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Deep polygenic neural network 
for predicting and identifying 
yield‑associated genes 
in Indonesian rice accessions
Nicholas Dominic1*, Tjeng Wawan Cenggoro2,3, Arif Budiarto2,3 & Bens Pardamean1,3*

As the fourth most populous country in the world, Indonesia must increase the annual rice production 
rate to achieve national food security by 2050. One possible solution comes from the nanoscopic 
level: a genetic variant called Single Nucleotide Polymorphism (SNP), which can express significant 
yield‑associated genes. The prior benchmark of this study utilized a statistical genetics model where 
no SNP position information and attention mechanism were involved. Hence, we developed a novel 
deep polygenic neural network, named the NucleoNet model, to address these obstacles. The 
NucleoNets were constructed with the combination of prominent components that include positional 
SNP encoding, the context vector, wide models, Elastic Net, and Shannon’s entropy loss. This 
polygenic modeling obtained up to 2.779 of Mean Squared Error (MSE) with 47.156% of Symmetric 
Mean Absolute Percentage Error (SMAPE), while revealing 15 new important SNPs. Furthermore, 
the NucleoNets reduced the MSE score up to 32.28% compared to the Ordinary Least Squares (OLS) 
model. Through the ablation study, we learned that the combination of Xavier distribution for weights 
initialization and Normal distribution for biases initialization sparked more various important SNPs 
throughout 12 chromosomes. Our findings confirmed that the NucleoNet model was successfully 
outperformed the OLS model and identified important SNPs to Indonesian rice yields.

Yield is one of the superior rice traits which is controlled by multiple genes (called polygenic). Through a 
Genome-wide Association Study (GWAS), its genetic makeups can be discovered and  perceived1–4, while still 
considering any covariates such as climatic  conditions5,6, field  factors6, intentional or unintentional environmen-
tal  damages7, and even the dispensable  genomes8. Rice, as a staple food for over half of the worldwide population, 
becomes an ideal species model within the monocots plant genomic research  community8,9 due to its genome’s 
smallest size (of major cereals), relative simplicity and completeness, dense map, and also ease of  manipulation7,10. 
Recall that the Food and Agricultural Organization of the United Nations estimated that by 2050 the worldwide 
population will increase 32% to 9.1  billion11. Particularly, Indonesia had a 1.09% increase in population growth 
rate by  202012,13 and thus has to increase the annual rice production to feed its entire population and achieve 
national food security.

GWAS that has been deployed for indica and japonica subspecies genome sequences  database7,14,15 in many 
former studies manifests a remarkable improvement to break the conundrum of identifying what genes influence 
such traits. By delving deeper to the nanoscopic level, Single Nucleotide Polymorphism (SNP) has been widely 
applied to predict plant  traits16–23. In recent years, the yield prediction-related tasks for rice genomic data have 
been completed using statistical genetic models to machine learning-based open  frameworks24–26.

Rice yield predictive models should consider confounding  variables27–32. In Indonesia, a Genetic Generalized 
Double Pareto Regression (GGDPR)6 model incorporates the 1232 Indonesian rice SNPs from 467 accessions 
with two field indicators and plant varieties as confounding variables. The same dataset is used for this research. 
GGDPR could control the covariate and allow the repeated measurements for the same rice species in a distinct 
environment. The algorithm itself, through its shrinkage prior ability, was claimed to successfully handle a condi-
tion where the number of the predictors p is greater than the number of samples n , p ≫ n33,34, as usually happens 
in GWAS. With a 0.3% of false discovery rate, GGDPR revealed nine significant SNPs to Indonesian rice yields. 
One of the SNPs, TBGI050092 (Minor Allele Frequency/MAF = 3%, GGDPR β = − 0.186) resides within a gene 
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responsible for rice  growth35,36. Another intronic SNP, id10003620 (MAF = 5%, GGDPR β = 0.515) produces a 
pentatricopeptide protein, which plays role in stress and developmental response in  rice37. Meanwhile, the protein 
product of TBGI272457 (MAF = 12%, GGDPR β = − 0.285) equipped rice plants with pathogenic  resistance38,39. 
This study uncovers more important SNPs to Indonesian rice yields by constructing a novel deep polygenic 
neural network model, named the NucleoNets.

In this paper, we present several contributions as follows. First, we designed NucleoNets as the first Artificial 
Intelligence (AI) based predictive model for the Indonesian rice genomics data. Second, since SNP is scattered 
in chromosomes with a distinct position index, the learnable SNP positional  embedding40 was involved in 
the NucleoNets. Third, we kept covariates (i.e., sample location and variety) in the NucleoNet’s wide model 
 compartement41 as proportional memorization against the primary deep model. Fourth, the ablation study was 
conducted to witness the impact of different parameters initialization against the SNP importance results. Lastly, 
as the AI-based polygenic modeling for GWAS was completed, we revealed 15 novel important yield-associated 
SNPs through the NucleoNet’s attention  mechanism42. Our research offers the availability of the new state-of-
the-art with deep learning methods as a stepping-stone to answer the problem of crop yield predictions.

Methods
Research workflow. The research problem comprises the development of a deep polygenic neural network 
to predict Indonesian rice yields and reveal new important yield-associated SNPs. The developed hypothesis is 
that the Indonesian rice yields prediction performance of the NucleoNet model can outperform the basic linear 
regression model, i.e. Ordinary Least Squares (OLS) and OLS with an Elastic Net (ENET). To achieve these 
goals, there are five phases of the methodology.

First, both phenotype and genotype datasets were preprocessed. Second, basic regression modeling was 
developed to assess the dataset feasibility. Regression is also required for comparison, which is much more 
commonly used in GWAS. Third, the NucleoNet model was constructed, inspired by the Wide and Deep model. 
Next, the evaluation phase was done with various metrics to measure the model performance. Lastly, the t-test 
was conducted to test the hypothesis.

Data collections. The dataset used for this research was originally curated by the Indonesian Center for 
Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD). The database 
collection consists of 467 rice germplasm samples, 467 × 1536 genotypes (SNPs), and 467 × 4 locations × 12 phe-
notypes. In detail, the germplasm sample consists of 136 local varieties, 162 improved lines, 11 wild species, 34 
near-isogenic lines, 29 released varieties, and 95 newly identified varieties. These samples contain 77 Japonica, 
108 Tropical Japonica, and 249 Indica subspecies, leaving the remaining 33 samples with unlabelled subspecies. 
The Indonesian rice genome consists of 12 chromosomes, which each has different numbers of SNP. The propor-
tion is depicted in Fig. 1. Both sample and phenotype data are in Comma-separated Values (CSV) format files, 
while genotype data is provided in CSV and PLINK format files.

The basic attributes in the genotype file are chromosome number (chr), SNP ID (snp), SNP position in DNA 
sequence (pos), reference allele (ref), alternative or mutated allele (alt), and genotype data/SNP (gt) itself. Mean-
while, the phenotype file describes 12 available rice traits (see Table 1 in the Supplementary Information). The 
rice planting location includes Subang, Citayam, Kuningan, and Greenhouse (a controlled environment). The 
incomplete rainy season climatic data such as temperature, humidity, wind speed, precipitation, and irradiance 

Figure 1.  Number of SNPs for each chromosome.
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were excluded. The other exclusion reason is that the climatic data was reported to be practically identical 
throughout the  locations6,43.

SNP validation. We validated our Indonesian rice SNPs data to the 18,128,777 Rice Genome Project (RGP) 
and found that only 57 Indonesian rice SNPs (4.63%) were registered in the International Rice Research Institute 
(IRRI) database (see Table 2 in the Supplementary Information).

Data preprocessing. This preprocessing phase aims to create a Genotype–Phenotype (GP) table consist-
ing of the following columns: sample ID, sample name, sample location, sample variety, SNP, SNP position, 
and yield. Note that samples from the Greenhouse were excluded since all yields are unreported (thus, the total 
sample location is l  = 3).

The previous  work6 reported that the raw genotype data consists of 1536 SNPs with approximately 389 
megabases. After the genotype dosage imputation by the Bayesian Imputation Based Association Mapping (BIM-
BAM) software for SNPs with call rate beyond 25% and removal of monomorphic SNP, 697 rice samples × 1232 
SNPs were obtained. The alternative imputation services are Online Plant-ImputeDB or Rice Imputation  Server44 
which utilized cloud computational offloading  technology45. Note that before the imputation, referring to the raw 
data we received, the call rate of 9 significant SNPs is 0.222% for TBGI036687, 1.774% for TBGI050092, 0.665% 
for id4009920, 1.109% for id5014338, 1.330% for both TBGI272457 and id8000244, 20.843% for id7002427, 
2.217% for id10003620, and 0% for id12006560. The call rate is calculated by dividing the number of samples 
that have a null value in their related SNP by the total number of samples.

Next, from the 697 samples, mild and extreme outliers in the yield data were detected by using the Inter-
quartile Range (IQR) method. From here 10 missing yields were dropped and the outliers were imputed with 
the global mean. Therefore, the final Genotype–Phenotype table has 687 rice samples, with each has 1232 SNPs 
(genotypes) and 1 yield rate (phenotype to predict). See Fig. 2 for details.

Note that in the genotype dataset, all SNPs were encoded based on the additive  model46. The scheme encodes 
SNP according to the total of its alternative allele, as it represents a mutation in one locus (see Table 3 in the Sup-
plementary Information). Genotype dosage, which is implanted within the BIMBAM tool, is a linear transforma-
tion technique used to fill the missing genotypes in SNP. It is based on the posterior genotype  probabilities47,48. 
Most of the imputed SNPs are in real numbers. To adapt them with the SNP encodings, all real numbers were 
half-rounded to even (also known as a Banker’s rounding behavior, as applied in Python 3.x).

Regression modeling. The GP Table data frame was shuffled and 85% of the total data was then reserved 
for train data. After this splitting, the t rain data has a coefficient of variation (CV) of 1.878, and the test data 
has a CV of 1.798, which still showed the fair dispersion of yield data. In this regression section, we rendered 
three experiments. First, all SNPs were included in the Ordinary Least Squares (OLS) as a part of polygenic 
modeling (Experiment 1). Second, each SNP was regressed to yield as a part of an independent association test 
or marginal regression (Experiment 2), as commonly found when dealing with GWAS. Third, the Elastic Net 
(ENET) regression was conducted to see the results under the coefficients penalty (Experiment 3). All SNPs were 

Figure 2.  Data preprocessing step.
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included when the ENET was performed. Its results were plotted into the correlation heatmap to scrutinize the 
effects of the alpha constant (used to multiply the penalty term) and L1 ratio tuning. This ratio works by 0 < L1 
ratio < 1. Both alpha and L1 ratio spaces follow the arithmetic sequence of ⊣n = ⊣0 + nd , where n = 19 and 
⊣0 = d = 0.05 . All significant SNPs from Experiment 1, Experiment 2, and previous  research6 were gathered 
and compared. These SNPs were then retrained in the OLS model to seek the best prediction score against the 
rice yield. The trial was also intended to meticulously examine whether there are beneficial insights and impacts 
of using only the partial SNP data.

The NucleoNet modeling. The GP table was loaded and shuffled. A tensor object was then created for 
SNP data ( x1 ), SNP position data ( x2 ), sample location data ( x3 ), sample variety data ( x4 ), and yield data ( y ). The 
complete dataset has a format: [[tensor ( x1 ), tensor ( x2 ), tensor ( x3 ), tensor ( x4)], tensor ( y)]. We split the data-
set into 70% of training data, 15% of validation data, and 15% of testing data. The fivefold cross-validation was 
conducted using the training and validation data. We utilized the Hyperopt library which has a Tree-structured 
Parzen Estimator (TPE)  algorithm49. Given a search space, Hyperopt returned the best hyperparameters for the 
model, and hence the validation accuracy can be  optimal50.

The design of the NucleoNet model is depicted in Fig. 3. Generally, it consists of a deep model which starts 
from SNP sample data ( x1 ) and SNP position data ( x2 ) inputs, and a wide model which starts from covariate 
data ( x3 and x4 ) inputs. In the deep model, embedding results from both x1 and x2 were added up; we called it 
x′ . This x′ was then fed into the attention layers before the attention score (context vector) was obtained. The 
context vector ci acts as an encoder map to the SNP input sequence, formulated as

αi is the alignment model as a multi-layer neural network with Softmax activation function (from attention 
layers). The probability of αi reflects the importance of x′

i , thus it will be used as a measure of the SNP feature 
importance. While αi was retrieved in the testing stage, the context vector result was passed to the next layer, 
i.e., Global Average Pooling (GAP), in the training stage. GAP was used to reduce the spatial dimension of the 
Tensor data with less parameters. Outputs from GAP were then fed to the fully connected layers (FC1 and FC2). 
The output from FC2 marked the final result from the deep model.

Both covariates were encoded using a one-hot vector before being fed to the embedding layer. The one-hot 
vector size for the sample location data input ( x3 ) is l  = 3, while for the sample variety data input ( x4 ) is v = 467. 
The flattened output from each layer was then concatenated with FC2 to form the Wide and Deep model. The 
fully connected layer (FC3) with linear activation function was added in the final layer and hence the Nucleo-
Net model was completed. The prominent NucleoNet compartments are listed in Table 1. Meanwhile, Table 2 
describes the detailed Tensor size of each layer in the model. Notice that the final output from Wide Model 1 and 
Wide Model 2 was reduced to suppress the effect of the covariate against the primary deep model.

We designed three experiments. Experiment 1 is the NucleoNet model with Mean Squared Error (MSE) loss 
function (called NucleoNetV1). Experiment 2 is the same except there is an additional modified ENET penalty 
in the loss function (called NucleoNetV2). Note that both ENET and Generalized Double Pareto (GDP) which 
was implemented in previous  research6 have the same role in coefficients  shrinkage33,34. The selection of ENET as 
shrinkage prior was due to simpler implementation and more commonly used in genomics studies to solve p ≫ n 
problems, such as selection method to eliminate trivial  genes53, dense SNPs pre-selection56, genomic estimated 
breeding value (GEBV)  prediction57,  pharmacogenetics58, and even the epistasis  analysis59. Equation (1) describes 
one of the ENET conventions which are used for the glmnet package in R and Scikit-learn in  Python51,52, over-
riding the original naïve ENET. The advent of 12 in Eq. (1) is considered to cancel the exponent 2 (from β2 ) after 
derivative. For the NucleoNet, which is not a generalized linear model, this modified ENET is more suitable. The 
term wr implies the regularization weight to control this penalty against MSE loss, while β denotes the coefficients 
and α denotes the penalty term. The convex combination is no longer used, so α1 + α2 �= 1.

Experiment 3 is the same as Experiment 2 except there is another additional Shannon’s entropy  value54,55 in 
the loss function (called NucleoNetV3). This entropy acts as a control for the dispersion of attention scores across 
all SNPs. In other words, we prevent the attention score from collapsing to only one SNP. Equation (2) shows the 
Shannon’s entropy formula used in Experiment 3, where H denotes the Shannon’s entropy value, px′ denotes the 
probability value of x′ , and wH denotes the entropy weight to control H against the MSE loss.

Hyperopt was executed for each designed experiment. Due to limited computational resources, Hyperopt 
parameters were set to 20 of training epoch, 10 of maximum evaluation, and 43 of initial seed. All the best 
hyperparameters found were retrieved and used for the NucleoNet model mini-batch training in 1000 epochs. 
We also set 15 as a number of patience, which is a maximum epoch number of tolerance when there is no further 
improvement in the training.

Ablation study. Seven ablation studies (ABSTs) in terms of weight initialization were also conducted, as 
summarized in Table 4 in the Supplementary Information. In the first attempt (ABST-1), we let weights and 

(1)ci = αix
′
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(2)β̂enet = MSE + wr
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biases initialization by default in PyTorch, i.e., within the Kaiming Uniform distribution. For all ABSTs, weights 
and biases in the SNP data embedding, SNP position data embedding, sample location data embedding, sam-
ple variety data embedding, and fully connected layer in the deep model were initialized within the N (µ, σ 2) , 

Figure 3.  The NucleoNet model.
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which denotes the Normal distribution. In contrast, U(a, b) denotes the Uniform distribution, as used in ABST-
5. From ABST-2 to ABST-7, we modified weights and biases initialization in the attention layer to examine the 
variability in the SNP importance measures.

Inspired from the previous  study6 where it was considered σ = {0.5, 1.0, 2.0} , we also tried to varied the σ 
within the Normal and Uniform distribution. The Xavier Initialization is used to determine σ 2 in the Normal 
distribution by taking gr =

√
2 as the gain value for the linear layer with the ReLU activation function. Mean-

while, the Kaiming Initialization is used to determine the lower and upper bound in the Uniform distribution by 
taking gl = 1 as the gain value for the linear layer. To your preference, fi and fo in Table 4 in the Supplementary 
Information means the number of the input and output nodes, respectively.

Evaluation metrics. Due to the prediction task, the best possible way to measure the model performance 
on the test dataset is by using MSE or L2 Loss, Root MSE ( RMSE ), Mean Bias Error ( MBE ), Mean Absolute Error 
( MAE ) or L1 Loss, Mean Squared Logarithmic Error ( MSLE ), and Symmetric Mean Absolute Percentage Error 
( SMAPE ). These metrics are currently the most widely used in the agroindustry field, especially for yield fore-
casting with machine learning  approaches60,61. See the Supplementary Information about the selection reason 
for these metrics. Note that due to the nonlinearity of the dataset, the Coefficient of Determination or R-squared 
( R2 ) is unsuitable for the evaluation  measurement32,62. The RMSE , MBE , and MAE inequality are defined as 
MBE ≤ MAE ≤ RMSE ≤

√
nMAE63. A total of 104 testing data were used in both regression and deep learning 

approaches. The prediction evaluation is based on all these metrics. In addition, the paired t-test (or dependent 
t-test) was performed for hypothesis testing.

Hardware, software, and libraries. The research was executed in hardware with specifications of 
 Intel® CoreTM i5-8250U @1.60 GHz (8 CPUs) ~ 1.8 GHz processor, X442UQR/X442UQR.308 system model, 
16,384 MB RAM, and Windows 10 (64-bit) operating system. Developer software includes Jupyter Notebook 
6.0.1, Rstudio 1.1.463, Preferred Installer Program/PIP 21.2.4, and PLINK 1.9. The main programming language 
is Python 3.7.1. Python libraries used are Torch 1.9.0, Pandas 1.3.3, Scikit-allel 1.3.5, Scikit-learn 0.24.2, Hyper-
opt 0.2.5, Statsmodels 0.12.2, Statistics 1.0.3.5, Matplotlib 3.4.3, Seaborn 0.11.2, and Numpy 1.19.5. All libraries 
may have the alternative and can be installed through the Python package manager (i.e., PIP).

Table 1.  The prominent parts of the NucleoNet model.

No. Component in model Purpose

1 Positional  encoding40 Add SNP position information to the primary SNP data

2 The context  vector42 As the attention mechanism, to emit the SNP importance value

3 Wide  model41 Accommodate all covariates

4 Elastic  net51–53 Penalize all parameters in all layers

5 Entropy  loss54,55 Control the distribution of attention scores across all SNPs

Table 2.  Tensor size for each layer in the NucleoNets. In this table, b indicates the batch size, s indicates the 
length of SNP, e indicates the embedding size, ah indicates the number of attention hidden layers, l  indicates 
the number of sample locations, v indicates the number of sample varieties, mhd means the MLP hidden layer 
of the deep model, mhw means the MLP hidden layer of the wide model, and FC means the Fully Connected 
layer.

Deep model Size Wide model Size Wide deep model Size

SNP data input ( x1) [b, s] Sample location data input ( x3) [b, 1] Concat [b, o1 + o2 + o3]
SNP data embedding [b, s, e] Sample location one hot encoding [b, l] FC3 [b, 1]
SNP position input ( x2) [b, s] Sample location embedding [b, l, e] Output ( y) [b]
SNP position embedding [b, s, e] Sample location flatten [b, le]
SNP data + position ( x′) [b, s, e] Wide model 1 ( mhw1/8 = o2) [b,mhw1/8]
Attention layer 1 ( a1) [b, s, ah] Sample variety data input ( x4) [b, 1]
Attention layer 2 ( a2) [b, s, 1] Sample variety one hot encoding [b, v]

Context vector ( x′
a2) [b, s, e] Sample variety embedding [b, v, e]

Concatenation (GAP) [b, s, 1] Sample variety flatten [b, ve]
FC1 [b,mhd1] Wide model 2 ( mhw2/8 = o3) [b,mhw2/8]
FC2 ( mhd2 = o1) [b,mhd2]
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Results
Statistical analysis. The same 467 species were grown in three distinct locations, i.e., Kuningan (2010–
2011), Subang (2011–2012), and Citayam (2012–2013). Referred from the previous  research6, the total data 
used is 697 samples. All 10 missing yields from Citayam were dropped, leaving 687 samples. The outliers were 
detected using the Interquartile Range (IQR) method, with Lower Outer Fence (LOF) of − 6.38, Lower Inner 
Fence (LIF) of − 2.19, Upper Inner Fence (UIF) of 8.98, and Upper Outer Fence (UOF) of 13.17. Precisely, 27 
mild outliers were appeared and then imputed by 3.449 as the global mean of rice yield. No extreme outlier was 
found.

As we plotted the density distribution of rice yields in each location, 150 samples from Kuningan (5.01 ± 1.98) 
has the Skewness coefficient γ1 of 0.14 and the Kurtosis coefficient γ2 of − 0.86, 124 samples from Subang 
(3.62 ± 1.82) has γ1 of 0.08 and γ2 of − 0.85, and 413 samples from Citayam (2.83 ± 1.43) has γ1 of 0.19 and γ2 
of − 0.61. Samples in Citayam have the largest γ1 , which means mostly the yield ≤ µ . However, the samples in 
Kuningan and Subang have the lowest γ2 , which means the yield is more varied than the rest. Higher σ from both 
supports the statement. Overall, all 687 data (3.44 ± 1.85, γ1 = 0.53, γ2 = − 0.06) is close to the normal distribu-
tion (since γ2 ≈ 0 ), but still positively skewed (since γ1 > 0 ). See the distribution histograms in Table 5 in the 
Supplementary Information.

Ordinary least squares results. From the OLS, which is part of Experiment 1, we obtained 16 signifi-
cant SNPs. From Experiment 2, where we regressed each SNP to yield, we obtained 36 significant SNPs. See 
the results in Table 3. All significant SNPs found in Experiment 1, Experiment 2, and previous research were 
once again regressed with the normal OLS and OLS + ENET models. Unfortunately, it seems that there is no 
prominent result by using only the partial SNP data. Nevertheless, the OLS + ENET model still outperformed 
the normal OLS results. Compare them in Tables 6 and 7 in the Supplementary Information. To these findings, 
we chose to utilize all SNPs in the deep learning model training instead. In Experiment 3, we conducted a simu-
lation to scrutinize the effects of alpha constant (used to multiply the penalty term) and L1 ratio tuning in the 
ENET. Throughout these simulations, we can perceive that the L2 penalty domineeringly affects the outcome. 
To grasp the full impact of this ENET hyperparameter configuration in six different prediction measures, please 
refer to Fig. 2 in Supplementary Information. This trial consumed about 30 min 40 s of execution time (ET).

The NucleoNets results. In Experiment 1, we performed 7 ablation studies (ABSTs) with distinct weights 
and biases initialization. Each of the ABSTs used hyperparameters found by Hyperopt, as inscribes in Table 8 in 
the Supplementary Information. This validation scheme gave an MSE of 3.032 and consumed about 1 h of ET. In 

Table 3.  NucleoNets model comparison with other models. ✓: This symbol means the related part is available 
in the model. ✖: This symbol means the related part is unavailable in the model. *Not mentioned in the 
original  paper6. **The Scikit-learn library does not support the p-value calculation. On the contrary, the 
Stasmodels library does not have an ENET function. ***NucleoNets results from ABST-6.

Polygenic model GGDPR OLS OLS + ENET NucleoNetV1 NucleoNetV2 NucleoNetV3
Wide and deep 
model

Total Indonesian 
rice SNPs 1232 1232 1232 1232 1232 1232 1232

SNP data ✓ ✓ ✓ ✓ ✓ ✓ ✓

SNP position data ✖ ✖ ✖ ✖ ✖ ✖ ✓

Covariate: sample 
location ✓ ✓ ✓ ✓ ✓ ✓ ✓

Covariate: sample 
variety ✓ ✓ ✓ ✓ ✓ ✓ ✓

Shrinkage prior/
regularization

Generalized 
double pareto ✖ ENET ✖ Modified ENET Modified

ENET
Modified
ENET

Shannon’s 
entropy ✖ ✖ ✖ ✖ ✖ ✓ ✓

Evaluation: MSE N/A* 4.104 2.517 2.779*** 2.799*** 2.863*** 8.535

Evaluation: 
RMSE N/A* 2.026 1.587 1.667 1.673 1.692 2.921

Evaluation: MBE N/A* − 0.236 − 0.404 0.099 0.015 − 0.074 − 2.148

Evaluation: MAE N/A* 1.673 1.321 1.407 1.412 1.433 2.497

Evaluation: MSLE N/A* 0.286 0.185 0.184 0.191 0.197 0.468

Evaluation: 
SMAPE N/A* 64.843% 45.432% 47.156% 47.960% 47.481% 63.668%

Significance/
importance level N/A* p < 0.05 N/A** a′ ≥ 0.025 a′ ≥ 0.025 a′ ≥ 0.025 N/A

Number of sig-
nificant/impor-
tant SNP

9 16 N/A** 29 35 23 N/A

Execution time N/A* < 2 s < 2 s 1630 s 5120 s 4910 s 6070 s
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contrast, the training time took approximately 1600 s for 500 epochs. As we can scrutinize in Table 9—Experi-
ment 1 (Supplementary Information), there is only a slightly different result between each ABST. Referring to the 
MSE measurement, NucleoNetV1 gave testing scores of 2.890, 2.843, 2.785, 2.813, 2.779, and 2.794 for ABST-1, 
ABST-2, ABST-3, ABST-4, ABST-6, and ABST-7, respectively. The key to interpreting these results resided in 
their Manhattan plot, as depicted in Fig. 4. Note that for all plots, we utilized the same one random sample for 
uniform comparison. Since we discovered that ABST-3, ABST-6, and ABST-7 sparked more various important 
SNPs, the mixed-use of Xavier Initialization in attention layers was maintained throughout the rest of the experi-
ments. All training plots for NucleoNetV1 are diagrammed in Fig. 5 (marked in blue).

Experiment 2 was run in 1000 epochs with approximately 5000 s of ET. The validation scheme for Nucleo-
NetV2 obtained an MSE of 3.097 and consumed about 1 h 16 min of ET. Referring to the MSE measurement, 
NucleoNetV2 gave testing scores of 2.782, 2.799, and 3.035 for ABST-3, ABST-6, and ABST-7. See Table 9—
Experiment 2 (Supplementary Information) for results from other metrics. In ABST-3, both attention layers used 
Xavier Normal distribution to initiate weights and biases. Meanwhile, in ABST-6, the Xavier Normal distribution 
was initialized in the first attention layer and in ABST-7 the same distribution was initialized in the second atten-
tion layer. Training plots for NucleoNetV2 are diagrammed in Fig. 5 (marked in green).

In Experiment 3, we only reported the NucleoNetV3 testing results on ABST-6 since the SNP importance 
occurrence variation in the Manhattan plot is much higher than ABST-3 or ABST-7. The validation scheme for 
NucleoNetV3 obtained an MSE of 3.233 and consumed about 1 h 35 min of ET. NucleoNetV3 gave an MSE of 
2.863, trained within 1,000 epochs and consumed approximately 4900 s of ET. See Table 9—Experiment 3 (Sup-
plementary Information) for results from other metrics. For uniformity purposes in all NucleoNets, we deter-
mined the result from ABST-6 as primary and therefore are used as comparisons with other models. Training 
plots for NucleoNetV2 and NucleoNetV3 are diagrammed in Fig. 5 (marked in gold).

In addition, to compare with other deep neural network model and to show the advantage of the NucleoNets, 
wide and deep model was trained with the same hyperparameters setting of NucleoNetV3. As shown in Table 3, 
the absence of an attention mechanism reduced the performance. Hence, it is proved that NucleoNets not only 
obtained superior testing results by using the attention layer but also can emit important SNPs to rice yield.

The use of seed = 43 is to let this experiment reproducible. However, Fig. 6 depicts the testing results from 
NucleoNetV3 under different seeds but in the same hyperparameters setting. Since the deep neural network 
follows the stochastic process while training, it is prevalent to get a slightly different result for different seeds.

Discussions
Comparison with GGDPR. We presented the performance comparison between the GGDPR model, poly-
genic OLS regression models, and deep polygenic NucleoNet models, as shown in Table 3. In the OLS model, 
ENET brought a notable improvement where the MSE score was reduced by 38.67%. However, in NucleoNets, 
each configuration brought a slight decline in MSE score. With additional modified ENET, the performance of 
NucleoNetV2 was reduced by 0.07% compared to NucleoNetV1. With additional entropy, the performance of 
NucleoNetV3 was reduced by 2.24% compared to NucleoNetV2. Nevertheless, the NucleoNets performances 
resulted in more varied and more numbers of important SNP in exchange. As we can scrutinize in Table 3, the 
best of NucleoNets, i.e., NucleoNetV1, has an MSE score close to the OLS + ENET model. The NucleoNetV1 
reduced an MSE score by 32.28% compared to the basic OLS model.

Let the NucleoNet ᾱ′ stands for an average attention score emerged from 104 testing samples. We found two 
same important SNPs as the previous  research6, namely TBGI272457 (NucleoNetV1/ABST-7, GGDP β = N/A, 
OLS p-value = 0.728, OLS β = − 0.025, ᾱ′=0.319) and id4009920 (NucleoNetV2/ABST-7, GGDP β = − 0.265, OLS 
p-value = 0.952, OLS β = − 0.003, ᾱ′=0.407). The former resided on rice chromosome 6 and position 2,991,002, 
while the latter resided on rice chromosome 4 and position 30,174,569. id4009920 is a seed-specific protein 
 Bn15D1B64,65. TBGI272457 acts as a transporter for anthocyanins vacuolar uptake in  rice66. Anthocyanins, 
as members of flavonoid groups, play a role in reproduction and growth, and offer a protection mechanism 
against biotic or abiotic stress and  plaques67,68. TBGI272457 is also classified as the NB-ARC domain-containing 
 protein69, or resistance proteins (R) which are involved in pathogen recognition and activation of fundamental 
and innate plant immune  system70,71. The presence of these genes brings disease resistance capabilities in  rice72 
and hence supports the sustainability of rice yields.

Indonesian rice yield‑associated genes. To the day this research is written, there is no prior use of 
attention score as a fundamental threshold to select important SNPs like p-value usually did in GWAS. There-
fore, we conducted trials with {0.01, 0.015, 0.02, 0.025, . . . , 0.1} ∈ a′ in all NucleoNets to see numbers of SNP 
revealed for each a′ . Based on the results presented in Fig. 7, we decided to pick a′ = 0.025 as an ideal and stable 
threshold since the value beyond it runs into stagnancies and the value behind it provides too diverse numbers 
of SNP for each NucleoNet model.

Based on this threshold, we summarized the top five important SNPs found by each NucleoNet model, 
as shown in Table 4. Some of their roles in rice plants were identified and discussed in many studies. For 
instance, TBGI133263 has a role in rice drought tolerance and photosynthesis  mechanism73. Its existence was also 
proved to protect rice seed  germination74. Its enzyme product, β-Glucosidase, has an impact on the rice  root75,76. 
TBGI272488 was discovered as a rice yield-associated  gene77. The SNP also controls the ATP-binding cassette 
(ABC)  transporters78–80 which contributes to multidrug resistance in plants, including  rice81,82. TBGI336599 
was reported to have an impact on rice  growth83. TBGI130922 controls the metabolism, including the cyto-
kinin  metabolism75, to support rice coleoptile  growth84. One product of this gene is flavonoid-biosynthesis 
 networks85,86. These flavonoid compounds have many roles in plants, including the reproduction  process87 and 
specialized metabolite  pathways88 in rice. The rest of the SNPs have no further description since they have not 
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been mapped in the rice DNA strand. The other reason is their protein products are still hypothetical. Please 
refer to Tables 10 and 11 in the Supplementary Information to learn more about these SNPs with their respec-
tive genetic details.

Figure 5.  The NucleoNets training plots.
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The null hypothesis significance testing. The hypothesis testing (known as NHST) was performed using 
38 out of 104 testing data, and thus the degree of freedom is 37. The rest data were excluded due to data distinc-
tions at the time of shuffling the test data for OLS and NucleoNet models. The population to be tested is squared 
error results from NucleoNetV1 ( µV1 = 2.679, σ 2

V1 = 7.886), NucleoNetV2 ( µV2 = 2.642, σ 2
V2 = 8.166), Nucleo-

NetV3 ( µV3 = 2.818, σ 2
V3 = 8.184), OLS ( µOLS = 4.758, σ 2

OLS = 29.383), and OLS + ENET ( µOLS+ENET = 3.121, 
σ 2
OLS+ENET = 8.166). See the full data description in Tables 12, 13, and 14 in the Supplementary Information.

The hypothesis to be tested is as follows. First, for each NucleoNet model i  , a two-tailed t-test (signifi-
cance level, αsl = 0.025 ) is performed to check whether there is a non-zero mean squared error µ difference 

Figure 6.  NucleoNetV3 testing results under different seeds.

Figure 7.  Important SNPs emitted per attention score.
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compared to the OLS and OLS + ENET models. Statistically, the hypothesis to be tested (two-tailed) between 
NucleoNets and OLS is defined as H0 : µi = µOLS , H1 : µi  = µOLS , while the hypothesis to be tested (two-tailed) 
between NucleoNets and OLS + ENET is defined as H0 : µi = µOLS+ENET , H1 : µi  = µOLS+ENET . The decision 
rule, if |t-stat|> t-table or p-value < αsl , then we should reject H0 and proceed to the one-tailed t-test for further 
investigation.

In a one-tailed t-test scenario (significance level, αsl = 0.05 ), we checked whether the mean squared error 
from each NucleoNet model i is less than or greater than the mean squared error from the OLS and OLS + ENET 
models. Statistically, the hypothesis to be tested (lower one-tailed) between NucleoNets and OLS is defined as 
H0 : µi ≮ µOLS , H1 : µi < µOLS , while the hypothesis to be tested (lower one-tailed) between NucleoNets and 
OLS + ENET is defined as H0 : µi ≮ µOLS+ENET , H1 : µi < µOLS+ENET . On the contrary, the hypothesis to be tested 
(upper one-tailed) between NucleoNets and OLS is defined as H0 : µi ≯ µOLS , H1 : µi > µOLS , while the hypoth-
esis to be tested (upper one-tailed) between NucleoNets and OLS + ENET is defined as H0 : µi ≯ µOLS+ENET , 
H1 : µi > µOLS+ENET . The decision rule for lower one-tailed t-test, if |t-stat|< t-table and p-value < αsl , then we 
should reject H0 . Meanwhile, the decision rule for upper one-tailed t-test, if |t-stat|> t-table and p-value < αsl , 
then we should reject H0 . By these settings, NHST results are parsed down in Table 5.

Conclusions
In this study, a novel deep polygenic neural network named the NucleoNet model was constructed to accurately 
predict and identify important yield-associated SNPs in Indonesian rice accessions while controlling two major 
covariates, i.e., location and variety of the samples. The main results and findings are recapitulated as follows: 
(1) The Indonesian rice yields prediction performance of NucleoNetV1, NucleoNetV2, and NucleoNetV3 out-
performed the OLS model. (2) The Indonesian rice yields prediction performance of NucleoNetV1, NucleoN-
etV2, and NucleoNetV3 has no difference with the OLS + ENET model. (3) Additional entropy penalty in the 
NucleoNet model brought a more diverse distribution of attention score across SNPs, at the expense of prediction 
accuracy as a cost. (4) Ablation study showed that the combination of Xavier distribution for weights initializa-
tion and Normal distribution for biases initialization sparked more various important SNPs. (5) Two significant 
SNPs discovered in the prior research, TBGI272457 and id4009920, were also discovered using the NucleoNets.

Since this research is still in its early stages, our future works in the Indonesian rice genomics field will focus 
on the following things: (1) Extend the covariates, including the influence of pests, pesticides, and climatic infor-
mation in the year where the rice was planted. (2) Develop a particular deep learning model to impute missing 
SNPs. (3) Try various attention mechanisms such as self-attention or multi-head attention to improve the SNP 
significance measurement. (4) Implement the Deep Learning Important Features (DeepLIFT) model to handle 
SNP significance. (5) Reinforce the deep learning model by instilling it with a novel inductive bias for genom-
ics data. (6) Compare deep learning results with broader common GWAS methods such as LASSO or Bayesian 
approaches. (7) Develop a biological-based method to validate that important SNPs found in the NucleoNets 
are useful to increase the annual rice production rate.

Table 4.  Important SNPs found in the NucleoNets. Chr:Pos means Chromosome:Position. Suffix in each SNP 
denotes its alternate allele. *Intronic. **Intergenic.

Model SNP name Chr:Pos

NucleoNets Marginal regression Full regression

Count ᾱ′ p-value β p-value β

NucleoNetV1

TBGI336584_T* 7:28,902,549 104 0.349702 0.692976 0.367086 0.613405 − 0.00464

TBGI139174_C* 3:10,546,292 100 0.078781 0.501128 0.118872 0.258786 − 0.05250

TBGI043687_A* 1:27,033,613 98 0.039402 0.461979 0.092519 0.749955 0.018242

TBGI047097_A* 1:29,101,182 87 0.043968 0.245114 0.146880 0.731616 − 0.00822

id2008820_T* 2:23,034,401 48 0.028928 0.293053 0.133663 0.487864 − 0.15724

NucleoNetV2

id4010708_C 4:31,871,929 76 0.334360 0.023139 0.178155 0.181538 0.092289

TBGI133654_T* 3:6,221,117 71 0.073753 0.981030 − 0.00224 0.051080 − 0.11139

TBGI133263_A** 3:5,884,040 64 0.057674 0.554272 0.060059 0.616267 0.035691

id1010403_T* 1:16,716,706 53 0.040871 0.275980 0.377068 0.725071 0.007040

TBGI272488_T* 6:3,001,902 34 0.363929 0.451712 0.057712 0.725524 0.014053

NucleoNetV3

id10004275_C 10:16,252,942 102 0.050838 0.523674 − 0.37561 0.373641 0.050556

TBGI264076_A* 5:27,953,016 91 0.125639 0.90349 0.018688 0.611320 − 0.01367

TBGI130922_G** 3:4,441,747 75 0.032907 0.356457 − 0.07551 0.933317 − 0.00536

TBGI038001_C* 1:23,689,014 73 0.133440 0.564393 − 0.04618 0.195798 − 0.06157

TBGI336599_C* 7:28,905,733 73 0.043163 0.930258 − 0.00685 0.535020 − 0.03080
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Table 5.  The NHST results.

Main model Comparison model t-test Validation Conclusion Description

NucleoNetV1

OLS

Two-tailed

Reject H0 , accept H1 Proceed to a one-tailed t-test1. |t-stat|> t-table Is |− 2.998|> 2.026? TRUE

2. p-value < αsl Is 0.003 < 0.025? TRUE

One-tailed (less than)

Reject H0 , accept H1

The Indonesian rice yields prediction performance 
of the NucleoNetV1 model outperformed the OLS 
model

1. t-stat < t-table Is − 2.998 < − 1.687? TRUE

2. p-value < αsl Is 0.002 < 0.05? TRUE

One-tailed (greater than)

Reject H1 , accept H01. t-stat > t-table Is − 2.998 > 1.687? FALSE

2. p-value < αsl Is 0.998 < 0.05? FALSE

OLS + ENET

Two-tailed

Reject H1 , accept H0

The Indonesian rice yields prediction performance 
of the NucleoNetV1 model has no difference from 
the OLS + ENET model

1. |t-stat|> t-table Is |− 1.028|> 2.026? FALSE

2. p-value < αsl Is 0.311 < 0.025? FALSE

One-tailed (less than)
–

– – –

One-tailed (greater than)
–

– – –

NucleoNetV2

OLS

Two-tailed

Reject H0 , accept H1 Proceed to a one-tailed t-test1. |t-stat|> t-table Is |− 2.753|> 2.026? TRUE

2. p-value < αsl Is 0.091 < 0.025? FALSE

One-tailed (less than)

Reject H0 , accept H1

The Indonesian rice yields prediction performance 
of the NucleoNetV2 model outperformed the OLS 
model

1. t-stat < t-table Is − 2.753 < − 1.687? TRUE

2. p-value < αsl Is 0.005 < 0.05? TRUE

One-tailed (greater than)

Reject H1 , accept H01. t-stat > t-table Is − 2.753 > 1.687? FALSE

2. p-value < αsl Is 0.995 < 0.05? FALSE

OLS + ENET

Two-tailed

Reject H1 , accept H0

The Indonesian rice yields prediction performance 
of the NucleoNetV2 model has no difference from 
the OLS + ENET model

1. |t-stat|> t-table Is |− 1.027|> 2.026? FALSE

2. p-value < αsl Is 0.311 < 0.025? FALSE

One-tailed (less than)
–

– – –

One-tailed (greater than)
–

– – –

NucleoNetV3

OLS

Two-tailed

Reject H0 , accept H1 Proceed to a one-tailed t-test1. |t-stat|> t-table Is |− 2.937|> 2.026? TRUE

2. p-value < αsl Is 0.006 < 0.025? TRUE

One-tailed (less than)

Reject H0 , accept H1

The Indonesian rice yields prediction performance 
of the NucleoNetV3 model outperformed the OLS 
model

1. t-stat < t-table Is − 2.937 < − 1.687? TRUE

2. p-value < αsl Is 0.003 < 0.05? TRUE

One-tailed (greater than)

Reject H1 , accept H01. t-stat > t-table Is − 2.937 > 1.687? FALSE

2. p-value < αsl Is 0.997 < 0.05? FALSE

OLS + ENET

Two-tailed

Reject H1 , accept H0

The Indonesian rice yields prediction performance 
of the NucleoNetV3 model has no difference from 
the OLS + ENET model

1. t-stat < t-table Is |− 0.743|> 2.026? FALSE

2. p-value < αsl Is 0.462 < 0.025? FALSE

One-tailed (less than) –

– – –

One-tailed (greater than) –

– – -



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13823  | https://doi.org/10.1038/s41598-022-16075-9

www.nature.com/scientificreports/

Code availability
All codes for this research are available at www. github. com/ Nicho lasDo minic/ The- Nucle oNets.
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