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A first‑principles‑based high 
fidelity, high throughput approach 
for the design of high entropy 
alloys
V. Sorkin*, Z. G. Yu, S. Chen, Teck L. Tan, Z. H. Aitken & Y. W. Zhang*

Here, we present a preselected small set of ordered structures (PSSOS) method, a first principles‑
based high fidelity (HF), high throughput (HT) approach, for fast screening of the large composition 
space of high entropy alloys (HEAs) to select the most energetically stable, single‑phase HEAs. Taking 
quinary AlCoCrFeNi HEA as an example system, we performed PSSOS calculations on the formation 
energies and mass densities of 8801 compositions in both FCC and BCC lattices and selected five most 
stable FCC and BCC HEAs for detailed analysis. The calculation results from the PSSOS approach were 
compared with existing experimental and first‑principles data, and the good agreement was achieved. 
We also compared the PSSOS with the special quasi‑random structures (SQS) method, and found that 
with a comparable accuracy, the PSSOS significantly outperforms the SQS in efficiency, making it 
ideal for HF, HT calculations of HEAs.

High entropy alloys (HEAs)1–4, which contain multiple principal elements, have recently attracted considerable 
research interest due to their exceptional mechanical and physical properties, such as high corrosion, wear, 
fatigue resistances, yield strength, ductility, and thermal  stability1,2, often outperforming traditional alloys and 
super-alloys2, especially at low and high  temperatures3,4. However, the design (compositional and chemical) 
space of HEAs is vast, which makes the use of the conventional methods based on lengthy, costly, high-fidelity 
(HF) approaches, a daunting task. An efficient strategy is thus highly demanded to screen and design HEAs with 
optimal mechanical and physical properties for specific  applications5,6.

Machine learning (ML) is emerging as a powerful tool for inductive screening and phase selection of  HEAs7–11. 
However, the accuracy of ML is strongly dependent on the size and quality of used dataset 12. The lack of a large-
size, high-quality dataset for HEAs is currently a major challenge for using ML. Due to the significant challenges 
in developing high throughput (HT) experimental techniques to produce large-size, high-quality  dataset13, HT 
computations present a promising alternative solution.

Several computational methods have been employed to study HEAs, such as first-principles14,  CALPHAD15,16, 
molecular dynamics (MD)17–19. Yet these methods suffer from the serious drawbacks either due to their low 
efficiency or low accuracy, and thus are not suitable for producing a large-size, high-quality dataset of HEAs. For 
example, MD and CALPHAD are semi-empirical methods, and there is significant uncertainty in their accuracy. 
To our knowledge, four major first-principles-based methods have been developed to study  HEAs20–29. The first 
one is based on coherent potential approximation (CPA)20–22,30, the accuracy of which is limited by its mean-field 
nature (neglecting all the local environmentally-dependent effects)31. The second is the virtual crystal approxima-
tion (VCA), which is another commonly used method to study HEAs in solid solution  state27–29. Though HEAs 
do not have translational symmetry, the VCA recovers it by replacing the potential with a periodic, composite 
one, which is constructed by averaging the constituent  atoms28,32. Theoretically, the VCA approach is of great 
versatility, but, like CPA, the VCA does not describe different local atomic environments, in particular, lattice 
distortion in HEAs. The third method is based on the special quasi random structures (SQS)23–25 containing a 
few hundreds of atoms. Although the SQS method is accurate, its application to HEAs is hindered by its high 
computational cost, which scales as ~ O(N3) with the number of atoms. The last method is based on the small 
set of ordered structures (SSOS) containing several  atoms20,26, which is currently considered the most promising 
approach for HF, HT computations of HEAs.
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In the SSOS method, the properties of an HEA are calculated as a weighted average over a selected set of small 
ordered structures (SOS)20,26. Since the properties of SOS are calculated using density functional theory (DFT), 
it is considered a first-principles-based method. It was initially proposed to deal with equimolar  HEAs26, and 
only a single set of SOS was found. Subsequently, a set of SSOS solutions were found, and an averaging scheme 
was proposed to achieve more accurate, more robust  solutions33. Recently, this method was also extended to 
deal with HEAs with non-equimolar  compositions34 and short range  order35. Although significant progress has 
been made in developing the SSOS method, a couple of challenges still stand in its way for general use in HF, HT 
calculations of HEAs. First, in the full design space of HEAs, the number of SOS structures required to construct 
the SSOS solutions is vast, causing the difficulty in selecting SOS structures. Second, the DFT calculations for 
many SOSs are too expensive, making the SSOS method lose its computational efficiency. These challenges hinder 
the application of the SSOS method for constructing a large-size, high-quality dataset.

By addressing the challenges in the SSOS method, in this work, we propose a preselected SSOS (PSSOS) 
approach that enables HF, HT screening and design of single-phase HEAs. Using experimentally well-studied 
quinary  AlCoCrFeNi36–38 as an example, we employ PSSOS to calculate the formation energy, mass density, and 
lattice constant in the large composition HEA space, and identify the five most energetically stable compositions 
with both the BCC and FCC lattices for detailed analysis. Our PSSOS calculation results are compared with the 
existing experimental data, and a good agreement is found. Our PSSOS approach is also contrasted with the 
SQS method. It shows that the accuracy of our PSSOS approach is comparable with the SQS method. Since the 
compatibility of non-equimolar compositions often requires large SQS samples containing at least a thousand 
atoms, the PSSOS approach significantly outperforms the SQS method in terms of efficiency, making HF, HT 
screening and design of HEAs a reality.

Results
Outline of the PSSOS approach. More details about the PSSOS method can be found in the ‘Method’ 
section. The central idea of the SSOS  method20,26,31,33 is to use a set of SOS to model an HEA with a given com-
position. Symmetry-unique SOS are constructed by using non-conventional, non-primitive unit cells with cubic 
lattices. Examples of these SOS containing a small number of atoms per unit cell are shown in Fig. 1. Each SOS 
is characterized by its own pair correlation functions, which describe the atomistic neighborhood of every con-
stituent element and serve as its unique identification (‘fingerprints’). In principle, the complete set of all feasible 
SOS should be constructed and then optimized using DFT. Then, a small subset of SOS is selected from the 
complete set by matching the pair-correlation functions of a given HEA composition by a linear combination of 
pair correlation functions of the chosen SOS subset. For an ideal solid solution phase of HEA, its corresponding 
pair-correlation functions can be calculated  analytically35. In our calculations, the HEA pair correlation func-
tions are precisely matched up to the 3rd nearest neighbor (NN) range (see Fig. 1a). The properties of a selected 
HEA are calculated as a weighted average over those of the chosen SOS, which constitutes an SSOS solution. For 
example, the HEA energy E can be calculated as: E =

∑n
i=1 wiEi , where wi is the weight of the ith SOS, Ei is the 

energy of the ith SOS, and n is the number of SOS per an SSOS  solution26.
To screen the entire HEA space, it is impractical to use the SSOS method as it requires construction and 

optimization of the complete set of all feasible SOS by DFT. To overcome this difficulty, we first choose SOS with 
only 5, 6, 7 atoms in the present work. Even with such choices, the total number of possible SOS is still more than 
50,000 (see ‘Method’). To further reduce the number of SOS required, we adopt a new approach: first, the most 
frequent SOS structures (N ~ 1,500) are identified by screening the entire HEA space, and then their geometries 
are optimized, and their properties are calculated with DFT. We then look for SSOS solutions by taking SOS only 
from this small preselected SOS subset. We demonstrate (see ‘Method’ for details) that with comparable accuracy, 
the PSSOS approach is much faster than the SQS method, making it feasible for HF, HT calculations of HEAs.

Systematic exploration of the composition space. The composition space of the AlCoCrFeNi HEA 
with FCC and BCC lattices, represented by a grid, was systematically explored by the PSSOS method. We set 
the lower (5%) and upper (35%) limits for the molar fractions of each constituent element and selected the 
molar fraction increment as: � = 3%. In total, 8,801 HEA compositions were constructed (see Fig. 2), and the 
formation energies and densities were calculated. Only the top-five most energetically stable compositions were 
selected for a second optimization step. Using the stochastic hill climbing  method39, we examined the off-grid 
neighborhood of the top five compositions and found several compositions with an even lower formation energy 
for both the FCC and BCC lattices (see Table 1 and Supplementary Table S2).

Formation energy. The formation energy (per atom) of the AlCoCrFeNi HEA with a BCC lattice is plotted 
against the molar fraction of Al and Cr in a three-dimensional plot as shown in Fig. 2c (see also Supplementary 
Fig. S1 for FCC lattice). Since the composition space of the AlCoCrFeNi HEA is described by the four independ-
ent molar fractions, we indicate the molar fraction of Ni by marker color and the molar fraction of Co by marker 
size. As can be seen in Fig. 2c, the formation energy manifold is represented by an inclined plane.

Figure 3 shows the formation energy vs the molar fraction of the constituent elements for the AlCoCrFeNi 
HEA with an FCC lattice (see also Supplementary Fig. S2 for BCC lattice). The formation energies of HEA com-
positions with equal molar fraction of one of their constituent elements are represented by a stacked column. Size 
and color of markers indicate the molar fractions of two other principal elements. The bottom of each column 
corresponds to the formation energy minimum at a given molar fraction (see Fig. 3f).

As illustrated in Fig. 3, the formation energy of AlCoCrFeNi with an FCC lattice is highly dependent on the 
molar fraction of specific constituent elements. For example, an increase in the molar fraction of Al results in a 
nearly linear reduction in the formation energy as shown in Fig. 3a (see also the red line with circles in Fig. 3f). 
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Marker color indicates that an increase in the molar fraction of Ni also lowers the formation energy (see Fig. 3b, 
and the green curve with triangles in Fig. 3f). Yet, the effect of Ni is significantly weaker than that of Al: the mean 
slope for Ni in Fig. 3f is smaller than that of Al.

An increase in the molar fraction of Cr, in contrast to Al and Ni, raises the formation energy of AlCoCrFeNi 
HEA (see Fig. 3c, and the blue curve with squares in Fig. 3f). The effect of Fe is like that of Cr (see Fig. 3d, and 
the black curve with cross marks in Fig. 3f), but it is comparatively weaker. The effect of Co on the formation 
energy is shown in Fig. 3e. Contrary to other principal elements, the optimal value of the molar fraction of Co 
that leads to the lowest formation energy is located within a narrow range between 17 and 22% of Co (see the 
orange curve with diamonds in Fig. 3f). Similar results were obtained for the effect of molar fraction of the prin-
cipal elements on the formation energy of the AlCoCrFeNi HEA with a BCC lattice (see Supplementary Fig. S2).

Mass density. The density of the AlCoCrFeNi HEA with a BCC lattice is plotted vs the molar fraction of Al 
and Cr in a three-dimensional plot as shown in Fig. 2d (see also Supplementary Fig. S1 for FCC lattice), where 
the molar fraction of Ni is indicated by marker color, and the molar fraction of Co by marker size. The density 
manifold is represented by an inclined plane for both the FCC and BCC lattices.

Figure 4 plots the density of AlCoCrFeNi HEA with BCC lattice against a molar fraction of the constituent 
elements (see also Supplementary Fig. S3 for FCC lattice). The density of the HEA compositions with the same 
molar fraction of a specific element is plotted as a stacked column. Marker color and size indicate the molar 
fraction of two other principal elements. The density minimum (bottom of each stacked column) as a function 
of the molar fraction of the principal element is plotted in Fig. 4f.

Figure 1.  (a), (b) Schematic representation of the PSSOS method: (a) For a given composition of a quinary 
HEA in the ideal solid solution, one calculates the pair correlation functions, which must be precisely matched 
with a linear combination of the weighted pair correlation functions of a set of selected SOS. In our calculations, 
the pair correlation functions are matched up to 3rd nearest neighbor range with that of the ideal solid solution. 
The target SQS HEA sample and two 6-atom SOS samples taken from the preselected SOS set with their pair 
correlation functions are illustrated in (b). For each SOS 6-atom sample, its supercell version, obtained by its 
replication along the three directions, is presented to illustrate its ordered structure. (c), (d) The formation 
energy per atom (c) and mass density (d) of AlCoCrFeNi HEAs in BCC lattice structure as a function of the 
molar fraction of Al and Cr. Marker color indicates the molar fraction of Ni, while marker size corresponds to 
the molar fraction of Co for a given HEA composition.
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It can be seen in Fig. 4a that the lightest element, Al, has the strongest effect on the density, which decreases 
linearly with an increase in the molar fraction of Al (see the red line with circles in Fig. 4f). The effect of Cr is 
like that of Al, as shown in Fig. 4b, the density decreases with an increase in the molar fraction of Cr. Yet, in 
comparison with Al, the effect of Cr is substantially weaker (see the blue line with squares in Fig. 4f). In contrast 
to Al and Cr, the density of the AlCoCrFeNi HEA rises with an increase in the molar fraction of Ni (see Fig. 4c, 
and the green line with triangles in Fig. 4f) and Co (see Fig. 4d, and the yellow line with diamonds in Fig. 4f). 
However, the effect of Co is stronger than that of Ni. The effect of Fe is more intricate in comparison with other 
constituent elements as shown in Fig. 4e: The density increases at the low and high molar fractions of Fe, while 
its minimum is in the narrow range between 15 and 20% of Fe (see the black line with crosses in Fig. 3f). Similar 
results were found on the effect of constituent elements on the density of the AlCoCrFeNi HEA with an FCC 
lattice (see Supplementary Fig. S3).

Formation energy vs mass density. The formation energies per atom vs the density for the AlCoCrFeNi 
HEA with BCC and FCC lattice are plotted in Fig. 5a and b, respectively. Marker color indicates the molar frac-
tion of Al, and marker size the molar fraction of Cr in Fig. 5a, b. The formation energies per atom vs mass density 
with marker color indicating the molar fraction of Co, Cr, Fe and Ni for the AlCoCrFeNi HEA with BCC and 
FCC lattice structure are shown in Supplementary Figs. S5 and S6.

Figure 2.  Schematic showing the compositional screening of a quinary HEA (AlCoCrFeNi) via the PSSOS 
method: (a) Construction of a compositional grid with a step size of 3% using N = 8801 compositions. 
Constraints on the molar fraction of constituent elements are indicated. (b) Calculations of the formation 
energy per atom, mass density and lattice constant for the constructed compositions of AlCoCrFeNi HEA with 
BCC and FCC lattices by the PSSOS method. (c) Selection of the most stable HEA compositions (with the 
lowest formation energies) for AlCoCrFeNi HEA, considering both BCC and FCC lattices.

Table 1.  The top-five most energetically stable compositions for the AlCoCrFeNi HEA with a BCC lattice. The 
calculated formation energy per atom, mass density and Young’s modulus are compared with those with an 
FCC lattice at the same HEA composition. Error bars indicate the standard deviation of averaging over a set of 
SSOS solutions.

AlCoCrFeNi composition

Formation energy (eV/atom) Density (g/cm3)
Young’s modulus 
(GPa)

BCC FCC BCC FCC BCC FCC

[0.35,0.22,0.05,0.05,0.33]  − 0.281 ± 0.006  − 0.263 ± 0.004 6.64 ± 0.01 6.60 ± 0.01 216 ± 5 167 ± 5

[0.35,0.17,0.05,0.08,0.35]  − 0.280 ± 0.005  − 0.264 ± 0.003 6.61 ± 0.01 6.57 ± 0.01 205 ± 5 161 ± 4

[0.35,0.23,0.05,0.05,0.32]  − 0.279 ± 0.005  − 0.261 ± 0.004 6.64 ± 0.01 6.61 ± 0.01 216 ± 4 169 ± 3

[0.35,0.15,0.05,0.11,0.34]  − 0.275 ± 0.006  − 0.258 ± 0.004 6.58 ± 0.01 6.53 ± 0.01 207 ± 3 157 ± 4

[0.35,0.16,0.06,0.11,0.32]  − 0.265 ± 0.005  − 0.250 ± 0.004 6.56 ± 0.01 6.52 ± 0.01 208 ± 4 159 ± 3
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As can be seen in Fig. 5a, b, the higher the molar fraction of Al, the lower the formation energy and density 
(see the low density (LD) and the low formation energy (LFE) regions in Fig. 5a, b).

Similarly, the higher the molar fraction of Cr, the lower the density of the AlCoCrFeNi HEA (see the LD 
region in Fig. 5b). However, in contrast to Al, the lower the molar fraction of Cr, the lower the formation energy 
(see the LFE region in Fig. 5b).

There is a positive correlation between the formation energy and density as illustrated in Fig. 5a, b. Nev-
ertheless, the set of compositions with low formation energies (see the LFE region in Fig. 5a, b) and the set of 
low-density compositions (see the LD region in Fig. 5a, b) do not intersect. Therefore, an adequate compromise 
between the low formation energy and the low density should be reached in the design of AlCoCrFeNi HEAs. 

Figure 3.  The effect of molar fraction of constituent elements on the formation energy of FCC AlCoCrFeNi. 
The formation energy of the AlCoCrFeNi HEA is plotted vs. molar fraction of Al (a), Ni (b), Cr (c), Fe (d) and 
Co (e). For a given HEA composition, marker color indicates the molar fraction of Ni in (a), (f), (d) and Al in 
(b), (e). Marker size corresponds to the molar fraction of Co in (a), (f), (d) and Cr in (b), (e). (f) The formation 
energy minimum of the AlCoCrFeNi HEA with an FCC lattice as a function of molar fraction of constituent 
elements: Al (red circles), Cr (blue squares), Ni (green triangles), Fe (black crosses) and Co (orange diamonds).

Figure 4.  The effect of molar fraction of constituent elements on the density of BCC AlCoCrFeNi HEA. The 
density is plotted vs. the molar fraction of Al (a), Cr (b), Ni (c), Co (d) and Fe (e). For a given HEA composition, 
marker color indicates the molar fraction of Ni in (a), (b), (e) and Al in (c), (d). Marker size is proportional to 
the molar fraction of Co in (a), (b), (e) and Cr in (c), (d). (f) The density minimum of AlCoCrFeNi HEA with 
BCC lattice as a function of molar fraction of constituent elements: Al (red circles), Cr (blue squares), Ni (green 
triangles), Fe (black crosses) and Co (orange diamonds).
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Although for some constituent elements, such as Al, both the formation energy and the density of AlCoCrFeNi 
HEA can be lowered by increasing its molar fraction, for other constituent elements, such as Cr and Ni, one can 
either lower the density or formation energy by maximizing (or minimizing) molar fraction of the selected ele-
ment. Therefore, the ultimate design of a AlCoCrFeNi HEA for specific applications requires finding a suitable 
compositional combination.

The top five most energetically stable compositions of AlCoCrFeNi HEA. Finally, the top five 
most energetically stable compositions of the AlCoCrFeNi HEA with BCC and FCC lattice are selected for 
further analysis. The selected five compositions for the BCC lattice are reported in Table 1, and their forma-
tion energy, mass density, and Young’s modulus are shown in Fig. 5 (red circles), where, for comparison, these 
properties for the same compositions of AlCoCrFeNi with an FCC lattice are provided (blue squares). It is seen 
from Table 1 that each composition contains the relatively high molar fraction of Al and Ni (~ 35%), a moderate 
fraction of Co (~ 15–23%), and comparatively low fraction of Cr and Fe (~ 5%). It is found that the formation 
energies of the top five compositions of AlCoCrFeNi with a BCC lattice are lower than those with the same com-
positions with an FCC lattice, even though the difference is comparatively small (see Fig. 5c). The mass density 
of the top-five compositions of the AlCoCrFeNi HEA with a BCC lattice is marginally higher than those with 
an FCC lattice (see Fig. 5d). The calculated elastic moduli (see Fig. 5e for Young’s modulus and Supplementary 
Table S2 for bulk, and shear moduli) are noticeably larger than these of the same compositions but in FCC lattice.

The top five most energetically stable compositions with an FCC lattice are listed in Supplementary Table S2. 
It is found that the formation energies for the same compositions of the AlCoCrFeNi HEA with a BCC lattice are 
lower (see Supplementary Table S2), and the values of elastic moduli are higher (see Supplementary Table S3). 
Therefore, the top-five most energetically stable compositions of the AlCoCrFeNi HEA with a BCC lattice are 
best suited for applications compared to those in FCC lattice.

Figure 5.  (a), (b) The calculated formation energy per atom vs. the mass density for AlCoCrFeNi HEA 
with BCC (a) and FCC (b) lattice structure. Marker color indicates the molar fraction of Al and marker 
size the molar fraction of Cr (b). Closed dashed lines outline the region of compositions with low densities 
(LD), and the region of compositions with low formation energies (LFE). The top five most energetically 
stable compositions are indicated by black triangles. The equimolar composition is indicated by cyan cross 
symbol (c)-(e) The formation energy per atom (c), mass density (d), and Young’s modulus (e) for the top 
five most energetically stable compositions of AlCoCrFeNi HEA with BCC lattice (red circles). The selected 
[AlCoCrFeNi] compositions are HEA-1: [0.35,0.22,0.05,0.05,0.33], HEA-2: [0.35,0.17,0.05,0.08,0.35], HEA-
3: [0.35,0.23,0.05,0.05,0.32], HEA-4: [0.35,0.15,0.05,0.11,0.34] and HEA-5: [0.35,0.16,0.06,0.11,0.32]. The 
formation energy, density, and elastic modulus for the same compositions of AlCoCrFeNi HEA with FCC lattice 
structure (blue squares) are plotted for comparison.
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Discussion
Validation of the PSSOS method. To validate the PSSOS method, we compared the type of stable 
phases obtained by the PSSOS method for a given AlCoCrFeNi composition with the experimentally measured 
 ones40–43 and the predicted ones by DFT based on the CPA  approximation44,45. In addition, the corresponding 
lattice constants and Young’s modulus were calculated and compared (see Fig. 6).

In experiments, the molar fraction of a single constituent element, typically, Al is usually varied over a specific 
range as in a set of  Alx(CoCrFeNi)1-x compositions. For each molar fraction, x, of Al, one determines the most 
stable phase (FCC, BCC, or both) and measures the resultant lattice constant. First, we compared the phases 
predicted by the PSSOS method with those observed  experimentally40–43 for  Alx(CoCrFeNi)1-x compositions. It 
was found that they are in good agreement for the single phase AlCoCrFeNi HEAs. At the low molar fraction 
of Al ( ≤ 20%), the FCC phase is stable, while at the high molar fraction of Al ( ≥ 20%), the BCC phase is stable. 
Next, we compared the values of lattice constant for  Alx(CoCrFeNi)1-x compositions calculated by the PSSOS 
method with the experimentally measured values and values calculated by the CPA-based DFT method for both 
FCC and BCC phases (see Fig. 6a, b). As can be seen in Fig. 6a, b, the lattice constants obtained by the PSSOS 
method correspond well with experimental measurements and calculated results from CPA. Similarly, we observe 
that the lattice constants for  Nix(AlCoCrFe)1-x (where the molar fraction of Ni is varied) are in a close agreement 
with the experiment and CPA results too (see Supplementary Fig. S7).

For more precise validation of the PSSOS method, we obtained the difference between the formation energy 
of AlCoCrFeNi with BCC and FCC lattice for the set  Alx(CoCrFeNi)1-x compositions, and compared the results 
with those from CPA-based DFT  calculations44,45 (see Fig. 6e). It should be noted that when the energy difference 
is positive, the FCC phase is more stable than BCC (and vice versa for the negative energy difference). As can 
be seen in Fig. 6c, both the predicted energetically stable phases and energy differences between BCC and FCC 
phases calculated by the PSSOS method and the CPA-based DFT method agree well each other, thus providing 
additional support for the validity and accuracy of the PSSOS method.

Finally, we compared the values of Young’s modulus calculated by the PSSOS method and the CPA-based 
DFT  method45 for the set  Alx(CoCrFeNi)1-x compositions (see Fig. 6c, d). As can be seen in Fig. 6c, d, both the 
PSSOS and CPA methods predict the value of elastic module for AlCoCrFeNi HEA in solid solution state with 

Figure 6.  (a), (b) Lattice constant of  Alx(CoCrFeNi)1-x in FCC (a) and BCC (b) phase vs. molar fraction of 
Al. The values of lattice constant obtained by the PSSOS method are represented by red circles; the error-bars 
represent standard deviations, and the red line is a guide to the eye. The experimental measurements are taken 
from Chou et al.40 (blue squares), Wang et al.41 (green triangles), and Zhu et al.42 (black pentagons), while the 
values obtained by CPA-based DFT calculations are taken from Jasiewicz et al.44 (open circles), Tian et al.49 
(open squares), and Leong et al.50 (open pentagons). (c), (d) The Young’s modulus of  Alx(CoCrFeNi)1-x in FCC 
(c) and BCC (d) phase is plotted against molar fraction of Al. The values of elastic modulus calculated by the 
PSSOS method (red circles) are compared with those calculated by the CPA-based DFT  method49 (blue squares). 
The experimental measurements are taken from Li et al.46 (green triangles), Jiao et al.47 (orange triangles) and 
Mohanty et al.48 (magenta triangles) (e) Difference between the formation energy per atom of  Alx(CoCrFeNi)1-x 
in BCC and FCC phase as a function of molar fraction of Al. The energy differences, �E

f
bcc−fcc , obtained by the 

PSSOS method are represented by red circles, the �E
f
bcc−fcc obtained by the CPA-based DFT calculations are 

taken from Jasiewicz et al.44 (orange triangles) and Tian et al.49 (blue squares). The dashed line separates the 
region with �E

f
bcc−fcc ≥ 0 , where the FCC phase is more stable than BCC, and �E

f
bcc−fcc ≤ 0 where the BCC 

phase is more stable than FCC.
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a comparable accuracy, as compared with the experimental measurements taken from Li et al.46, Jiao et al.47 and 
Mohanty et al.48 The results obtained from the proposed method are in line with the CPA-based DFT methods. 
The overall agreement in values for lattice constant, formation energy and elastic modulus calculated by the 
PSSOS method and those obtained experimentally or by the CPA-based DFT add considerable support for the 
validity of PSSOS. According to Fig. 6c, d, the results obtained by the PSSOS method are close to those obtained 
by the CPA. This is because the HEA contains atoms with similar atomic radius and electronic configuration, 
such as Fe, Co, Ni, and Cr combined with Al9. In this case, the CPA or VCA method can be used to reduce 
computational cost. But in general, if an HEA contains atoms with quite different atomic radius and electronic 
configuration, such as Ti, Nb or Be, there is the apparent lattice distortion in the SOS structures, and the results 
obtained by the PSSOS method are more accurate than those obtained by the mean-field based CPA or  VCA26,33.

Computational efficiency of the present method. It is well-known that the computational cost (CC) of 
DFT calculations scales with the ∼ 3rd power of the number of atoms, N, that is,CC ∼ O(N3) . For an equimolar 
quinary HEA, an SQS sample typically contains N = 125 atoms, the computational cost of the SQS or CPA-based 
DFT calculations is CC ∼ O(1253) = O(106) . In contrast, the computational cost of the PSSOS method scales as 
CC ∼ O(s · n · N3) , where s is the number of SSOS solutions, n is the number of SOS per set, and N is the num-
ber of atoms per SOS. Consequently, for SSOS with s = 5, n ∼ 30 and N ∼ 7, the CC ∼ O(5 · 30 · 73) = O(105). 
Hence, for the equimolar case, the PSSOS method is an order of magnitude more computationally efficient than 
the SQS method. However, for non-equimolar HEAs with large composition disparities, at least a thousand 
atoms are required for the SQS method. For such cases, the PSSOS method is more computationally efficient by 
several orders of magnitude than the SQS method. Hence, compared to the SQS method, the PSSOS method is 
comparable in accuracy, but considerably more computationally efficient, and thus suitable for HF, FT computa-
tions for HEAs.

Method
The SSOS method. The key idea of the SSOS method is to use a set of special ordered structures to model 
HEAs. In this method, the complete set of SOS with cubic lattice structure are first constructed. A small set of 
SOS is selected to match exactly the target atomic pair-correlation functions of a given HEA composition and 
lattice structure. Then, the geometry of the selected SOS is optimized by DFT, and the corresponding proper-
ties, like formation energy, lattice constant, density, and elastic moduli, are calculated as the weighted average 
over the properties of the selected SOS. Hence, the main task is to identify the set of SOS and the correspond-
ing  weights26,33. The chief advantage of the SSOS method is the substantial reduction in the number of atoms 
required to model an HEA in the ideal solid solution phase, since the selected SOS samples in principle contain 
only a few atoms. As a result, its computational cost is considerably smaller than that of SQS, making it prefer-
able for HT DFT calculations. Moreover, any non-equimolar composition can be accurately modelled with the 
SSOS method using small structures, whereas SQS models for most non-equimolar compositions require many 
atoms to satisfy the periodic boundary conditions, thus making HT DFT-based SQS calculations impractical. 
For example, to model a non-equimolar composition of AlCoCrFeNi HEA in BCC lattice 

[
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]

 
by the SQS method with the smallest possible non-orthogonal equal-side sample, one needs to use  103 = 1000 
atoms. To accurately construct such an SQS sample, one typically needs to find the least common denomina-
tor (for the molar fractions), the cube root of which is an integer (with the smallest value). If one multiplies the 
three different denominators (20, 50 and 100) by a set of unknown positive integers N1,N2 and N3 , then three 
equations for the common denominator are obtained: 20 N1 = 2251N1 = M3 , 50 N2 = 2152N2 = M3, and 100 
N3 = 2252N3 = M3 . The solution of these equations requires the use of the unknowns which complement the 
products to the  3rd power. Thus, N1 = 2152 = 50,N2 = 2251 = 20 and N3 = 2151 = 10. The obtained solution 
leads to the smallest possible SQS sample with M3 = 103 = 1000 atoms.

Calculation of pair correlation functions in solid solution state. The atomic pair correlation func-
tions quantitatively describe the neighborhood of the atom of interest. They indicate the number and type of 
neighboring atoms located around the atom up to a specific range. In the ideal solid solution phase, these pair 
correlation functions can be obtained analytically. For a given composition of AlCoCrFeNi HEA, we count the 
fraction of all possible pairs Al–Al, Al–Co, Co–Co, Co–Cr, Co–Fe, …, Ni–Ni formed by atoms separated up 
to 1st, 2nd, and 3rd nearest neighbor (NN) distance. For the ideal solid solution phase of an equimolar HEA, 
the fraction of pairs formed by the same elements is constant (which does not depend on NN distance) and is 
equal to half of that formed by two different elements 35. The fraction of specific pairs, for example, Al-Co pairs 
in the ideal solid solution phase, is obtained by counting the number of pairs formed by selected atoms. One 
can make two pairs (Al-Co and Co-Al) by using Al and Co atoms, but only one pair out of Al atoms (Al-Al) or 
Co atoms (Co–Co). For an equimolar composition of quinary HEA, the probability of selecting an Al atom (or 
any constituent element) is the same, that is, p = 1

5
 , as the molar fraction of Al, c(Al). Thus, the fraction of Al-Co 

pairs is P = 2 · c(Al) · c(Co) = 2 · 1
5
· 1
5
 = 0.08. But if the same elements are used, the fraction of Al-Al (or Co–Co) 

is only P = c(Al) · c(Al) = 1
5
· 1
5
 = 0.04 (see pair correlation functions of equimolar HEA in Supplementary Fig. S8a 

of Supplementary Materials).
For a given HEA with non-equimolar composition, the corresponding pair correlation functions are calcu-

lated in the same way. For example, the fraction of Al-Al pairs is given by P = c(Al) · c(Al) and Al-Co pairs is 
P = 2 · c(Al) · c(Co) , that is, only the probability to select a specific element is equal to its molar fraction, which is 
specified by its non-equimolar  composition35 (see an example of pair correlation functions for a non-equimolar 
HEA in Supplementary Fig. S8b of Supplementary Materials).
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Construction of SOS samples. Next, we construct the SOS samples with FCC and BCC lattices. In the 
SSOS method, symmetry-unique SOS are constructed by selecting three independent lattice vectors describing 
a non-orthogonal and non-primitive (non-conventional) unit cell of cubic lattice (see Fig. 1b). The positions 
of basis atoms Ri

α located within the selected unit cell are given by: Ri
α =

∑3
K ζ ij a

K
α  . They are expressed rela-

tive to the selected non-primitive lattice vectors ajα , by using fractional coordinates ζ ij  satisfying the conditions: 
( 0 ≤ ζ ij < 1) , where K = 1, 2, 3 is the index of the lattice vectors ,α = x, y, z are projections on Cartesian axes, 
and i = 1, 2, 3, . . . ,Nat indicates the atoms within the SOS. The complete set of Nat = 5-atom SOS and a partial 
set of Nat = 6-atom SOS for FCC lattice are given in  citations26,33. In order to construct a set of all possible SOS, 
the TTK  package51 was used. The five constituent elements (Al, Co, Cr, Fe and Ni) were distributed based on 
atom sites Ri

α of the constructed SOS. For every SOS, we calculated the corresponding atomic pair-correlation 
functions, { φi} up to 3rd NN range. The obtained pair-correlation functions are the unique “fingerprints” identi-
fying the specific SOS with FCC or BCC lattice structure. In total, we found a very large set of 5-, 6- and 7-atom 
SOS whose atomic pair-correlations can be used to model HEAs with non-equimolar compositions. For the 
SOS set with FCC lattice, the number of 5-atom SOS is N5 = 1614, 6-atom SOS is N6 = 13,685 and 7-atom SOS 
is N7 = 29,775, giving in total Nfcc = 45,074. Similarly, for BCC lattice, the number of SOS containing 5 atoms is 
N5 = 1,614, 6-atom SOS is N6 = 14,560 and 7-atom SOS is N7 = 35,665, giving in total Nbcc = 51,839.

The preselected SOS subset. Obtaining an SSOS solution from the complete set of SOS (containing ∼ 
50,000 samples) and then optimizing their geometries and calculating their characteristic properties by DFT is 
prohibitively expensive. To overcome this difficulty, we identify ∼ 1000 of the most frequently used SOS from 
the complete set and then look for the SSOS solutions by taking SOS only from this small DFT preselected SOS 
subset.

When the preselected SOS set is used, the number of SOS per SSOS solution can be larger compared to the 
case when the SOS cases are taken from the complete set, since only a fraction of all the SOS are used. Thus, the 
number and the type of all available pair correlation functions are limited. In practice, we start with a trial set 
containing up to n = 34 SOS (as in the case when the pair correlation functions match the target functions up 
to 3rd NN  range33 and the complete set of SOS is used) and then continue to increase the number of SOS per 
set until an SSOS solution can be identified. We found that, on average, the number of SOS per SSOS solution 
is noticeably larger (around n ∼ 60–90). Yet, since all the SOS in the obtained SSOS solution are taken from the 
same preselected subset, the computational cost of the set expansion is negligible. We verified the new approach 
by comparing the identified SSOS solutions for a given HEA composition with those obtained by the established 
SSOS method and found that the results from the PSSOS approach are practically identical.

Identification of the SSOS solutions by matching the pair correlation functions. Our subse-
quent task is to select a minimal number subset of SOS ( n < Ntot ) from the preselected set of SOS, which con-
stitutes an SSOS solution. To do so, we identify the corresponding weights for a linear combination of their pair 
correlation functions � =

∑n
i wiφi , which precisely match the target pair correlation functions � up to the 

3rd NN range. The selection of a specific SOS subset and the corresponding weights is a two-step optimization 
process: First, a trial subset with a selected number of SOS, n, is chosen from the preselected SOS set, and then 
the weight coefficients are found by linear regression. The set of weights {wi } that best reproduces the target 
pair correlation functions,  is obtained by minimizing the residual coefficient � =

(

�−
∑n

i wiφi
)2
. The linear 

regression is used to calculate both the weights {wi } and � . The accuracy of the linear regression is measured by λ, 
which is the key condition for accepting a selected trial subset of SOS as an SSOS solution. For an SSOS solution 
to be accepted, a minimal value of λ <  10–12 was used.

In view of the prohibitively large number of SSOS solutions, a direct exhaustive search for all the SSOS solu-
tions is impractical. Instead, we used a stochastic search, namely the hill climbing method (HCM)39, to minimize 
� =

(

�−
∑n

i wiφi
)2
. Since the HCM is a local search algorithm, there is a possibility that due to the rugged solu-

tion landscape, { φi} , the search may end up in a local minimum of λ and miss out the global minimum (� = 0) . 
Thus, to explore the solution landscape thoroughly, the HCM routine was restarted multiple times at different 
locations of the SOS space to search thoroughly, albeit stochastically through it. However, since it is not possible 
to obtain all the SSOS solutions for a given HEA with non-trivial target pair correlation functions, we only search 
for a finite number of SSOS solutions. With the HCM method, we were able to identify a large number of SSOS 
solutions with the maximal number of n = 100 SOS and the minimal number of n = 34  SOS26,33 when the target 
pair-correlation functions of the HEA with SRO are matched up to the 3rd NN range. It is possible to go beyond 
the  3rd NN range, but the gain in the accuracy of the calculated properties, which was estimated by going from 
the 2nd to the 3rd NN range, is less than < 1%34. Therefore, the minor improvement in the accuracy does not 
offset the substantial increase in the computational cost of constructing and optimizing additional SOS required 
to match the target functions up to the 4th (or higher) NN range.

Here, we only considered matching of the pair correlation function; thus, one might think that such matching 
may skew against the effect of triplet correlations and result in an unrepresentative structure for HEAs. However, 
we found that when the target pair correlation functions are matched with the highest accuracy, the discrepancy 
between the corresponding triplet correlation functions and above is negligibly  small34.

Calculation of the HEA properties. To deal with the non-uniqueness of the SSOS solutions, we calcu-
lated the properties of the HEA as a simple average over a subset of the obtained SSOS  solutions33. Since all the 
acquired solutions match the target pair correlation functions with high precision, we used the triple correlation 
functions to select the subset of the best SSOS solutions for the averaging procedure. The triple correlation func-
tions were calculated for each SOS in the same way as the pair correlation  functions35. All the obtained SSOS 
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solutions were sorted according to the accuracy with which they match the target triple correlation functions 
of the ideal solid solution phase. The first top five solutions were selected as a subset of the SSOS solutions, over 
which we averaged the calculated properties of a HEA sample with a given composition.

The properties of the AlCoCrFeNi HEA (energy, lattice constant, density, and elastic moduli) for different 
compositions were calculated in two steps: First, a weighted average over SOS samples constituting a given SSOS 
solution, s, was calculated, and then a simple average over the selected top five SSOS solutions was obtained. 
For example, the ground state energy ,Es, is calculated according to:Es =

∑n
i w

s
i E

sos
i  , where ws

i  is the weight 
coefficient of the ith SOS obtained for s-SSOS solution, Esosi  is the energy of the ith SOS, and n is the number of 
SOS. The ground state energy of a given HEA, 〈E〉 , is then obtained as �E� = 1

m

∑m
s Es , where m is the number 

of the subset of SSOS solutions used for the averaging procedure (m = 5 in our case). The other properties (lattice 
constant, mass density, elastic moduli, and Poisson’s ratio) were calculated in the same way.

The formation energy of AlCoCrFeNi HEA with a given composition [ c(Al), c(Co), c(Cr), c(Fe), c(Ni) ] was 
calculated in the following way: We first obtained ground state energy per atom, < E > /N, of AlCoCrFeNi HEA 
by the SSOS method, and then subtracted from it the energy (per atom), EROM , calculated according to the 
rule of mixtures: EROM = c(Al)EAl + c(Co)ECo + c(Cr)ECr + c(Fe)EFe + c(Ni)ENi , where EAl and ENi are the 
ground state energies per atom for pure Al and Ni with FCC lattice, while ECr , EFe are the ground state energies 
per atom for pure Cr and Fe with BCC lattice, respectively, and ECo is the ground state energy per atom for pure 
Co with HCP lattice.

Systematic examination of the composition grid. We systematically explored the composition space 
of AlCoCrFeNi HEA by the PSSOS method. We selected the lower (5%) and the upper (35%) limits for the 
molar fractions of every constituent element of AlCoCrFeNi HEA. The increment in the molar fraction (grid 
step) was set to � = 3%. Although a quinary HEA contains five constituent elements, only four out of five 
molar fractions of the constituent elements are linearly independent, since the sum of them is equal to one: 
c(Al)+ c(Co)+ c(Cr)+ c(Fe)+ c(Ni) = 1. Therefore, in order to construct the composition grid of AlCoCr-
FeNi HEA, we systematically varied the molar fraction of Al, Co, Cr and Fe within the specified range, while the 
molar fraction of Ni was obtained as a dependent variable. With � = 3% increment in the molar fraction, we 
generated one equimolar and 8800 non-equimolar compositions (see Fig. 2). The formation energies and mass 
densities were calculated for all the generated compositions, and the top-five compositions with the lowest for-
mation energy were selected for AlCoCrFeNi HEA with BCC and FCC lattices. With the top-five grid composi-
tions being identified, we verified if the better solutions with lower formation energy can be found in the vicinity 
of these compositions. Therefore, we applied the HCM to explore locally the off-grid composition space around 
the top-five grid compositions. Three new compositions with the lower formation energy were found for both 
the FCC and BCC lattices (see Table 1 and Fig. 5, as well as Supplementary Table S1 and Supplementary Fig. S4).

Details of the DFT calculations. All our DFT calculations were carried out with the generalized Perdew-
Burke-Ernzerhof52 and the projector-augmented wave (PAW) pseudopotential plane-wave  method53, as imple-
mented in the VASP  code54. For the PAW pseudopotentials, we included  2s23p1,  3p6d74s2,  3d54s1,  3p6d84s2, and 
 3p6d64s2, as valence electrons for Al, Co, Cr, Ni, and Fe, respectively. We also calculated the elastic constants by 
deforming the SQS and SOS samples and deriving their elastic constants from the strain–stress relation. The 
corresponding isotropic elastic moduli (Young’s, bulk and shear modulus) and Poisson’s ratio were derived from 
these elastic constants by using the Hill’s approximation  scheme55.

For the SOS DFT calculations, we used 12 × 12 × 12 Monkhorst −  Pack56 k-point grid for unit cell geometry 
optimizations and energy calculations, and a plane-wave basis set with an energy cut-off of 520 eV was adopted. 
Good convergence was obtained with these parameters, and the total energy was converged to  10−7 eV per atom. 
Spin polarization was considered in this study. Spin polarization was considered in this study. In our calculations 
we started with relatively large initial local magnetic moments, because in some cases, the default values might 
not be sufficiently big to properly describe the effect of interaction of the spin magnetic moments. For our spin 
polarized collinear DFT calculations we specified the following initial magnetic moment: M = 0.6μB for each Al 
atom, and M = 5μB for each Co, Cr, Fe, and Ni atom. The energy minimization was performed using a conjugate-
gradient algorithm to relax the ions into their instantaneous ground state without constraining lattice constants.

Data availability
The datasets used and/or analyzed during the current study is available from the corresponding author on request.
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