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Flow field characteristics 
and experimental research 
on inner‑jet electrochemical face 
grinding of SUS420J2 stainless 
steel
Feng Wang1,2*, Yafeng He3, Xiaokai Wu1 & Min Kang1

Electrochemical grinding (ECG) is processed by the combination of dissolution and grinding. It is 
very suitable for the processing of difficult‑to‑cut stainless steel, but its processing performance is 
restricted by the matching effect of dissolution and grinding. In this work, the processing of the torus 
surfaces of the stainless steel shaver cap was taken as the research object. A flow field model including 
the through‑hole structure and the rotation of the grinding head was proposed to optimize the flow 
field distribution and promote the uniform dissolution of materials. The flow field simulation results 
showed that the rotational flow formed by the high‑speed rotation prolonged the electrolyte flow 
path and was not conducive to the discharge of electrolytic products, and the reasonable selection 
of the diameter and distribution of the through‑hole could reduce the velocity difference. The effects 
of rotational speed, feed rate, and inlet pressure on the flatness and surface roughness of the torus 
surfaces were experimentally investigated, and a better matching effect of dissolution and grinding 
was obtained. Moreover, the experimental results showed that the inner‑jet ECG had a good prospect 
in the batch processing of high‑hardness stainless steel parts.

SUS420J2 stainless steel has excellent corrosion resistance, high strength, and wear resistance after heat treatment, 
and has a wide range of applications in valve seats, and cutting tools. However, as the hardness of stainless steel 
increases, the traditional cutting is prone to severe tool wear. Electrochemical grinding (ECG) is a combination 
of dissolution and grinding to achieve material removal, and it has significant advantages in the processing of 
difficult-to-cut  materials1,2. Traditional ECG usually uses conductive grinding heads with abrasive grains for 
material  removal3. In recent years, to further improve the processing quality, methods such as ultrasonic-assisted 
 ECG4,5, electrochemical jet-assisted  grinding6, dry electrochemical mechanical  machining7, and abrasive-free 
electrochemical mechanical  machining8 have been developed, and the application of ECG in the processing of 
metals and semiconductor materials has been promoted by these methods. In addition, many scholars have tried 
to promote the matching effect of dissolution and grinding by improving the flow field distribution.

Previous studies have shown that the tool structure and movement mode have important effects on the flow 
field distribution and material  removal9–13. In terms of the tool movement, Mitchell-Smith et al.14 improved 
the electrochemical jet machining performance of Inconel 718 alloy by adjusting the jet angle through nozzle 
rotation. Mishra et al.15 used the tool rotation to improve the flow field distribution of Nimonic-263 alloy elec-
trochemical milling, and eliminated the flow disorder on the bottom surface. Zhao et al.16 used the tool vibration 
to eliminate the sudden change of flow field in the frontal gap of special-shaped holes electrochemical machin-
ing (ECM), and promoted the uniform dissolution of stainless steel materials. In terms of the tool structure, 
Pang et al.17 used a floating cathode to process the outer surface of GCr15 steel rotating parts, and established 
the relationship between the inter-electrode gap and the electrolyte pressure. Li et al.18 analyzed the fluid flow 
structure of the tubular grinding wheel based on the flow field simulation, and showed that the spiral fluid flow 
groove could improve the uniformity of the flow velocity in the lateral gap. In addition, the influence of different 
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inner-jet grinding wheel structures on the flatness and the frontal gap distribution of the GH4169 alloy ECG was 
also  studied19. Yue et al.20 optimized the flow velocity distribution in the frontal gap by opening through-holes 
at the bottom of the grinding head, thereby improving the flatness of the bottom surface of Inconel 718 alloy 
electrochemical milling-grinding. In the above research, the dissolution of the materials was effectively improved 
by optimizing the flow structure and movement rule of the tool. However, the research objects were concentrated 
on the ECM of the holes and grooves, and less attention was paid to the electrochemical face grinding (ECFG) 
of difficult-to-cut materials.

In this work, the inner-jet ECFG of the heat-treated SUS420J2 stainless steel shaver cap was investigated. A 
flow field model including the through-holes on the sidewall of the grinding head and the rotation of the grinding 
head was proposed. The influence of the rotation speed, the diameter and distribution of the through-hole on the 
flow field fluctuations in the inner and outer torus surface of the shaver cap was studied based on the flow field 
simulation. In addition, the influences of electrolyte pressure, rotation speed, and feed rate on the flatness and 
surface roughness of the torus surfaces were analyzed based on experimental research. The optimized matching 
effect of dissolution and grinding was promoted, and the ECG of SUS420J2 stainless steel was improved.

Principle of inner‑jet ECFG
The principle of inner-jet ECFG is depicted in Fig. 1. The conductive grinding head with abrasive grains rotates 
around the axis and feeds towards the workpiece at the same time, the high-speed rotating grinding head is 
connected to the negative pole of the power supply and the workpiece is connected to the positive pole. The 
high-velocity electrolyte flows from the inside of the grinding head into the processing area and flows out from 
the frontal gap. Under the synergistic effect of an external electric field, high-velocity electrolyte, and grinding 
head movement, the workpiece partially dissolves and covers with the passivation film. The passivation film on 
the surface protrusions is scraped off by abrasive particles, so that the substrate material is re-dissolved, while 
the recesses remain passivated. With the alternate dissolution and grinding action, the workpiece surface is pro-
cessed. However, different processing states will be formed due to the different matching effects of dissolution 
and grinding, which will affect the pros and cons of ECFG performance. When the frontal gap is large, only the 
electrochemical reaction occurs on the workpiece surface without abrasive scraping, and the surface macroscopic 
and microscopic leveling performance is not high. When the frontal gap is small, the abrasive grains cut into 
the inside of the substrate and form obvious grinding marks, which is also not conducive to the improvement 
of surface quality.

Flow field simulation of ECFG
During the dissolution process, the flow field distribution in the inter-electrode gap has an important influence 
on the electrochemical reaction and the matching effect of dissolution and grinding. To investigate the influence 
of the grinding head rotation and the through-hole structure on the flow field distribution of the ECG of the 
shaver cap’s torus surfaces, the analysis was carried out using fluid dynamics simulation.

Flow field model. Figure  2a shows the structure of a thin-walled shaver cap with an outer diameter of 
20 mm, and a height of 5 mm. The torus surface to be processed includes an inner torus surface and an outer 
torus surface, both of which have a width of 1.3 mm and a wall thickness of 0.1 mm. The inner and outer torus 
surfaces are connected by the stiffener. Figure 2b,c show two different conductive grinding heads. The through-
holes on the grinding head sidewall are evenly distributed in the circumferential direction, and the center is 
1.5 mm away from the end face of the grinding head. When constructing the flow field model, since the width 
of the narrow slits evenly distributed on the inner and outer torus surface of the shaver cap is only 0.25 mm, the 
torus surface is assumed to be a closed plane, and the influence of the group slits on the flow field distribution is 
ignored. Since the abrasive grain size is less than 100 μm and the exposed height is small, it is assumed that the 
end surface of the grinding head is a smooth plane. Figure 2d shows the flow field model of the grinding head 
rotation, r0 is the radius at the entrance of the frontal gap, and R0 is the radius at the exit of the frontal gap. The 
grinding head boundary rotates around the axis, the anode boundary is fixed, and the electrolyte flows in from 
the hollow area of the grinding head and out from the lateral gap between the grinding head and the workpiece 

Figure 1.  Principle of inner-jet ECFG.
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sidewall. Figure 2e shows the flow field model with through-holes on the sidewall of the grinding head. The 
boundaries of the grinding head and workpiece are fixed. Sampling points i, o, and t correspond to the middle 
position of the inner torus boundary, outer torus boundary, and electrolyte outlet respectively.

With the aid of turbulence module and rotating machinery module of COMSOL Multiphysics 5.5.0.359 
(https:// cn. comsol. com/ produ ct- downl oad/5. 5/ windo ws), the influence of grinding head rotation and through-
hole structure on the flow velocity distribution was assessed. The main parameters of flow field simulation 
are shown in Table 1. Centrifugal force and Coriolis force are introduced to analyze rotation in the rotating 
machinery model. The Navier–Stokes equations are used to control the momentum balance, and the continuity 
equation is used to control the conservation of mass in the turbulence model. In addition, the turbulence effect 
is modeled by the standard k-ε two-equation model, and the near-wall flow is modeled by the wall  function21. 
The turbulence model and the rotating machinery model meet the following assumptions: (1) the electrolyte is 

Figure 2.  Geometric model of shaver cap, grinding head and flow field.

https://cn.comsol.com/product-download/5.5/windows
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an incompressible Newtonian fluid and does not contain hydrogen, oxygen, and solid products; (2) since the 
length of the electrolyte flow path is less than 5 mm, the influence of temperature rise on fluid flow is  ignored22; 
(3) ignoring the effect of the grinding head rotation on the heat transfer, only considering the effect of Coriolis 
force and centrifugal force on the fluid flow.

Influence of grinding head rotation. Figure 3 shows the change of electrolyte streamline at different 
rotation speeds, the inlet pressure is 0.3 MPa, and the number of through-holes on the sidewall of the grinding 
head is zero. It can be seen from Fig. 3 that when the rotating speed is lower than 6000 revolutions per minute 
(rpm), the flow velocity on the inner and outer torus surfaces changes little with the increase of the rotating 
speed. However, the flow direction near the electrolyte outlet is deflected in the radial direction due to the 
Coriolis force, and the flow direction deflection increases with the increase in rotating speed. In addition, the 
flow velocity on the inner torus surface is significantly higher than that on the outer torus surface due to the 
pressure loss along the flow path and the energy loss caused by the sudden change of the cross-sectional area of 
the flow channel. The high-velocity electrolyte promotes the dissolution of the inner torus, and resulting in a big 
difference in the dissolution rate of the inner and outer torus surfaces. When the rotation speed is higher than 
12,000 rpm, the rotation of the grinding head has a significant effect on the fluid flow, while the fluctuation of 
the cross-sectional area of the flow channel has a small effect on the flow velocity. Since the linear speed of the 
grinding head near the electrolyte outlet is the highest, the flow velocity is also the highest under the action of 
centrifugal force. In addition, the electrolyte fluid generates a rotating flow under the action of centrifugal force 
and Coriolis force, and the flow deflection increases significantly with the increase in rotation speed. However, 

Table 1.  Main parameters of flow field simulation of ECFG.

Simulation parameter Value

Frontal gap Δ0 (mm) 0.1

Rotating speed of grinding head r (rpm) 0, 1800, 3000, 4200, 6000, 12,000, 24,000

Number of through-holes on the sidewall of grinding head 0, 3, 6, 9, 12, 15, 18

Diameter of through-hole d (mm) 0.4, 0.5, 0.6, 0.7, 0.8

Electrolyte density ρ (kg ×  m−3) 1150

Kinematic viscosity coefficient of electrolyte ν  (m2 ×  s−1) 1.01 ×  10–6

Electrolyte inlet pressure Pin (MPa) 0.2, 0.25, 0.3, 0.35, 0.4

Electrolyte outlet pressure Pout (MPa) 0.1

Figure 3.  Electrolyte streamline at different rotation speeds.
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the increased deflection of flow direction significantly prolongs the electrolyte flow path as shown in Fig. 3f, and 
is not conducive to the timely discharge of electrolytic products in the inter-electrode gap. Moreover, the differ-
ence in flow velocity between the inner and outer torus surfaces increases with the increase in rotation speed, 
which is not conducive to the uniform dissolution of materials.

Influence of electrolyte pressure. Figure 4a shows the change of flow velocity at different inlet pressures. 
The rotation speed is zero, and the number of through-holes is also zero. It can be seen from Fig. 4a that the 
conversion of hydrostatic pressure energy increases as the inlet pressure increases, and the flow velocity of the 
sampling points at the inner and outer torus surface and the electrolyte outlet (ui, uo, ut) increase significantly. In 
addition, the flow velocity gradient from the inner torus surface to the outlet increases significantly as the inlet 
pressure increases, which is beneficial to product transportation in the inter-electrode gap, thereby promoting 
the continuous dissolution process. However, the excessively high inlet pressure causes only the electrochemical 
reaction on the workpiece surface, which is not conducive to the improvement of the leveling performance of 
the torus surfaces.

Influence of number and diameter of through‑hole. Figure 4b shows the flow velocity distribution 
of the different numbers of through-holes on the sidewall of the grinding head. The through-hole diameter is 
0.5 mm, and the grinding head rotation speed is zero. Figure 4c shows the flow velocity distribution of different 
diameters of the through-holes. The number of through-holes is 12, and the rotation speed is also zero. It can 
be seen from Fig. 4b that with the increase in the number of through-holes, the flow velocities of the sampling 
points at the inner torus surface are reduced, while the flow velocities of the sampling points at the outer torus 

Figure 4.  Flow velocity for different inlet pressure and through-hole structure.
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surface and the outlet are significantly increased. The difference in flow velocity between the inner and outer 
torus surfaces is small when the number of through-holes is between 9 and 15, which is beneficial to reduce the 
fluctuation of the dissolving rate of materials. It can be seen from Fig. 4c that the electrolyte flow in the outer 
torus surface increases significantly as the diameter of the through-hole increases, resulting in a significant 
increase in the flow velocity of the sampling points at the outer torus surface and outlet. The flow velocity of 
the inner and outer torus surfaces is relatively close when the diameter of the through-hole is between 0.4 and 
0.6 mm, which is conducive to the uniform dissolution of materials.

Based on the influence of the above-mentioned grinding head rotation and through-hole structure on the flow 
field distribution, it can be seen that the auxiliary high-speed rotation is not beneficial to the product discharge 
in the inter-electrode gap, and the large difference in flow velocity between the inner and outer torus surfaces 
is not conducive to the uniform dissolution of materials. The number and diameter of the through-holes of the 
grinding head have a significant impact on the flow field. When the through-hole diameter is between 0.4 mm 
and 0.6 mm and the number of through-holes is between 9 and 15, the flow velocity difference between the 
inner and outer torus surfaces is small, which is conducive to the optimal matching of dissolution and grinding.

ECG system and experimental arrangements
The ECG experiments of the torus surfaces of the stainless steel shaver cap were conducted based on the flow 
field simulation. Figure 5 shows the ECG system, which mainly includes an electric spindle, a marble platform, 
a workbox, a workpiece fixture, a rotating electrical conduction device, a rotating fluid-passing device, and an 
electrolyte circulating filtration system. The beryllium bronze-based diamond sintered grinding head is fixed at 
the bottom of the electric spindle through a chuck. The electric spindle drives the grinding head to rotate clock-
wise, and the frequency converter adjusts the rotation speed to be continuously adjustable in the range of 0 to 
20,000 rpm. The electric carbon brush is installed on the top of the electric spindle, and is in flexible contact with 
the rotating mandrel inside the electric spindle to transmit the current. The rotating fluid-through joint is con-
nected to the top of the mandrel and delivers high-velocity electrolytes to the hollow mandrel and the processing 
area. The workpiece is installed inside the fixture and pressed by a nut, and the workpiece’s bottom end is closely 
attached to the ceramic gasket. The workpiece material is SUS420J2. The double-ring thin-walled shaver cap is 

Figure 5.  ECG system.
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formed by high-speed stamping, and the hardness reaches 580 ± 20 HV after quenching and low-temperature 
annealing. The electrolyte is a sodium nitrate solution, and the electrolyte temperature is controlled at 25 ± 0.5 °C.

The effects of the rotating speed, feed rate, and the inlet pressure on the flatness and surface roughness of the 
torus surfaces were studied based on the machining parameters shown in Table 2. The flatness of the inner and 
outer torus surfaces, and the flatness of the double torus surfaces were inspected with the Hexagon imager, 60 
sampling points were uniformly selected on the inner and outer torus surfaces respectively along the circum-
ferential direction. With the aid of the Mahr roughness meter, the middle positions of the inner and outer torus 
surfaces were detected to determine the roughness values.

Results and discussion
Influence of grinding head rotating speed. Figure 6a shows the change of flatness at different rotating 
speeds, and Fig. 6b depicts the change of surface roughness at different rotating speeds. The feed rate is 0.8 mm/
min, and the inlet pressure is 0.3 MPa. The inner and outer torus surfaces processed by different rotating speeds 
are shown in Fig. 7, and the wall thickness of the torus is between 0.1 ± 0.003 mm through the detection of the 
Mitutoyo digital height gauge. The overall fluctuation of the flatness of the torus surfaces is smaller as the rota-
tion speed increases, but the flatness of the inner torus surface is smaller than that of the outer torus surface. 
According to the simulation results of the through-hole structure, the difference in flow velocity between the 
inner and outer torus surfaces can be reduced by improving the diameter and distribution of the through-hole, 
thereby reducing the difference in the wall thickness of the torus. The electrolyte flow near the outer torus surface 
and the outlet is greatly affected by centrifugal force and Coriolis force. The intensified deflection of the flow 
direction causes non-uniform dissolution of the outer torus, thereby deteriorating the micro-leveling perfor-
mance. However, the electrolyte flow in the inner torus surface is less affected by the rotation due to the low 
linear speed of the grinding head, and the matching effect of dissolution and grinding is better. Thus, the flatness 
of the inner torus surface is low.

The surface roughness Ra of the torus surfaces changes little with the increase of the rotating speed. When 
the rotation speed is between 2400 and 4800 rpm, the maximum height of the roughness profile Rz of the torus 
surfaces generally decreases first and then rises. However, Rz changes less when the rotation speed is higher 
than 3600 rpm. It can be seen from the simulation results that the flow velocity of the torus surfaces fluctuates 

Table 2.  Machining parameters of ECFG.

Machining parameter Value

Abrasive particle size (μm) 74

Rotating speed r (rpm) 2400, 3000, 3600, 4200, 4800

Feed rate (mm/min) 0.2, 0.4, 0.6, 0.8, 1.0

Number of through-holes of grinding head 12

Through-hole diameter d (mm) 0.5

Applied voltage U (V) 10

Power duty cycle 50%

Power frequency (Hz) 1000

Inlet pressure Pin (MPa) 0.2, 0.25, 0.3, 0.35, 0.4

Electrolyte conductivity κ (S/m) 7.9

Figure 6.  Flatness and roughness at different rotation speeds.
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slightly when the rotation speed is between 1800 and 6000 rpm, and the local dissolution rates of materials are 
relatively close. Therefore, the surface roughness Ra changes little with the increase of rotation speed. The num-
ber of abrasive grains passing through the machined surface per unit time is less when the rotating speed is low 
and the feed rate is high, and the workpiece surface is prone to produce significant microscopic protrusions and 
depressions. However, the grinding removal of passive film and workpiece substrate increases when the rotating 
speed is overly high, and the accumulation of products in the inter-electrode gap is not conducive to improving 
the uneven surface of the workpiece.

Influence of inlet pressure. Figure 8a shows the flatness of the torus surfaces at different inlet pressures, 
and Fig. 8b shows the variation of the surface roughness with the inlet pressure. The torus surfaces processed by 
different inlet pressures are shown in Fig. 9. The feed rate is 0.8 mm/min, and the rotation speed is 4200 rpm. The 
electrolyte flow in the inter-electrode gap increases significantly as the inlet pressure increases, which accelerates 
the electrochemical reaction on the workpiece surface, but the processing localization becomes worse. There-
fore, the flatness of the torus surfaces increases with the increase of the inlet pressure. The surface roughness of 
the torus surfaces decreases first and then rises with the increase of the inlet pressure. The surface roughness 
Ra and the maximum height of the roughness profile Rz are both small when the inlet pressure is between 0.3 
and 0.35 MPa. The electrolyte flow supply in the inter-electrode gap is insufficient and the abrasive particles 
are scratched on the workpiece surface when the inlet pressure is small, resulting in poor surface roughness. 

Figure 7.  Inner and outer torus surfaces processed by different rotation speeds.

Figure 8.  Flatness and roughness at different inlet pressures.
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When the inlet pressure is high, the electrolyte flow supply in the inter-electrode gap is relatively sufficient, and 
the workpiece surface is prone to excessive dissolution and stray corrosion as shown in Fig. 9c. In addition, the 
strong dissolving effect increases the side reaction of materials, and the local material is even removed in the 
form of exfoliation, and the surface roughness has also deteriorated.

Influence of feed rate. Figure  10a shows the flatness of the torus surfaces at different feed rates, and 
Fig. 10b depicts the surface roughness at different feed rates. The rotating speed is 4200 rpm, and the inlet pres-
sure is 0.3 MPa. The flatness of the torus surfaces decreases significantly with the increase of the feed rate, while 
the surface roughness generally decreases first and then increases. When the feed rate is close to 0.8 mm/min, the 
flatness and surface roughness are smaller. The frontal gap between the grinding head and the workpiece bottom 
surface is large and the current density in the frontal gap is low when the feed rate is low, and the stainless steel 
is prone to selective dissolution, which is not conducive to the improvement of the leveling performance. The 
current density in the frontal gap increases as the feed rate increases, and the dissolution of the various phases 
in the stainless steel is relatively uniform. Thus, the matching effect of dissolution and grinding is also better. 
However, the scraping effect is significantly enhanced when the feed rate is overly high, and it is easy to leave 
deeper abrasive cutting marks on the workpiece surface.

Fabrication of the torus surfaces of shaver cap. Based on the analysis of the influence of rotation 
speed, feed rate, and inlet pressure on the flatness and surface roughness of the torus surfaces, the parameter 
combination of an inlet pressure of 0.3 MPa, a rotation speed of 4200 rpm, and a feed rate of 0.8 mm/min was 
optimized for small-batch processing of stainless steel shaver cap. Figure  11 shows the torus surfaces of the 
shaver cap processed by ECG. The comprehensive flatness of the double torus surfaces was 5.7 μm, and the 
surface roughness Ra of the torus surfaces was close to 0.2 μm. During the machining process, the loss of the sin-
tered grinding head was small, and the grinding head could realize the repeated machining of about 200 shaver 
caps after a one-time electric spark dressing.

Conclusions
In this work, the effects of through-hole structure and rotation movement of grinding head on the flow field 
distribution were analyzed, and the effects of the rotation movement and the electrolyte parameters on the flatness 
and surface quality of the torus surfaces were experimentally investigated. In addition, the optimal matching of 

Figure 9.  Torus surfaces processed by different inlet pressures.

Figure 10.  Flatness and roughness at different feed rates.
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dissolution and grinding was promoted by optimizing the processing parameters, and the ECFG performance 
of high-hardness stainless steel was improved. The conclusions can be summarized as follows:

(1) The flow field simulation results showed that the grinding head rotated at high speed to form a rotating 
flow, which was not conducive to the discharge of products in the inter-electrode gap. Moreover, the flow 
velocity difference between the inner and outer torus surfaces was still large, which was easy to produce 
uneven dissolution. The diameter and distribution of the through-holes had a significant effect on the flow 
velocity, and the difference in velocity could be reduced by reasonably designing the through-hole structure.

(2) The experimental results showed that the use of a grinding head with through-holes on the sidewall could 
reduce the difference in the wall thickness of the shaver cap, while the rotation movement had little effect 
on the flatness and surface roughness of the torus surfaces. The high inlet pressure and low feed rate were 
easy to produce excessive dissolution, while the high feed rate and low inlet pressure were easy to generate 
deep cutting marks. In addition, the cutting marks could be reduced and the excessive dissolution could 
be eliminated by optimizing the machining parameters.

(3) The high-quality processing of the high-hardness stainless steel shaver cap could be achieved by adopting 
the inner-jet ECG. The conductive grinding head loss was small, and the flatness and surface roughness of 
the repeatedly processed torus surfaces fluctuated little.

Received: 2 August 2021; Accepted: 4 July 2022
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