Fall2021/blob/16ac1708307431272fc2c5c72ee25594d0a81446/RegressionCode.m
https://github.com/AjalaSunday/Neural-Networks-Fall2021/blob/16ac1708307431272fc2c5c72ee25594d0a81446/RegressionCode.m
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Table 5.  CNN deep regression model performance on yeast cells for various architectures Significant values 
are in bold.

Architecture Optimizer MAE MSE RMSE R-squared Rank

AlexNet

ADAM 0.2089 0.0390 0.1976 0.995 8th

SGDM 0.2009 0.0616 0.2483 0.993 11th

RMSProp 0.1386 0.0403 0.2008 0.996 9th

ResNet-50

ADAM 0.0864 0.0154 0.1241 0.999 2nd

SGDM 0.1609 0.0477 0.2185 0.994 10th

RMSProp 0.0661 0.0084 0.0918 0.999 1st

MobileNetV2

ADAM 0.1072 0.0195 0.1398 0.999 4th

SGDM 0.2099 0.0699 0.2645 0.993 12th

RMSProp 0.1049 0.0216 0.1470 0.999 5th

GoogLeNet

ADAM 0.0781 0.0151 0.1230 0.999 3rd

SGDM 0.1319 0.0290 0.1701 0.997 6th

RMSProp 0.1038 0.0312 0.1768 0.997 7th

Figure 7.  Model performance on yeast cells dataset for various architectures ResNet-50 with RMSPROP 
optimizer has the best validation RMSE of 0.0918 on test dataset, followed by the same ResNet-50 but with 
ADAM optimizer having a validation RMSE of 0.1241.

Figure 8.  Line of best fit of the best deep regression models (a) ResNet-50 with RMSProp (b) ResNet-50 with 
ADAM.
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Table 6.  CNN Deep Regression Model Performance on microbeads for various Architectures. Significant 
values are in bold.

Architecture Optimizer MAE MSE RMSE R-squared Rank

AlexNet

ADAM 0.1109 0.0305 0.1745 0.996 1st

SGDM 0.2919 0.1474 0.3839 0.985 11th

RMSProp 0.1376 0.0520 0.2281 0.994 4th

ResNet-50

ADAM 0.1329 0.0349 0.1869 0.998 2nd

SGDM 0.1924 0.0859 0.2931 0.99 8th

RMSProp 0.2156 0.1524 0.3904 0.987 12th

MobileNetV2

ADAM 0.2022 0.1307 0.3616 0.99 10th

SGDM 0.2614 0.1142 0.3379 0.99 9th

RMSProp 0.1277 0.0660 0.2570 0.994 6th

GoogLeNet

ADAM 0.1159 0.0383 0.1956 0.995 3rd

SGDM 0.1750 0.0798 0.2825 0.992 7th

RMSProp 0.1395 0.0580 0.2409 0.993 5th

Figure 9.  Model performance on microbeads dataset for various architectures AlexNet with ADAM optimizer 
has the best validation RMSE of 0.1745 on test dataset, followed by the same ResNet-50 but with ADAM 
optimizer having a validation RMSE of 0.1869.

Figure 10.  Line of best fit of the best deep regression models (a) AlexNet with ADAM (b) ResNet-50 with 
ADAM.
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Conclusion
This paper presents an intelligent sensing framework capable of direct estimation of DEP force from pearl chain 
alignment of microparticles. We have tested the proposed models in an electrode-based dielectrophoretic system. 
The proposed deep regression models were extensively examined, and results were compared with conventional 
machine learning approaches. The intrinsic features of microparticle alignment like pearl chain length and count 
were extracted using image segmentation algorithms and used to generate training datasets. The results from the 
experiments show that the performance of the DL models proved to be optimal in terms of prediction accuracy 
and generalization ability compared to the ML models. ResNet-50 with RMSPROP gave the best performance, 
with a validation RMSE of 0.0918 on yeast cells while AlexNet with ADAM optimizer gave the best performance, 
with a validation RMSE of 0.1745 on microbeads. The regression model we developed can be extended to bio-
sensing systems in order to estimate the variations in dielectric properties of microparticles.

Data availability
The dataset used for the current study is available on Dryad via this link. This is available to the reviewers but 
will be made available to the public after this article has been peered reviewed or upon request from the cor-
responding author.
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