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MRI based radiomics enhances 
prediction of neurodevelopmental 
outcome in very preterm neonates
Matthias W. Wagner1,2,6*, Delvin So3,6, Ting Guo4,6, Lauren Erdman3, Min Sheng4, S. Ufkes4, 
Ruth E. Grunau5, Anne Synnes5, Helen M. Branson1,2, Vann Chau4, Manohar M. Shroff1,2, 
Birgit B. Ertl‑Wagner1,2,7 & Steven P. Miller4,5,7

To predict adverse neurodevelopmental outcome of very preterm neonates. A total of 166 preterm 
neonates born between 24–32 weeks’ gestation underwent brain MRI early in life. Radiomics features 
were extracted from T1‑ and T2‑ weighted images. Motor, cognitive, and language outcomes were 
assessed at a corrected age of 18 and 33 months and 4.5 years. Elastic Net was implemented to select 
the clinical and radiomic features that best predicted outcome. The area under the receiver operating 
characteristic (AUROC) curve was used to determine the predictive ability of each feature set. Clinical 
variables predicted cognitive outcome at 18 months with AUROC 0.76 and motor outcome at 4.5 years 
with AUROC 0.78. T1‑radiomics features showed better prediction than T2‑radiomics on the total 
motor outcome at 18 months and gross motor outcome at 33 months (AUROC: 0.81 vs 0.66 and 0.77 
vs 0.7). T2‑radiomics features were superior in two 4.5‑year motor outcomes (AUROC: 0.78 vs 0.64 and 
0.8 vs 0.57). Combining clinical parameters and radiomics features improved model performance in 
motor outcome at 4.5 years (AUROC: 0.84 vs 0.8). Radiomic features outperformed clinical variables 
for the prediction of adverse motor outcomes. Adding clinical variables to the radiomics model 
enhanced predictive performance.

Despite advances in medical care and improved survival, infants born preterm are at risk for abnormal brain 
development and long-term neurodevelopmental  impairments1. These may arise in multiple functional domains 
including motor, cognitive, and language and continue beyond childhood and  adolescence1,2. White matter 
injury (WMI) is identified in up to 50% of very preterm neonates and constitutes a characteristic brain injury 
 pattern3. The severity of punctate WMI is best assessed on T1-weighted MRI acquired early in life before reaching 
term-equivalent  age4,5. Previously, we found that, in very preterm neonates, WMI location and volume on early 
MRI predict cognitive and motor outcomes at 18 months of  age6. However, manual volumetric segmentation of 
lesional burden relies on human experts and is cumbersome and time intensive.

Radiomics uses a quantitative set of features calculated from radiologic images to detect distinct quan-
tifiable phenotypic differences of  tissues7. Radiomic features quantify the intensity, texture and geometrical 
characteristics attributed to imaging  data8. They are increasingly used for computer-aided pattern recognition 
and classification, as well as image-based diagnosis and  prognosis9. Given the strong association between WMI 
and adverse outcomes, we hypothesized that radiomics predicts the neurodevelopmental outcome of preterm 
neonates at 18 months of age and beyond.

We therefore aimed to (i) investigate the predictive value of radiomics to adverse neurodevelopmental out-
come of preterm neonates with or without WMI, and (ii) evaluate whether integrating the clinical variables, 
previously established as predictors of adverse neurodevelopmental  outcome10, can enhance the prediction 
accuracy of radiomics in this population.
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Results
Study population, clinical variables, and neurodevelopmental outcome. A total of 212 subjects 
were included in this study. Nine were excluded due to large parenchymal hemorrhagic infarctions, congeni-
tal malformations/syndromes, or antenatal infections. A non-motion degraded 3D T1-weighted sequence was 
available in 203 neonates and 166 of them had 2D axial T2-weighted sequence that were well aligned with their 
T1-weighted sequence. Therefore, the final study cohort consisted of 166 preterm neonates (median gestational 
age (GA): 28.1 weeks, 89 males) who had both T1- and T2 weighted sequences available (Fig. 1). Demographic 
and clinical variables of 166 preterm neonates are summarized in Table  1. No statistically significant differ-
ences (p > 0.05) in these variables were found between the 166 neonates included in the final analysis and those 
excluded (Supplemental Table  1). All available neurodevelopmental outcome parameters are summarized in 
Supplemental Table 2. Based on the early MRI of the brain, 36 neonates were identified with WMI (15 minimal, 
14 moderate, 7 severe). Clinical factors as well as the level of maternal education did not differ in neonates with 
and without WMI (p > 0.05).

Machine learning model performance in predicting neurodevelopmental outcomes. Table 2 
shows the AUROC values for the prediction of adverse outcomes in preterm neonates based on 1) clinical vari-
ables, 2) T1-weighted radiomic features (T1-radiomics), 3) T2-weighted radiomic features (T2-radiomics), 4) 
combined T1- and T2-weighted radiomic features (T1/2-radiomics), and 5) combined clinical variables and 
T1/2-radiomics (clinical + radiomics). A clinically meaningful AUROC ≥ 0.75 11,12 was reached for 5 of the 19 
neurodevelopmental outcomes. Clinical variables alone reached an AUROC of 0.76 for the Bayley-III cogni-
tive composite score at 18 months and 0.78 for the PDMS-2 gross motor quotient at 4.5 years. The T1-radi-
omics model achieved an AUROC of 0.81 for the PDMS-2 total motor quotient at 18 months and 0.77 for the 
PDMS-2 gross motor quotient at 33 months. The T2-radiomics model achieved an AUROC of 0.78 and 0.8 for 
the PDMS-2 gross and total motor quotient at 4.5 years, respectively. The T1/2-radiomics model reached an 
AUROC of 0.81 for the PDMS-2 total motor quotient at 18 months, 0.75 for the PDMS-2 gross motor quotient at 
33 months, and 0.8 for the PDMS-2 gross motor quotient at 4.5 years. The combined clinical + radiomics predic-
tion model achieved an AUROC of 0.79 for the Bayley-III cognitive composite score at 18 months, 0.83 for the 
PDMS-2 total motor quotient at 18 months, 0.75 for the PDMS-2 gross motor quotient at 33 months, and 0.84 
for PDMS-2 gross motor quotient at 4.5 years. Supplementary Table 3 shows the random AUROC values based 
on permuted outcomes and suggests that these predicts are indeed significantly higher performing than random.

Clinical and radiomic features. The five most relevant clinical, T1-radiomics, T2-radiomics, T1/2-radi-
omics, and clinical + radiomics parameters are shown in Supplemental Table 4.

The five best-performing clinical variables for Bayley-III cognitive composite score at 18 months were mater-
nal smoking, NEC, multiple infections, GA at birth, and ROP. For PDMS-2 gross motor quotient at 4.5 years, 
the five best performing clinical parameters were maternal smoking, BPD, day of life at first MRI (DOL MRI1), 
Stoll’s sepsis categorization 2, and ROP.

The five best performing T1-radiomics features for PDMS-2 total motor quotient at 18 months were wavelet 
and gradient variants of one gray level size zone matrix (GLSZM) and four first order features. Similarly, for the 

Figure 1.  Patient and MRI sequence selection.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11872  | https://doi.org/10.1038/s41598-022-16066-w

www.nature.com/scientificreports/

PDMS-2 gross motor quotient at 33 months, the best features were all wavelet variants of four GLSZM and one 
first order feature.

The five best performing T2-radiomics features for the PDMS-2 gross motor quotient at 4.5 years were wavelet 
variants and local binary patterns of first order and GLSZM features. In addition, the original shape feature “Elon-
gation” was found to be important. For the PDMS-2 total motor quotient at 4.5 years, the five best performing 
parameters were variants of first order and wavelet variants of GLSZM features.

The five best performing T1/2-radiomics features for the PDMS-2 total motor quotient at 18 months were 
wavelet variants of a first order and two GLSZM T1-radiomics features, a gradient variant of a first order T1-radi-
omics feature, and a wavelet variant of a T2-radiomics first order feature. For the PDMS-2 gross motor quotient at 
33 months, the five best performing combined T1/2 radiomics features were all wavelet variants of three GLSZM 
and two first order features. For the PDMS-2 gross motor quotient at 4.5 years, they were wavelet variants of 
one GLSZM and one first order T1-radiomics feature and wavelet and two local binary pattern variants of two 
GLSZM and one first order T2-radiomics feature. A wavelet variant of GLSZM T1-radiomics feature was the 
top predictor among all for the PDMS-2 gross motor quotient at 4.5 years.

The top 5 performing combined clinical + radiomics features for the Bayley-III cognitive composite score at 
18 months were maternal smoking, NEC, multiple infections, Stoll’s sepsis categorization 4, and a wavelet vari-
ant of one GLSZM T1-radiomics feature. For the PDMS-2 total motor quotient at 18 months, they were: ROP, 
multiple infections, NEC, a wavelet variant of one GLSZM T1-radiomics features, and Stoll’s sepsis categorization 
3. For the PDMS-2 gross motor quotient at 33 months, they were multiple infections, wavelet variants of three 
GLSZM T1-radiomics features, and one root mean squared of a first order T2-radiomics feature. For the PDMS-2 
gross motor quotient at 4.5 years, they were BPD, NEC, ROP, and wavelet variants of one GLSZM T1-radiomics 
feature and one GLSZM T2-radiomics feature.

Table 1.  Demographic and clinical variables. IVH Intraventricular hemorrhage, WMI white matter injury, 
TCV total cerebral volume, STD standard deviation, BDP bronchopulmonary dysplasia, NEC necrotizing 
enterocolitis, ROP retinopathy of prematurity, DOL MRI 1 day of life at 1st MRI.

Total 166 (100%)

Male 89 (54%)

Female 77 (46%)

Gestational age at birth (mean ± STD) 28 ± 2.2 weeks

IVH grade 2–3 61 (37%)

WMI Total 36 (22%)

Minimal 15 (9%)

Moderate 14 (8%)

Severe 7 (4%)

TCV (mean ± STD) 173.4 ± 38.6 cm3

BPD 36 (22%)

NEC

Mild 30 (18%)

Moderate 1 (0.01%)

Severe 6 (4%)

Stoll’s sepsis categorization

1 108 (65%)

2 19 (11%)

3 34 (20%)

4 4 (2%)

5 1 (0.01%)

ROP

Moderate 55 (33%)

Severe 15 (9%)

DOL MRI 1 (mean ± STD) 29 ± 22 days

Multiple infections 45 (27%)

Maternal smoking

1 (< 20 cigarettes/day) 13 (8%)

2 (> 20 cigarettes/day) 1 (0.01%)

Maternal illicit drug usage 13 (8%)
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Discussion
In this prospective cohort of 166 very preterm neonates (36 with WMI), we applied fully automated radiomic 
feature analysis on T1- and T2-weighted sequences to predict neurodevelopmental outcomes. Radiomic features 
outperformed clinical variables for the prediction of adverse motor outcomes at 18 months, 33 months, and 
4.5 years. Adding clinical variables to the radiomics model further enhanced its predictive strength for motor 
and cognitive outcomes.

Recently, Shin and Nam et al. used radiomics to predict Bayley II psychomotor outcome in 46 preterm 
 neonates13. They found that near or term-equivalent synthetic T1-weighted images have a high diagnostic per-
formance for the prediction of poor psychomotor outcome at 12 months corrected age. Notably, only 1 of 46 
neonates had severe WMI. Our study is different from Shin and Nam et al. in several aspects. While we included 
a larger cohort for radiomics analysis (n = 166) with a higher percentage of WMI, we used conventional T1- and 
T2-weighted sequences, which are the mainstay of MRI acquisition. Our MRIs were acquired early in life (median 
PMA: 32 weeks, IQR: 30.4–33.6) when WMI is most readily visualized prior to reaching term-equivalent age. 
Also, we provide a more comprehensive analysis with regard to the neurodevelopmental assessments of motor, 
cognitive, and language skills, using several age-appropriate standard scores, including Bayley-III scales, PDMS-
2, and WPPSI-IV, at three time points from toddlerhood to pre-school age, while Shin and Nam et al. predicted 
outcomes at 12 months corrected age only, where long term outcome prediction is  limited14.

Our model performed best at predicting adverse motor outcome at 4.5 years of age, which has been shown to 
correlate with motor impairment in  adolescence15. In our study, radiomics features predicted adverse outcome at 
the level of clinical variables or above. Adding clinical variables to radiomics features further enhanced outcome 
prediction. T2-radiomics had a better predictive value compared to T1-radiomics in the 4.5-year age group, while 
T1-radiomics performed at the level or slightly above T2-radiomics in the 18- and 33-month group. This finding 
needs to be interpreted in conjunction with the top performing radiomic features. The co-dominant feature sets 
using T1-weighted imaging were filters of first order and GLSZM features. GLSZM features assess variants of 
interconnected voxels of the same gray value independent of the angle of connectedness. Prior studies showed 
that multifocal WMI in preterm neonates is accompanied by altered white matter microstructure and disrupted 
white matter  maturation6,16. Assuming that the WMI was the main driver of the adverse outcome prediction, 
we hypothesize, that the GLSZM quantify the degree and architecture of the T1-weighted shortening effect of 
the WMI. This is supported by the other top predictive features: kurtosis, minimum signal intensity, skewness, 
maximum signal intensity. These histogram features quantify the histogram curve shape (kurtosis, skewness) 
and quantify the highest (maximum) and lowest (minimum) intensity value in the images further emphasizing 
the key role of T1-weighted signal intensity differences in outcome prediction.

Table 2.  Area under the receiver operating characteristic for all Neurodevelopmental scores. Mean area 
under the receiver operating characteristic (AUROC) with 95% confidence interval (95% CI) are shown. 
AUROC ≥ 75% marked in bold. PDMS-2 Peabody Developmental Motor Scales, second edition, WPPSI-IV 
Wechsler Primary and Preschool Scale of Intelligence, fourth edition, IQ intelligence quotient, m months, y 
years.

Outcome (N = 19) Gestational age only Clinical variables T1-Radiomics T2-Radiomics T1/2-Radiomics Clinical + radiomics

Bayley-III Cognitive Composite Score 
18 M 0.72 (0.631–0.816) 0.76 (0.66–0.854) 0.63 (0.519–0.74) 0.69 (0.578–0.796) 0.69 (0.59–0.799) 0.79 (0.708–0.874)

Bayley-III Language Composite Score 
18 M 0.66 (0.570–0.755) 0.6 (0.5–0.694) 0.64 (0.555–0.735) 0.5 (0.399–0.603) 0.66 (0.574–0.752) 0.64 (0.55–0.733)

Bayley-III Motor Composite Score 18 M 0.70 (0.615–0.789) 0.64 (0.551–0.736) 0.59 (0.493–0.687) 0.6 (0.5–0.692) 0.6 (0.507–0.702) 0.61 (0.509–0.704)

PDMS-2 fine motor quotient 18 M 0.69 (0.514–0.859) 0.58 (0.35–0.817) 0.52 (0.33–0.716) 0.49 (0.312–0.663) 0.34 (0.168–0.515) 0.45 (0.287–0.614)

PDMS-2 gross motor quotient 18 M 0.75 (0.665–0.828) 0.71 (0.626–0.8) 0.64 (0.55–0.737) 0.7 (0.604–0.786) 0.71 (0.618–0.794) 0.73 (0.647–0.818)

PDMS-2 total motor quotient 18 M 0.74 (0.657–0.83) 0.72 (0.618–0.826) 0.81 (0.74–0.883) 0.66 (0.56–0.759) 0.81 (0.743–0.886) 0.83 (0.752–0.899)

PDMS-2 fine motor quotient 33 M 0.69 (0.56–0.812) 0.53 (0.343–0.723) 0.55 (0.41–0.69) 0.54 (0.384–0.697) 0.56 (0.411–0.7) 0.53 (0.38–0.671)

PDMS-2 gross motor quotient 33 M 0.65 (0.537–0.762) 0.57 (0.443–0.697) 0.77 (0.676–0.869) 0.7 (0.595–0.807) 0.75 (0.652–0.856) 0.75 (0.651–0.846)

PDMS-2 total motor quotient 33 M 0.72 (0.619–0.827) 0.68 (0.555–0.807) 0.64 (0.52–0.766) 0.69 (0.565–0.813) 0.61 (0.478–0.743) 0.6 (0.471–0.728)

Bayley-III cognitive composite score 33 M 0.51 (0.353–0.667) 0.42 (0.261–0.575) 0.66 (0.503–0.81) 0.53 (0.387–0.678) 0.61 (0.436–0.779) 0.59 (0.418–0.765)

WPPSI-IV Full IQ 4.5Y 0.53 (0.397–0672) 0.49 (0.339–0.649) 0.58 (0.437–0.724) 0.49 (0.325–0.647) 0.51 (0.359–0.654) 0.51 (0.36–0.654)

Bayley-III Motor Composite Score 33 M 0.69 (0.58–0.792) 0.68 (0.548–0.817) 0.72 (0.621–0.822) 0.64 (0.505–0.78) 0.68 (0.567–0.79) 0.6 (0.477–0.727)

WPPSI-IV Performance IQ 4.5Y 0.66 (0.447–0.876) 0.53 (0.27–0.798) 0.6 (0.482–0.726) 0.7 (0.52–0.881) 0.68 (0.535–0.818) 0.6 (0.449–0.752)

WPPSI-IV Verbal IQ 4.5Y 0.55 (0.365–0.735) 0.5 (0.291–0.716) 0.52 (0.322–0.726) 0.37 (0.17–0.563) 0.49 (0.277–0.697) 0.48 (0.285–0.679)

PDMS-2 fine motor quotient 4.5Y 0.63 (0.455–0.811) 0.56 (0.369–0.757) 0.56 (0.376–0.739) 0.48 (0.293–0.666) 0.59 (0.412–0.759) 0.57 (0.396–0.745)

Bayley-III Language Composite Score 
33 M 0.73 (0.561–0.889) 0.71 (0.492–0.919) 0.65 (0.468–0.824) 0.68 (0.506–0.854) 0.62 (0.394–0.856) 0.66 (0.457–0.863)

WPPSI-IV processing speed IQ 4.5Y 0.72 (0.594–0.838) 0.72 (0.585–0.845) 0.7 (0.566–0.829) 0.74 (0.612–0.872) 0.71 (0.583–0.836) 0.69 (0.565–0.823)

PDMS-2 gross motor quotient 4.5Y 0.75 (0.579–0.912) 0.78 (0.629–0.927) 0.64 (0.453–0.818) 0.78 (0.635–0.934) 0.8 (0.659–0.932) 0.84 (0.729–0.956)

PDMS-2 total motor quotient 4.5Y 0.66 (0.472–0.856) 0.73 (0.545–0.913) 0.57 (0.366–0.765) 0.8 (0.654–0.945) 0.69 (0.53–0.856) 0.71 (0.545–0.877)
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Due to the decreasing incidence of periventricular leukomalacia, diffuse white matter changes are now the 
most common abnormality of the preterm  brain17. Using MRI acquired at term-equivalent age, Parikh et al. 
showed that T2-weighted quantification of diffuse white matter abnormality was a significant prognostic bio-
marker of motor development at 3 years of age in very preterm  infants18. In our study, the two top performing 
features for motor outcome prediction at 4.5 years of life were a filtered variant of the first order feature “Maxi-
mum signal intensity” indicating that abnormally increased T2-weighted signal intensity in the brain plays an 
important role for motor outcome prediction at 4.5 years. The importance of increased T2-weighted signal is 
further supported by another top performing T2-radiomics feature: a variant of the first order histogram param-
eter 90th percentile. Notably, the shape feature elongation was predictive of outcome for both gross and total 
motor outcomes at 4.5 years. Elongation measures the ratio between the minor and major axes of the region of 
 interest19. When applying this calculation to the whole brain in 2D plane, this translates to a surrogate of the brain 
circumference. When comparing to the predictions discussed above, the combined T1/2-radiomics model did not 
yield further relevant increases in predictive performance. However, it does further emphasize the importance 
of first order and GLSZM features in motor outcome prediction at 4.5 years.

Of all models tested in our study, the combined model of clinical parameters and radiomics yielded the best 
AUROC values. Except for the gross motor quotient at 33 months, outcome parameters were predicted with a 
higher AUROC using the combined model. Clinical variables predictive of outcome were similar to outcome 
prediction without radiomics. Regarding radiomics features, we again noted first order and GLSZM features to 
be the most predictive. Additionally, T2-radiomics were more influential in the outcome prediction at older age.

There are some limitations to this study. First, although our cohort is one of the largest very preterm study 
cohorts, the data set was still relatively small (n = 166) for employing machine learning techniques. Second, we 
adopted LOOCV method to evaluate the predictive value of our approach for outcomes and did not use another 
independent cohort dataset to validate the model performance. Third, longer term follow-up is under way and 
has not yet been available.

In this prospective cohort of very preterm neonates with and without WMI imaged early in life, we applied 
fully automated radiomic feature analysis on T1- and T2-weighted sequences to predict neurodevelopmental 
outcomes. Radiomic features outperformed clinical variables for the prediction of adverse motor outcomes at 
18 months, 33 months, and 4.5 years. Adding clinical variables to the radiomics model enhanced its predictive 
strength for motor and cognitive outcomes. MRI-based radiomics of preterm brain MRI improves neurodevel-
opmental outcome prediction beyond 18 and 33 months.

Methods
Study participants and MRI protocol. Over a 7-year period (2006–2012), 234 very preterm neonates 
(122 males) born between 24–32 weeks’ gestation (median 27.7 weeks) were admitted to the neonatal intensive 
care unit at British Columbia’s Women’s Hospital, Vancouver, Canada and were enrolled prospectively. A total of 
221 early (median postmenstrual age: 32 weeks, interquartile range [IQR] 30.4–33.6) brain MRIs were acquired 
on a Siemens MAGNETOM Avanto 1.5 T MRI scanner (Erlangen, Germany). All newborns were scanned with-
out pharmacological sedation using an MR-compatible isolette (Lammers Medical Technology, Lübeck, Ger-
many) and specialized neonatal head coil (Advanced Imaging Research, Cleveland, OH) as soon as they were 
clinically stable. The MR imaging protocol included a three dimensional (3D) volumetric T1-weighted sequence 
(repetition time [TR]: 36 ms, echo time [TE]: 9.2 ms, field of view [FOV]: 200 mm, slice thickness: 1 mm, no 
gap), and a two dimensional (2D) axial fast spin echo T2-weighted sequence (TR: 4610 ms, TE: 107 ms, FOV: 
160 mm, slice thickness: 4 mm, gap: 0.2 mm)6,20. Neonates with large parenchymal hemorrhagic infarctions 
(> 2 cm), congenital malformations/syndromes, or antenatal infections were excluded.

Clinical variables. Clinical data about pregnancy, delivery, and perinatal course were collected through sys-
tematic prospective chart reviews. This included clinical factors previously associated with impaired neurode-
velopmental outcomes such as presence of moderate to severe intraventricular hemorrhage (IVH grade 2–3), 
severity of WMI (minimal: ≤ 3 lesions of < 2 mm, moderate: > 3 lesions or lesions > 2 mm and < 5% hemispheric 
involvement, severe: > 5% of the hemisphere according  to6), total cerebral volume (TCV), bronchopulmonary 
dysplasia (BPD) (defined as the need for supplemental oxygen at 36 weeks’ postmenstrual age), with/without 
multiple infections (≥ 3 infections), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and 
Stoll’s sepsis  categorization21. Variables for individuals who were missing maternal smoking (n = 2) and maternal 
illicit drug usage (n = 2) were imputed using the mode, grouped by alcohol status where applicable. Multiple 
infections (n = 1) and BPD (n = 3) were imputed with random forest with birth GA. Imputations were performed 
using the simputation R package. https:// cran.r- proje ct. org/ web/ packa ges/ simpu tation/ simpu tation. pdf.

Neurodevelopmental outcomes. A total of 183 (86%) 169 infants (80%), and 169 (80%) infants had 
a clinical follow-up at 18 and 33  months corrected age (CA), as well as 4.5  years, respectively (median age 
18.7 months, interquartile range [IQR] 18.3–19.2, median age 34.7 months, IQR 33.8–36.2, and median age 
4.83 years, IQR 4.75–4.91). The Bayley Scales of Infant and Toddler Development, third edition (Bayley-III) 
including standardized composite scores for motor, cognitive, and language skills with means of 100 and stand-
ard deviation (SD) of  1522 were used to assess children’s neurodevelopmental abilities at 18 and 33 months CA. 
A score of more than 1 SD below the mean (i.e. < 85) was considered to reflect adverse outcome. A score equal 
to or above 85 was considered typical neurodevelopmental outcome. In addition, the Peabody Developmental 
Motor Scales, second edition (PDMS-2) was used to assess total, gross and fine motor quotient values in chil-
dren at the three follow-ups as a more robust assessment of motor  impairment23. Having scores of less than 80 
was considered as being clinically impaired. The Wechsler Primary and Preschool Scale of Intelligence, fourth 

https://cran.r-project.org/web/packages/simputation/simputation.pdf
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edition (WPPSI-IV) was used to evaluate cognitive function of the study participants at 4.5 years of age. With a 
mean of 100 and SD of 15, the full-scale IQ of less than 85 was considered to reflect adverse cognitive outcome 
at 4.5 years. Assessments were carried out by qualified examiners who were blinded to the MRI of the preterm 
neonates.

Radiomic feature extraction process. MRI data were exported to an offline workstation. A brain 
mask of the cerebrum was created for the early-in-life T1-weighted image of each neonate using MAGeT-Brain 
 pipeline24. The segmented brain masks were reviewed and manually revised for areas that were not accurately 
segmented by the automatic pipeline. After resampling and co-registering the T2-weighted sequence to the 
T1-weighted image of the same subject, the brain mask was applied to the T1- and T2-weighted sequences 
and non-brain tissue components were removed. Then, bias field correction and z-score normalization were 
used to standardize the range of all image  features25,26. Radiomics features were defined according to the PyRa-
diomics Python package, version 3.019. All features available from the PyRadiomics package were considered 
after removing features with zero variance. A total of 1428 and 1056 radiomic features remained from the T1- 
and T2-weighted images, respectively. Radiomic features included histogram, shape, and texture features with 
and without local binary pattern, Laplacian of Gaussian filter, and wavelet-based filter. Since the T2-weighted 
sequence was not considered a 3D sequence, 3D wavelet-based filters were not extracted for these images. All 
extracted features are summarized in Supplemental Tables 5 and 6.

Machine learning model and statistical analysis. Elastic Net was implemented as a form of penalized 
logistic regression consisting of least absolute shrinkage and selection operator (LASSO) and Ridge regression. It 
includes hyperparameters, which determine the degree to which the sum of either the squared (Ridge) or abso-
lute (LASSO) slopes is penalized. Elastic Net is well suited to select the features that best predict the  outcome27,28. 
For each of the 19 outcomes, we examined the predictive ability of the following feature sets: 1) clinical vari-
ables, 2) T1-weighted radiomic features (T1-radiomics), 3) T2-weighted radiomic features (T2-radiomics), 4) 
combined T1- and T2-weighted radiomic features (T1/2-radiomics), and 5) combined clinical variables and 
T1/2-radiomics (clinical + radiomics). A leave-one-out cross-validation (LOOCV) scheme was used with the R 
caret package, with remaining parameters passed to “glmnet” as  default29. The area under the receiver operating 
characteristic (AUROC) curve was used to determine the predictive ability of each feature set. 95% confidence 
intervals were calculated using the pROC R  package30. An additional model run was conducted on permuted 
outcomes to enable a comparison of our results with random predictions. An AUROC ≥ 0.75 was considered as 
clinically meaningful 11,12.

Ethics approval and subject consent. The Clinical Research Ethics Board at the University of British 
Columbia and BC Children’s and Women’s Hospitals reviewed and approved the study protocol. The study pro-
tocol was performed in accordance with the Declaration of Helsinki. A parent or legal guardian provided written 
informed consent.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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