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Generalized monodromy method 
in gauge/gravity duality
Yuanpeng Hou

The method of monodromy is an important tool for computing Virasoro conformal blocks in a two-
dimensional Conformal Field Theory (2d CFT) at large central charge and external dimensions. In 
deriving the form of the monodromy problem, which defines the method, one needs to insert a 
degenerate operator, usually a level-two operator, into the corresponding correlation function. It 
can be observed that the choice of which degenerate operator to insert is arbitrary, and they shall 
reveal the same physical principles underlying the method. In this paper, we exploit this freedom and 
generalize the method of monodromy by inserting higher-level degenerate operators. We illustrate 
the case with a level-three operator, and derive the corresponding form of the monodromy problem. 
We solve the monodromy problem perturbatively and numerically; and check that it agrees with the 
standard monodromy method, despite the fact that the two versions of the monodromy problem do 
not seem to be related in any obvious way. The forms corresponding to other higher-level degenerate 
operators are also discussed. We explain the physical origin of the coincidence and discuss its 
implication from a mathematical perspective.

The AdS/CFT correspondence, also known as the gauge/gravity duality, is considered as an explicit realization 
of the holographic  principle1–3. It claims that a weakly coupled quantum gravity theory in d + 1-dimensional 
asymptotic AdS spacetime is dual to a d-dimensional strongly coupled gauge field theory on the boundary of 
AdS spacetime. The first concrete realization of AdS/CFT correspondence was proposed in 1997 by Maldacena 
in the context of string theory: Type IIB string on  AdS5 ×  S5 is dual to N = 4U(N) Super Yang-Mills  theory4. It 
was then followed by more realizations such as the  AdS4/CFT3 version between ABJM theory and M  theory5. 
By now there have accumulated reasonable grounds to suppose that the duality should hold in a more general 
context, even though it has not been proved apart from a few examples mentioned before, particularly due to the 
lack of understanding towards a full theory of quantum gravity. The AdS/CFT correspondence has been applied 
to gain novel understandings of many interesting physics, such as the study of black hole thermal  dynamics6, 
non-Fermi liquids and quantum phase  transitions7, holographic entanglement  entropy8,9, energy conditions in 
quantum  gravity10–12, etc., and continues to inspire new ideas in various fields.

Among the various dimensions in which AdS/CFT has been formulated,  AdS3/CFT2 is special due to addi-
tional  simplifications13–16. In particular, the symmetry of a two-dimensional conformal field theory is enhanced 
to the infinite-dimensional Virasoro algebra, while the bulk gravitational dynamics is topological when bulk 
matters are not  considered15,17–20. These features simplify the analysis significantly, and many computations can 
be performed with better control. In this correspondence, the central charge c of the Conformal Field Theory 
(CFT) is related to scale of AdS radius l  in Newton’s constant G  by16:

So the semi-classical limit of bulk gravity corresponds to the large c limit of CFT. The asymptotic symmetry 
of quantum gravity in  AdS3 is exactly the Virasoro algebra in 2d  CFT16, in this sense and the energy–momentum 
tensor T in 2d CFT acting on the vacuum will create bulk states containing “Boundary Graviton” in  AdS3. Con-
tributions from these gravitons can be organized into Virasoro families, which are representations of Virasoro 
generators {L−n, n > 0} , in this way we have a better understanding in the boundary CFT of how to isolate the 
dynamics of bulk gravitons in  AdS3

21–23.
Correlation functions play central roles in 2d CFT, they can reveal many important aspects of the theory. 

While the two-point and three-point functions are universally fixed by the symmetries of the CFTs, starting from 
four-point functions they contain richer information of the underlying CFT data such as the operator spectrum. 

(1)c = 3l
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Using the infinite-dimensional Virasoro algebra of the underlying symmetry, the four-point correlation func-
tion computations can be approached by decomposing them into Virasoro conformal blocks, which include the 
Operator Product Expansion (OPE) contributions from all operators created from a particular primary operator 
by all combinations of Virasoro creation generators {L−n, n > 0} . This is to be contrasted with the usual decom-
position into global conformal blocks as in higher dimensional CFTs, which include only contributions from 
the global generators {L−1, L−0, L1} . In practice, the Virasoro conformal blocks are labeled by the conformal 
dimensions of the external operators {hi , i = 1, . . . , 4} , the central charge c , and the conformal dimension hα of 
the internal operator being exchanged that defines the block, see Fig. 1.

Unlike the global blocks whose analytic forms are known to be hypergeometric functions, the full analytic 
forms of the Virasoro conformal blocks remain unknown. As a result, various methods have been developed to 
compute the explicit expressions for Virasoro conformal blocks in various limits, such as the Conformal Casimir 
 approach24, Zamolodchikov’s recursion  relation25–27, the method of  monodromy21,28–31, etc.

In this paper we focus on the method of monodromy. This technique is particularly useful for computing 
Virasoro conformal blocks in the semi-classical limit, which is the limit defined by sending c → ∞ while holding 
{hi/c, i = 1, . . . , 4} fixed. We shall review the derivation of the method in the next section, but the main idea is 
as follows. By inserting a level-two degenerate operator ψ̂2 into the correlation function and invoking the degen-
eracy condition, we obtain a second order differential equation for the five-point function 

〈

O1O2ψ̂2(z)O3O4

〉

 . 
If we further assume that the five-point function can be factorized into the product of a “Wave Function” ψ2(z) 
multiplying the original four-point function, which is expected to hold in the semi-classical limit:

We end up with a differential equation for the “Wave Function” ψ2(z) that also depends on the value of the 
four-point function. By imposing that the solutions satisfy certain monodromy condition which depends on hα , 
we end up solving the contribution to the four-point function from a particular Virasoro conformal block asso-
ciated with the primary operator α. The monodromy method can be derived explicitly in Liouville Field Theory 
(LFT)28. However, since the Virasoro conformal blocks are fixed only by the Virasoro algebra, agnostic to the 
underlying theory, the method should be applicable to any CFT. The monodromy method has been developed 
and applied to various situations. For example, generalizing the method for the computation of conformal blocks 
to the torus is developed  in32. Higher-point conformal blocks and the entanglement entropy of an arbitrary 
number of disjoint intervals for heavy states have been calculated  in33.

By observing the derivation of the standard monodromy method carefully, it is easily recognized that the 
derivation involves making choices that reflect certain “Moving Components” of the method. In particular, the 
decision for inserting a level-two degenerate operator ψ̂2 is somehow arbitrary, not dictated by any necessary 
condition. While practically this choice possibly gives rise to the simplest realization of the method—involv-
ing differential equations of the lowest order, it is interesting to explore other possibilities. As one may expect, 
different choices of degenerate operators mean different degeneracy conditions, which will generate different 
versions of the monodromy problem. However, these monodromy problems are not at all un-related: solving 
them gives rise to the same Virasoro conformal block. While this connection is obvious from a “physics” point of 
view—they reflect the validity of ansatz (2) for inserting different degenerate operators in the semi-classical limit, 
they do not appear to be obvious from a mathematical point of view. In this paper, the main goal is to explore and 
examine such connections, and to discuss the implication of such connections from a mathematical perspective.

The paper is organized as follows. In “Standard monodromy method” section, we give a review of the deri-
vation for the standard monodromy method. In “Level-three monodromy method” section, we generalize the 
derivation to the particular case of inserting a level-three degenerate operator into the correlation function, 
and obtain the corresponding form of the monodromy method. In “Computing vacuum block using level-three 
monodromy method” section, we compare the two monodromy methods by first computing the four-point 
vacuum Virasoro blocks in the heavy-light limit perturbatively, and then checking it numerically away from 

(2)
〈

O1O2ψ̂2(z)O3O4

〉

≈ ψ2(z)�O1O2O3O4�

Figure 1.  Virasoro conformal block in diagrammatic language.
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the perturbative limit. The perfect agreements between the results verify the consistency between the methods 
and thus confirm the connection. In “Generalizing to higher-level monodromy method” section, we further 
generalize our method to higher-level degenerate operators. We obtain a very general version of the monodromy 
method and discuss its application. Finally, we conclude with a discussion about the connection between different 
monodromy methods and an outlook for the methods.

Standard monodromy method
Review of Virasoro conformal block decomposition. We first give a brief review of the standard mon-
odromy method for computing Virasoro conformal blocks. Our review of the method mainly  follows21,29–31. We 
consider the four-point correlation function in 2d CFT and decompose it into conformal blocks:

where Oi for i = 1, . . . , 4 are primary operators with conformal dimensions hi , which are inserted at points 
wi;

∣

∣p
〉

 denotes all possible intermediate states of the theory. In the second line, we organized the states 
∣

∣p
〉

 into 
Virasoro families |α; n� where α denotes the conformal block associated with primary operator α with conformal 
dimension hα . Fα(wi) captures the contribution from all Virasoro descendants of α.

An explicit expression for Fα(wi) is not known in general. For generic c and {hi , hα} it admits a series expan-
sion in conformal ratio x = (w1−w2)(w3−w4)

(w1−w3)(w2−w4)
 using Zamolodchikov’s recursion  relation25–27. For generic x, the 

method of monodromy provides a complementary tool for computing the conformal block in the semi-classical 
limit, which as mentioned before corresponds to the limit of sending c → ∞ while holding the ratios hi/c finite. 
In this limit, we can approximate the conformal blocks as:

The ansatz (4) was conjectured  in34 and has been proven  in35 recently. For later purposes we define the so-
called accessory parameters, denoted by ci:

The monodromy method works by fixing the accessory parameters ci so that we can integrate them to get the 
conformal blocks Fα(wi) via (4) and (5).

From degenerate operator to differential equation. To derive the monodromy method, one starts 
by inserting a degenerate operator ψ̂2 at level two into the correlation function. The degeneracy condition cor-
responds to requiring that via state-operator correspondence it creates a primary state |ψ2� and the following 
descendant:

For some ζ is null, i.e. 
〈

χ2,1|χ2,1
〉

= 0 . From this one can solve the corresponding conformal dimension hψ2 
of |ψ2� and coefficient ζ:

It is conventional to adopt the reparameterization at large c:

And then we get:

Now, we insert the degenerate operator into the four-point correlation function and use the degeneracy 
condition 

∣

∣χ2,1
〉

= 0:

(3)

�O1(w1)O2(w2)O3(w3)O4(w4)� =
∑

p

〈

O1(w1)O2(w2)|p
〉〈

p|O3(w3)O4(w4)
〉

=
∑

α,n

�O1(w1)O2(w2)|α; n��α; n|O3(w3)O4(w4)�

=
∑

α

Fα(wi)

(4)Fα(wi) ≈ e−
c
6 fα(wi)

(5)ci = ∂wi fα(wi)

(6)
∣

∣χ2,1
〉

=
[

L−2 + ζL2−1

]

|ψ2�

(7)

{

ζ = − 3
2(2hψ2+1)

hψ2 = 5−c−
√
(c−1)(c−25)
16

(8)c = 1+ 6

(

b+ 1

b

)2
b≪1∼ 6

b2

(9)
{

ζ ≈ c
6

hψ2 ≈ − 1
2 −

3b2

4

(10)

〈

O1O2χ̂2,1(z)O3O4

〉

=
〈

O1O2

(

L−2 + ζL2−1

)

ψ̂2(z)O3O4

〉

=
(

L−2 + ζL2−1

)

〈

O1O2ψ̂2(z)O3O4

〉

= 0



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11988  | https://doi.org/10.1038/s41598-022-16054-0

www.nature.com/scientificreports/

By the formula:

We have:

Decomposing the correlation function into conformal blocks, we get:

The third line of (13) uses the ansatz (2)—the five-point function 
〈

O1O2ψ̂2(z)O3O4

〉

 can be factorized into 
the product of a “Wave Function” ψ2(z) multiplying the original four-point function 〈O1O2O3O4〉 , which is 
expected to hold in the semi-classical limit. The key ansatz encodes the main physical picture behind the validity 
of the monodromy method. Using (3) and exponential form of the conformal block Fα(wi) ≈ e−

c
6 fα(wi) , we get:

As we shall see, distinct conformal blocks α need to satisfy monodromy condition that depends on hα , which 
are independent of one another. As a result, each conformal block should satisfy the differential equation sepa-
rately. So for each conformal block:

We can neglect ∂wi derivatives acting on ψ2(z) since ψ2(z) scales like O
(

c0
)

 , ∂wi e
− c

6 fα(wi) is the dominant term 
in ∂wi

(

ψ2(z)e
− c

6 fα(wi)
)

 , then we have:

So,

Then we get the equation:

where we have defined:

So we get the differential equation of the standard monodromy method (18), which is also known as the 
decoupling equation. This equation belongs to the Heun Eq. (108), whose basics we briefly summarize in the 
Appendix. Three of the accessory parameters ci can be fixed by the regularity of T(z,wi) at z = ∞ , due to the 
absence of operator insertion there. As a result, T(z,wi) must decay like 1

z4
 as z → ∞ , which amounts to the 

conditions:

(11)L−1 = ∂z , L−m =
∑

i

(

(m− 1)hi

(wi − z)m
− 1

(wi − z)m−1
∂wi

)

, m ≥ 2

(12)

(

4
∑

i=1

(

hi

(z − wi)
2
+ 1

z − wi
∂wi

)

+ ζ∂2z

)

〈

O1O2ψ̂2(z)O3O4

〉

= 0

(13)

(

c

6
∂2z +

4
∑

i=1

(

hi

(z − wi)
2
+ 1

z − wi
∂wi

)

)

〈

O1O2ψ̂2(z)O3O4

〉

=
∑

p

(

c

6
∂2z +

4
∑

i=1

(

hi

(z − wi)
2
+ 1

z − wi
∂wi

)

)

〈

O1O2|p
〉

〈

p|ψ̂2(z)O3O4

〉

=
∑

α,n

(

c

6
∂2z +

4
∑

i=1

(

hi

(z − wi)
2
+ 1

z − wi
∂wi

)

)

ψ2(z)�O1O2|α; n��α; n|O3O4�

(14)

∑

α

(

c

6
∂2z +

4
∑

i=1

(

hi

(z − wi)
2
+ 1

z − wi
∂wi

)

)

ψ2(z)Fα(wi)

≈
∑

α

(

c

6
∂2z +

4
∑

i=1

(

hi

(z − wi)
2
+ 1

z − wi
∂wi

)

)

ψ2(z)e
− c

6 fα(wi)

= 0

(15)

(

c

6
∂2z +

4
∑

i=1

(

hi

(z − wi)
2
+ 1

z − wi
∂wi

)

)

ψ2(z)e
− c

6 fα(wi) = 0

(16)
c

6

(

ψ ′′
2 (z)+

4
∑

i=1

(

6hi/c

(z − wi)
2
− f ′α(wi)

z − wi

)

ψ2(z)

)

e−
c
6 fα(wi) = 0

(17)ψ ′′
2 (z)+

4
∑

i=1

(

εi

(z − wi)
2
− ci

z − wi

)

ψ2(z) = 0

(18)ψ ′′
2 (z)+ T(z,wi)ψ2(z) = 0

(19)T(z,wi) =
4

∑

i=1

(

ε

(z − wi)
2
− ci

z − wi

)

, εi ≡
6hi

c
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Now, we apply a global conformal transformation sending (w1,w2,w3,w4) to (0, x, 1, ∞) , where x is confor-
mal ratio (w1−w2)(w3−w4)

(w1−w3)(w2−w4)
 . The accessory parameters transform accordingly:

Plugging back into (19), we will obtain the final form of T(z, x) and the differential equation:

Notice that now the differential equation depends only on a single accessory parameter c2(x).

Monodromy around singular points. In order to determine c2(x) , from which the conformal blocks 
Fα(x) can be obtained, we need to use the fact that ψ(z) (For conciseness, we have omitted the subscript “2” in 
ψ2(z) ) has a monodromy if we encircle singularities w1 and w2 . Figure 2 shows the points z = wi on the Riemann 
sphere for the differential equation of the standard single value method.

Let us consider ψ(z):

The key step is in the third line and the approximation has been argued  in21. The main content of the argu-

ment is as follows. We define the mode ψn(z) ≡
�O1O2|α;n�

〈

α;n|ψ̂(z)O3O4

〉

�O1O2|α;n��α;n|O3O4�  first and we can argue the relation 
ψn+l(z) ≈ ψn(z) ∼ O

(

c0
)

 , where l is the increased level. Then inserting the relation into the second line of (23) 
will lead to the third line. We take the leading order of the OPE: Oα(y)ψ̂(z) ∼ (z − y)kOd(y) as z → y in the 
last line of (23), so we have:

(20)
4

∑

i=1

ci = 0,

4
∑

i=1

(

ciwi −
6hi

c

)

= 0,

4
∑

i=1

(

ciw
2
i −

12hi

c
wi

)

= 0

(21)







c1 = (x − 1)c2 − 6(h1+h2+h3−h4)
c

c3 = −xc2 + 6(h1+h2+h3−h4)
c

c4 = 0

(22)
{

ψ ′′
2 (z)+ T(z, x)ψ2(z) = 0

T(z, x) = ε1
z2

+ ε2
(z−x)2

+ ε3
(z−1)2

+ ε1+ε2+ε3−ε4
z(1−z) − c2(x)(1−x)x

z(z−x)(1−z)

(23)

ψ(z) =

〈

O1O2ψ̂(z)O3O4

〉

�O1O2O3O4�

=

∑

α,n
�O1O2|α; n�

〈

α; n|ψ̂(z)O3O4

〉

∑

α,n
�O1O2|α; n��α; n|O3O4�

≈

〈

α|ψ̂(z)O3O4

〉

�α|O3O4�

=

〈

0
∣

∣

∣
Oα(y)ψ̂(z)O3O4

∣

∣

∣
0
〉

�α|O3O4�

Figure 2.  Differential equation of the standard monodromy method has regular singularities at points z = wi for 
i = 1,…,4 on the Riemann Sphere. “Wave Function” ψ2(z) has a monodromy if we take z go through a contour γ 
that encircles w1 and w2.
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where k can be determined by inserting this formula into the differential equation of correlation function (12):

Then we use the limits c → ∞ , z → y , so we have b2 → 0 , |z − wi| ≫
∣

∣z − y
∣

∣ . It is straightforward to get:

We can solve this equation and immediately get:

In fact, it reproduces the information regarding the fusion rule of the level-two degenerate operator ψ̂ with 
Oα : ψ̂ × Oα = Oβ1 + Oβ2 , where the conformal dimesions of Oβ1 and Oβ2 are hα −

√
1−c+

√
25−c√

24
 and 

hα +
√
1−c+

√
25−c√

24
 , respectively. By (27), we have:

Let us calculate the monodromy of the first order solution around the point y. We take z go through a cycle 
that encircles point y. Because the OPE limit {w1,w2} → y , this amounts to a contour that also encloses both w1 
and w2 . Then ψ̂ should behave as follows:

where subscripts 1 and 2 stand for two different solutions. We write this relation by matrix form:

We define the monodromy matrix as:

So we have:

and the trace of the monodromy equation, which doesn’t depend on the basis in which the two solutions of 
Eq. (3) are decomposed, is:

For example, if we want to calculate the identity (vacuum) conformal block with hα = 0 , the correspond-
ing M2 is a 2 × 2 identity matrix and its trace TrM2 = 2 . The monodromy matrix and its trace therefore depend 
on εi , x, and c2 . One can thus view (33) as an equation that one can use to solve c2 as a function of εi and x. We 
call this the monodromy equation. It is in general some complicated transcendental equation that is difficult 
to solve analytically. There exist various limits in which the monodromy equation can be solved explicitly. For 
example, there is a limit called the heavy-light limit, in which we take ε3 = ε4 = εH ≫ 1 to be heavy, and treat 
ε1 = ε2 = εL ≪ 1 to be a small parameter, and one can solve the monodromy equation perturbatively in εL . The 
detailed steps of using the standard level-two monodromy method to compute the four-point Virasoro conformal 
blocks perturbatively in the semi-classical limit can be found  in21,29. The procedure computes the conformal block 
in a particular channel, i.e. (12 → α → 34); in order to calculate it in a different channel, say (13 → α → 24), one 
needs to impose the monodromy condition around a circle enclosing w1 and w3.

Level-three monodromy method
Third order differential equation. As has been alluded to in the introduction, the form of the mono-
dromy problem as derived in “Standard monodromy method” section. is dictated by the choice of inserting a 
level-two degenerate operator ψ̂2 into the correlation function. At the technical level, this is a free choice. We 
could have inserted other degenerate operator into the correlation function. As long as the degenerate operator 
does not become too heavy, i.e. its conformal dimension does not scale with c , the approximations in “Stand-
ard monodromy method” section. still carry through. As a result, some variants of the standard monodromy 
method should emerge at the end of the analysis. It is interesting to explore the forms and implications of these 

(24)ψ(z) = (z − y)k
〈

0
∣

∣Od(y)O3O4

∣

∣0
〉

�α|O3O4�
∼ (z − y)k

(25)

(

1

b2
∂2z + hα

(z − y)2
+ 1

z − y
∂y +

∑

i=3,4

(

hi

(z − wi)
2
+ 1

z − wi
∂wi

)

)

(z − y)k�O2O3O4� = 0

(26)k2 −
(

1+ b2
)

k + hαb
2 ≈ 0

(27)k ≈ 1±
√

1− 4hαb2

2

(28)ψ(z) ∼ (z − y)
1±�α

2 , �α ≡
√

1− 4hαb2

(29)
ψ1(z) → eiπ(1+�α)ψ1(z)

ψ2(z) → eiπ(1−�α)ψ2(z)

(30)
(

ψ1

ψ2

)

→
(

eiπ(1+�α) 0

0 eiπ(1−�α)

)(

ψ1

ψ2

)

(31)M2 ≡
(

eiπ(1+�α) 0

0 eiπ(1−�α)

)

= −
(

eiπ�α 0

0 e−iπ�α

)

(32)
(

ψ1

ψ2

)

→ M2

(

ψ1

ψ2

)

(33)TrM2 = −2 cos (π�α)
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variants. In this section, we initiate this investigation by explicitly deriving a monodromy method that stems 
from inserting a level-three operator ψ̂3 into the correlator. The derivation of this monodromy method proceeds 
in an analogous way to the standard monodromy method. First, we give the corresponding null state and the 
conformal dimension associated with ψ̂3:

For  conciseness ,  we adopt  reparameter izat ion again ξ ≡ − 2
hψ3+2  ,  η ≡ 1

(hψ3+1)(hψ3+2)
 , 

c = 1+ 6
(

b+ 1
b

)2 b≪1∼ 6
b2

 . So we have:

We now insert the corresponding degenerate condition for the operator ψ̂3 into the four-point correlation 
function:

Just like we did in the standard monodromy method, we use the ansatz (2) again. So we can factorize the 
five-point correlation function into “Wave Function” ψ̂3 multiplying the original four-point function in the 
semi-classical limit. It ensures that the different “Wave Function” ψ̂2 and ψ̂3 can multiply the same four-point 
correlation function 〈O1O2O3O4〉 and then leads to the important differential equations. Then we have:

Inserting above equation into (36), we get:

As we mentioned in the standard monodromy method, each conformal block Fα(wi) needs to have its own 
monodromy condition that depends on the conformal dimension of itself hα. As a result, each conformal block 
satisfies the differential Eq. (38) separately. So we get:

Similar to ψ̂2 , ψ̂3 scales like O
(

c0
)

 , so we can neglect ∂wi derivatives acting on ψ̂3(z) . We simplify the equation 
and finally get:

Under the large c limit we can get rid of ζ and η and have:

where:

(34)

∣

∣χ3,1
〉

=
[

L−3 −
2

2+ hψ3

L−1L−2 +
1

(

1+ hψ3

)(

2+ hψ3

)L3−1

]

|ψ3�

hψ3 =
1

6
(7− c +

√

(c − 1)(c − 25))

(35)

∣

∣χ3,1
〉

=
[

L−3 + ξL−1L−2 + ηL3−1

]

|ψ3�

hψ3 = −3b2

4
− 3

8

(36)

�

O1O2χ̂3(z)O3O4

�

=
�

O1O2

�

L−3 + ξL−1L−2 + ηL3−1

�

ψ̂3(z)O3O4

�

=
�

L−3 + ξL−1L−2 + ηL3−1

��

O1O2ψ̂3(z)O3O4

�

=





4
�

i=1

�

2hi

(z − wi)
3
− 1

(z − wi)
2
∂wi

�

+ ξ∂z

4
�

i=1

�

hi

(z − wi)
2
− 1

(z − wi)
∂wi

�

+η∂3z

��

O1O2ψ̂3(z)O3O4

�

= 0

(37)

〈

O1O2ψ̂3(z)O3O4

〉

= ψ3(z)�O1O2O3O4�

= ψ3(z)
∑

α

Fα(wi)

≈ ψ3(z)
∑

α

e−
c
6 fα(wi)

(38)

(

4
∑

i=1

(

2hi

(z − wi)
3
− 1

(z − wi)
2
∂wi

)

+ ξ∂z

4
∑

i=1

(

hi

(z − wi)
2

− 1

(z − wi)
∂wi

)

+ η∂3z

)

ψ3(z)
∑

α

e−
c
6 fα(wi) = 0

(39)

(

4
∑

i=1

(

2hi

(z − wi)
3
− 1

(z − wi)
2
∂wi

)

+ ξ∂z

4
∑

i=1

(

hi

(z − wi)
2

− 1

(z − wi)
∂wi

)

+ η∂3z

)

ψ3(z)e
− c

6 fα(wi) = 0

(40)

ψ ′′′
3 (z)+ cξ

6η

4
∑

i=1

(

εi

(z − wi)
2
− ci

(z − wi)

)

ψ ′
3(z)+

c(ξ + 1)

6η

4
∑

i=1

(

2εi

−(z − wi)
3
+ ci

(z − wi)
2

)

ψ3(z) = 0

(41)ψ ′′′
3 (z)+ 4T(z)ψ ′

3(z)+ 2T ′(z)ψ3(z) = 0
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So we get the differential equation of the level-three monodromy method (41), which is a third order Fuchsian 
differential equation, see (104) in the Appendix. This is the differential equation based on which the level-three 
variant of the monodromy method is formulated. The stress tensor T(z) and it’s derivative which are meromorphic 
functions with four regular singularities at the points of insertion operators wi , for i = 1, ..., 4 on the complex 
plane. Similar to the standard case, we can use the global conformal transformation and the regularity condition 
(20) to push all kinematic information of wi into a single conformal ratio x = (w1−w2)(w3−w4)

(w1−w3)(w2−w4)
 , then we obtain 

the final expressions:

Monodromy condition. Now we derive the monodromy condition for computing conformal blocks in this 
setup. This monodromy condition can be derived from the differential Eq. (36) for 

〈

O1O2ψ̂(z)O3O4

〉

 (Similar 
to ψ̂2(z) , we omitted the subscript “3” in ψ̂3(z) for conciseness). As we did in the standard monodromy method, 

by (23): ψ(z) =
〈

0
∣

∣

∣
Oα(y)ψ̂(z)O3O4

∣

∣

∣
0
〉

�α|O3O4�  , we can take the leading order of the OPE: Oα(y)ψ̂(z) ∼ (z − y)kOd(y) as 
z → y , so we have:

Inserting ψ(z) into the differential Eq. (36), we have:

Then we use the limit z → y , so we have |z − wi| ≫ |z − y| . It is straightforward to get:

This amounts to an equation for k, and we can find three solutions:

And so we obtain the solutions:

where the subscripts 1, 2 and 3 stand for three different solutions. Again these exponents ki , i = 1, 2 reflect the 
fusion rule between the level-three degenerate operator ψ̂ and Oα : ψ̂ × Oα = Oβ1 + Oβ2 + Oβ3 , where the con-
formal dimesions of Oβ1 , Oβ2 and Oβ3 are hα −

√
1−c+

√
25−c√

6
 , hα and hα +

√
1−c+

√
25−c√

6
 , respectively. Similar to 

the standard case, we take z to go through a contour that encircles y , i.e. 
(

z − y
)

→
(

z − y
)

e2π i . In the OPE 
limit {w1,w2} → y , this amounts to a contour that also encloses both w1 and w2 . Then we have:

where M3 is the monodromy matrix of the level-three monodromy method:

In the basis that diagonalizes the matrix. So the trace of the monodromy matrix is:

(42)T(z) =
4

∑

i=1

(

εi

(z − wi)
2
− ci

(z − wi)

)

,T ′(z) =
4

∑

i=1

(

2εi

−(z − wi)
3
+ ci

(z − wi)
2

)

(43)

T(z) = ε1

z2
+ ε2

(z − x)2
+ ε3

(z − 1)2
+ ε1 + ε2 + ε3 − ε4

z(1− z)
− c2(x)(1− x)x

z(z − x)(1− z)

T ′(z) = −2ε1

z3
− 2ε2

(z − x)3
− 2ε3

(z − 1)3
+ (2z| − 1)(ε1 + ε2 + ε3 − ε4)

(z(z − 1))2
−

c2(x)(1− x)x
(

3z2 − 2(1+ x)z + x
)

(z(z − x)(1− z))2

(44)ψ(z) = (z − y)k
〈

0
∣

∣Od(y)O3O4

∣

∣0
〉

�α|O3O4�
∼ (z − y)k

(45)

(

η∂3z + ξ∂z

(

hα

(z − y)2
+ 1

z − y
∂y

)

− 2hα

(z − y)3
− 1

(z − y)2
∂y + ξ∂z

∑

i=3,4

(

hi

(z − wi)
2

+ 1

z − wi
∂wi −

2hi

(z − wi)
3
− 1

(z − wi)
2
∂wi

))

(z − y)k
〈

Od(y)O3O4

〉

= 0

(46)
(

η∂3z + ξ∂z

(

hα

(z − y)2
+ 1

z − y
∂y

)

− 2hα

(z − y)3
− 1

(z − y)2
∂y

)

(z − y)k = 0

(47)















k1 = −hψ3

k2 = 1
2

�

1− hψ3 −
�

1− 2hψ3 + h2ψ3
+ 8hα + 8hψ3hα

�

k3 = 1
2

�

1− hψ3 +
�

1− 2hψ3 + h2ψ3
+ 8hα + 8hψ3hα

�

(48)ψ1,2,3(z) ∼ (z| − y)k1,2,3

(49)

(

ψ1

ψ2

ψ3

)

→ M3

(

ψ1

ψ2

ψ3

)

(50)M3 =





e2π ik1 0 0

0 e2π ik2 0

0 0 e2π ik3
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Analogous to the standard case, the monodromy condition (51) combined with the differential Eq. (41) are 
used to in principle fix the accessory parameter c2(x) , which can then be integrated to obtain the conformal 
block. The whole procedure constitutes the formulation of the monodromy method associated with the level-
three degenerate operator. In particular, for the vacuum block, the monodromy matrix is the trivial identity:

Whose trace is 3. In the next section, we focus on computing the vacuum blocks using the level-three variant 
of the monodromy method, and benchmark it by checking against the standard level-two method.

Computing vacuum block using level-three monodromy method
Having derived the level-three variant of the monodromy method, in this section we shall apply it to calculate 
conformal blocks. For simplicity we shall focus on computing the vacuum blocks, but in principle it can be 
applied to other blocks as well. Technically this involves solving c2(x) from the monodromy condition. As men-
tioned before in the case of the standard monodromy method, we should think of the monodromy matrix M3 
and therefore its trace TrM3 both as functions of the accessory parameter c2(x) and the remaining parameters 
{εi , x} . Unfortunately, explicit expressions for these functions have not been found, and it is very plausible that 
the true answer involves highly transcendental functions of c2(x) as well as the remaining parameters. Solving 
the monodromy condition analytically is therefore beyond the current scope of monodromy methods, both for 
the standard case and the variant we have derived in “Level-three monodromy method” section.

We should therefore aim to solve the monodromy problem either approximately or numerically. The main 
purpose is to compare it against the corresponding results from the standard level-two monodromy method. 
By doing this we can both check the validity of the formulation, and also demonstrate explicitly the connection 
between solving the level-three and level-two monodromy problems. We emphasize again that although the 
connection may look obvious from a physics perspective: they aim to compute the same conformal block, at the 
technical level the two monodromy problems are not connected in any obvious manner, e.g. one cannot simply 
map from one into another. It is therefore a non-trivial check from a mathematical point of view regarding their 
mutual consistency. We shall comment more on this point in the “Discussion” section. The plan in this section is 
to first solve the level-three monodromy problem using perturbation theory in the heavy-light limit, and then to 
perform numerical calculations for generic cases. Both approaches will be compared against the corresponding 
results obtained using the standard level-two monodromy method.

Perturbative calculation in the heavy-light limit. Let us now apply the level-three monodromy 
method to compute the vacuum conformal block in the heavy-light limit perturbatively. The corresponding 
results were obtained using the standard monodromy method  in21,29, which we compare our result against to. 
As mentioned before, in the heavy-light limit we are interested in the case where the conformal dimensions εi 
satisfy:

This is called the Heavy-Light (HL) limit because two of the external operators O1 and O2 have small con-
formal dimensions (so they are “light operators”) while two of the remaining external operators O3 and O4 have 
much larger conformal dimension (so they are “heavy operators”). Through state-operator correspondence these 
correlation functions become expectation values of probe operators evaluated in high energy eigenstates, and 
therefore can be used to study the phenomena of Eigenstate Thermalization Hypothesis (ETH) in 2d  CFTs36–38. 
To proceed, we treat the light operator’s conformal dimension εL as a small parameter and expand all the relevant 
parameters in the differential Eq. (41) in series expansions of εL:

In this way, we decompose the monodromy problem in orders of εL , and the solution involving both ψ(z) 
and c2(x) can be obtained order by order iteratively, at least in principle. Now we begin with the leading order 
differential equation for ψ(0)(z):

(51)TrM3 = e2π ik1+e2π ik2+e2π ik3 = e−iπhψ3

(

e−iπhψ3 − 2 cos

(

π

√

8
(

hψ3 + 1
)

hα +
(

hψ3 − 1
)2
))

(52)M3 =
(

1 0 0
0 1 0
0 0 1

)

(53)εL = ε1 = ε2 ≪ 1, εH = ε3 = ε4 ≫ 1

(54)

ψ(z) = ψ(0)(z)+ εLψ
(1)(z)+ ε2Lψ

(2)(z)+ · · ·
c2(x) = c

(0)
2 (x)+ εLc

(1)
2 (x)+ ε2Lc

(2)
2 (x)+ · · ·

T(z) = T(0)(z)+ εLT
(1)(z)+ ε2LT

(2)(z)+ · · ·

T(0)(z) = εH

(1− z)2

T(1)(z) = 1

(z − x)2
+ 1

z2
+ 2

z(1− z)
− c

(0)
2 (x)(1− x)x

εLz(z − x)(1− z)

T(n)(z) = − c
(n−1)
2 (x)x(1− x)

εLz(z − x)(1− z)
, n ≥ 2
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It admits three independent solutions:

To simplify notations, it is useful to rewrite the monodromy Eq. (41) as a first-order matrix Ordinary Dif-
ferential Equation (ODE):

where

where in subscripts 1, 2, and 3 stand for three different solutions. Or another concise expression:

We want to solve the ODE perturbatively, so we can split � , a(z) as:

where

And hence:

With the help of (57), (62) and (66), we can know the differential equation on �(1) is:

So the solution at linear order in εL is:

(55)ψ ′′′(0)(z)+ 4T(0)(z)ψ ′(0)(z)+ 2T ′(0)(z)ψ(0)(z) = 0

(56)











ψ
(0)
1 (z) = 1− z

ψ
(0)
2 (z) = (1− z)1+

√
1−4εH

ψ
(0)
3 (z) = (1− z)1−

√
1−4εH

(57)∂z� = a(z)�

(58)� =





�

∂2z + 2T(z)
�

ψ1

�

∂2z + 2T(z)
�

ψ2

�

∂2z + 2T(z)
�

ψ3

∂zψ1 ∂zψ2 ∂zψ3

ψ1 ψ2 ψ3





(59)a(z) =
(

0 −2T(z) 0
1 0 −2T(z)
0 1 0

)

(60)� =





ψ1 ψ2 ψ3

∂zψ1 ∂zψ2 ∂zψ3

∂2zψ1 ∂2zψ2 ∂2zψ3





(61)a(z) =
(

0 1 0
0 0 1

−2T ′(z) 4T(z) 0

)

(62)
� = �(0)�(1)

a(z) = a(0)(z)+ a(1)(z)

(63)�(0) =







�

∂2z + 2T(0)(z)
�

ψ
(0)
1

�

∂2z + 2T(0)(z)
�

ψ
(0)
2

�

∂2z + 2T(0)(z)
�

ψ
(0)
3

∂zψ
(0)
1 ∂zψ

(0)
2 ∂zψ

(0)
3

ψ
(0)
1 ψ

(0)
2 ψ

(0)
3







(64)a(0)(z) =





0 −2T(0)(z) 0

1 0 −2T(0)(z)
0 1 0





(65)a(1)(z) = a(z)− a(0)(z) =





0 −2εLT
(1)(z) 0

0 0 −2εLT
(1)(z)

0 0 0



+ O
�

ε2L
�

(66)∂z�
(0) = a(0)(z)�(0)

(67)∂z�
(1) =

(

�(0)
)−1

a(1)(z)�(0)�(1)

(68)
�(1) = P exp

(∫

dz
(

�(0)
)−1

a(1)(z)�(0)

)

= 1+
∫

dz
(

�(0)
)−1

a(1)(z)�(0) + O
(

ε2L
)
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Our goal is to compute the vacuum block, which means we need to impose the trivial monodromy condition 
M

(1)
γ={0,x} = 0 , where the γ = {0, x} represents a contour enclosing the poles at z = 0 and z = x in the complex 

plane. To the leading order in εL , this requires that:

Using the expression of �(0) and a(1)(z) , we get the expression of the integrand:

where αH ≡
√
1− 4εH  . The condition (69) requires that the sum of residues of around 0 and x vanish. We 

calculate these residues and find:

Demanding that they vanish yields:

This result is the same as that calculated  in21,29, which uses the standard monodromy method. We conclude 
from this analysis that to leading order in perturbation theory, the level-three monodromy method is analytically 
consistent with the standard level-two monodromy method. In principle, we can check subleading corrections, 
but in practice this becomes immediately intractable beyond the leading order, for example,  see39. We should 
therefore refrain from going to higher orders in εL and resort to numerical calculations for checks beyond per-
turbative values for εL.

Numerical solutions for generic values of εi. In this section, we present some numerical results for solv-
ing the level-three monodromy problem. For those who might be interested we first briefly explain the numeri-
cal procedure for solving the monodromy problem. The crucial step is to compute for a given set of parameters 
{εi , x, c2} the monodromy matrix M3. In practice we decompose it into four parts M3 = M0R0,xMxR

−1
0,x so that 

each part can be computed relatively easily, see Fig. 3.
In particular, the diagonal matrices M0 and Mx encode the local phases that the three power-

law solutions 
{

zs1,2,3
}

 and 
{

(z−x)s1,2,3
}

 obtain around z = 0 and z = x  respectively, where 
s1 = 1, s2 = 1+

√
1− 4εH , s3 = 1−

√
1− 4εH :

While the “Scattering Matrix” R0,x denotes how the modes 
{

zs1,2,3
}

 scatter into the modes 
{

(z − x)s1,2,3
}

 as 
they “Propagate” via the differential Eq. (41) from near z = 0 to near z = x:

(69)
∮

γ={0,x}
dz
(

�(0)
)−1

a(1)(z)�(0) = 0

(70)
�

�(0)
�−1

a(1)(z)�(0) =









0 − 2T(1)(z)(1−z)αH+1

αH

2T(1)(z)(1−z)1−αH

αH
T(1)(z)(1−z)1−αH

αH
− 2T(1)(z)(z−1)

αH
0

T(1)(z)(z−1)(1−z)αH
αH

0 2T(1)(z)(z−1)
αH









(71)

Resz=0

(

−2T
(1)(z)(1− z)αH+1

αH

)

+ Resz=x

(

−2T
(1)(z)(1− z)αH+1

αH

)

=
2

(

(1− x)αH
(

−c
(0)
2

x + c
(0)
2

+ αHεL + εL

)

+ c
(0)
2

x − c
(0)
2

+ αHεL − εL

)

αH

Resz=0

(

2T
(1)(z)(1− z)1−αH

αH

)

+ Resz=x

(

2T
(1)(z)(1− z)1−αH

αH

)

=
2

(

(1− x)−αH

(

c
(0)
2

x − c
(0)
2

+ αHεL − εL

)

− c
(0)
2

x + c
(0)
2

+ αHεL + εL

)

αH

Resz=0

(

2T
(1)(z)(1− z)

αH

)

+ Resz=x

(

2T
(1)(z)(1− z)

αH

)

= 0

Resz=0

(

T
(1)(z)(z − 1)(1− z)αH

αH

)

+ Resz=x

(

T
(1)(z)(z − 1)(1− z)αH

αH

)

=
(1− x)−αH

(

c
(0)
2

x − c
(0)
2

+ αHεL − εL

)

− c
(0)
2

x + c
(0)
2

+ αHεL + εL

αH

(72)c
(0)
2 (x) = (1+ αH )(1− x)αH − 1+ αH

(1− x)((1− x)αH − 1)
εL

(73)M0 = Mx =





e2π i 0 0

0 e2π i(1+
√
1−4εH) 0

0 0 e2π i(1−
√
1−4εH)
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where

It requires numerically integrating the differential equation and then solving the matrix elements Ri,j
0,x by 

imposing matching conditions for 
{

ψ ,ψ ′,ψ ′′} near z = x . The accessory parameters c2(x) are then obtained by 
essentially applying Newton’s interation method to the monodromy equation:

Starting close to xn=0 ≈ 0 , where we have a good guess for c2(x0) using the  OPE40:

And then interatively use c2(xn) as a guess to find the solution for c2(xn+1) , where xn+1 is a nearby point of 
xn along some trajectory in complex x plane that we want to compute the values of the vacuum block F0(x).

So by numerically solving the monodromy problem rather than perturbatively, we can compare the value 
of accessory parameter c2(x) = − 6

c ∂x ln F0(x) for non-perturbative values εL = 1, 2, 3, 4 obtained from the two 
monodromy methods. See Figs. 4 and 5 for details.

Generalizing to higher-level monodromy method
We have derived and checked the explicit formulation of the monodromy problem associated with the level-three 
degenerate operator, we see that it is consistent with the standard level-two monodromy method. In this section, 
we make a further generalization and consider the consequence of inserting a more general degenerate operator 
ψ̂r into the correlation function. In particular, we focus on those ψ̂r that are associated with the Verma modules 
Vr,1 , i.e. they contain null states at level r. A common expression of conformal dimension of ψ̂r  is41:

where

In the semi-classical limit c → ∞ , the conformal dimension of ψr is:

The null state is obtained by acting a covariant differential operator �r,1 of degree r on the state |ψr� , which 
is given by:

(74)ψi(z ∼ 0) →
3

∑

j=1

R
i,j
0,xψj(z ∼ x), i = 1, 2, 3

(75)ψi(z ∼ 0) ≈ zsi , ψi(z ∼ x) ≈ (z − x)si

(76)TrM3 = 3

(77)

c2(x0) ≈
2εL

x0
−2|

3
x0εHεL+x30

(

22ε2Hε
2
L

135
− 2ε2HεL

45
− 2εHε

2
L

45
− 6εHεL

5

)

+x40

(

11ε2Hε
2
L

27
− ε2HεL

9
− εHε

2
L

9
− 4εHεL

3

)

(78)hr,1(t) =
1

4

(

r2 − 1
)

t − 1

2
(r − 1)

(79)t = 1+ 1

12
(1− c +

√

(c − 1)(c − 25))

(80)lim
c→∞

hr,1 =
1− r

2

Figure 3.  We decompose the monodromy matrix into four parts M3 = M0R0,xMxR
−1
0,x , where matrices M0 

and Mx encode the local phases that three solutions 
{

z
s1,2,3

}

 and 
{

(z − x)s1,2,3
}

 obtain around z = 0 and 
z = x respectively; while the “Scattering Matrix” R0,x represents how the modes 

{

z
s1,2,3

}

 scatter into the modes 
{

(z − x)s1,2,3
}

 as they “Propagate” via the differential Eq. (41) from near z = 0 to near z = x . We need to make 
the radii very small for this representation to be accurate.
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Figure 4.  Plots of accessory parameters c2(x) of the large c vacuum Virasoro blocks from the standard 
monodromy method and the level-three monodromy method, as conformal dimensions εH = 36 and εL varies 
from 1 to 4. Pay attention that the values of εL , which are beyond the perturbative values εL ≪ 1 , scale like O(1) . 
c
s
2(x) denotes the accessory parameter obtained from the standard method while ct2(x) denotes the one obtained 

from the level-three method. The overlap of the trajectories of cs2(x) and ct2(x) shows that these two methods are 
numerically in agreement with each other.

Figure 5.  Plots of the ratio of real (imaginary) part of accessory parameter cs2(x) to real (imaginary) part of 
accessory parameter ct2(x) where x is a complex variable, as conformal dimensions εH = 50 and εL = 2 . The 
horizontal plane very closing to 1 indicates the consistency between the two methods.
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where

So by inserting ψ̂r into the four-point function, we have a differential equation of order r:

where

With:

Assuming again that the degenerate operator is light, i.e. r ≪ c , one can still invoke the semi-classical approxi-
mation of the five-point functions:

By the same logic as before, each block needs to satisfy the differential equation separately. We thus obtain 
that:

In this paper, we are only interested in computing four-point conformal blocks, for which we can use the 
global conformal transformation to reduce the dependence on kinematic data {wi} to a single conformal ratio x, as 
we did before. We mention for the purpose of generality that one can also consider the monodromy method asso-
ciated with higher-point conformal blocks, which can be derived by inserting a degenerate operator analogous 
to the four-point conformal blocks. When there are n ≥ 4 operators in the correlator, each additional operator 
corresponds to an additional conformal-invariant, as a result the corresponding monodromy method involves 
n-3 accessory parameters solving n-3 monodromy conditions, corresponding to n-3 OPE processes that specify 
a  channel32. For instance, the monodromy method for conformal blocks of two heavy operators and an arbitrary 
number of light operators has been illustrated in the  work33. The  paper42 discussed the computation of 5-point 
conformal blocks with two heavy, two light, and one superlight operator at the large central charge using the 
monodromy method. In the  works30,43, the authors showed that any point conformal blocks in the semiclassi-
cal limit can be computed by solving a monodromy problem similar to the standard monodromy method we 
discussed in “Standard monodromy method” section.

Similar to the level-two and level-three cases, we can pack the r-th order differential equation into a first-order 
matrix form. Upon observation, one can check that the general form of the differential equation takes the form:

where p2,...,n(z) are the polynomials that have regular singular points in the complex domain. There is a curious 
feature that the ψ(n−1)

r (z) terms are always absent, it is a consequence of the special structure associated with the 
differential operator (84). In terms of a first-order matrix differential Eq. (88) can be written as:

(81)

|χr� = �r,1(t)|ψr� = det

[

−J− +
∞
∑

m=0

(−tJ+)
mL−m−1

]

|ψr�
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∑
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[(r − 1)!]2(−t)r−k
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L−p1 . . . L−pk |ψr�

(82)

[J0]i,j =
1

2
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[J−]i,j =
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0, j = r
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{
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0, i = r

(83)γr,1
(
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)

〈
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〉

= 0

(84)
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where �r can be defined by:

In this basis, the matrix A(z) is:

We can also derive the general monodromy condition via the fusion  rule41:

where the conformal dimensions of the operators are:

With:

Recall that we did in deriving the level-two and level-three monodromy condition, we consider the three-
point correlation function 

〈

ψ̂r(z)Oα(y)Oβ

(

w3+w4
2

)

〉

∼ (z − y)−(hr,1+hα−hβ) as z encircles y, i.e. {w1,w2} , we 
can parametrize the conformal dimension of Oβ as:

So by the fusion rule (92), we have:

Reverting to the conformal dimensions notation, we have the exponent of the expression of the three-point 
correlation function:

where k ∈ [1− r, r − 1], k + r = 1 mod 2
For the three-point correlation function, we take z to go through a contour that encloses y: 

(

z − y
)

→
(

z − y
)

e2π i in the OPE limit {w1,w2} → y . Then we have the general monodromy:

where �ki are:
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Finally, we can solve the differential equation for the higher-level monodromy method (89) perturbatively 
and compute the conformal blocks (accessory parameters) by imposing corresponding monodromy conditions 
(98), just like the processes we took in “Computing vacuum block using level-three monodromy method” section.

We give the expression of the null state at level four and the conformal dimension of the degenerate operator:

And we can also derive the differential equation of the level-four monodromy method and corresponding 
monodromy condition:

Discussions and conclusions
In this paper, we first reviewed the derivation of the standard method of monodromy. It involves inserting a level-
two degenerate operator ψ̂2 into the four-point correlation function. In the semi-classical limit, the five-point 
function is expected to factorize into the original fourpoint function multiplying a “Wave Function” factor ψ2(z) 
of the degenerate operator (2). In this limit, the degeneracy condition of ψ̂2 gives rise to a second order differential 
equation for the factor ψ(z) . The differential equation is of Fuchsian type and contains regular singularities at the 
positions of operator insertions. It depends on parameters such as the external operator conformal dimensions εi 
and an accessory parameter c2(x) . Furthermore, ψ̂2 has truncated fusion relations with general Virasoro family 
α, therefore the solutions to the differential equations should satisfy a monodromy condition consistent with the 
fusion relation if the accessory parameter c2(x) is related to the conformal block by c2(x) = − 6

c ∂x ln Fα(x) . This 
provides the machinery for computing the conformal block: one uses the monodromy condition as an equation 
to solve the accessory parameter. In some loose sense, this approach bares certain similarities to the bootstrap 
philosophy in computing CFT  quantities44,45.

The main motivation of this paper is to apply the observation that we could have inserted any other degener-
ate operator into the correlation function at the beginning of the derivation. The particular choice of inserting 
the level-two degenerate operator has the advantage of optimizing the representation of the method: it involves 
solving differential equations of the lowest degree; from a formal perspective there is nothing special about the 
level-two degenerate operator. Therefore we investigated the consequences of inserting other degenerate operators 
into the four-point function and applying the ansatz (2) of the resulting five-point function in the semiclassical 
limit. The consequences give rise to variants of the standard method of monodromy. We explicitly formulated 
the method for a level-three degenerate operator, it takes the form of solving a third order differential equation 
and imposing the monodromy condition on the 3 × 3 monodromy matrix. We applied the method to compute 
vacuum conformal blocks using both perturbation theory and numerical method, as analytic solutions to the 
possibly transcendental monodromy equation are not currently feasible. The results were found to agree with 
the standard monodromy method. We also discussed the cases where a more general level-r degenerate operator 
of the type hr,1 is inserted into the correlation function. In this case, one needs to solve a r-th order differential 
equation and impose corresponding monodromy condition on the r × r monodromy matrix.

The freedom for choosing which degenerate operator to proceed the derivation has a few implications. They 
constitute the main messages we hope to discuss and convey in this paper, apart from the technical results. 
Firstly, for each choice of the degenerate operator at level r ≪ c , we obtain a variant of the monodromy method 
that allows us to compute conformal blocks. Secondly, these methods are mutually consistent: they compute the 
same conformal blocks. This may sound like a logical tautology, but let us unpack what it means in practice. It 
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means the following. For any particular variant of the monodromy method defined by a r-th order differential 
equation, for illustration we copy below the corresponding equations for r = 2, 3, 4:

If the accessory parameter c2(x) is adjusted such that the r solutions satisfy the monodromy condition associ-
ated with the computation of a particular conformal block α, imposed on the r × r monodromy matrix, which 
for illustration we copy the traces for r = 2, 3, 4:

Then plugging the same c2(x) into other variants of the monodromy method will automatically solve the 
corresponding monodromy condition for conformal block α. When viewed from this perspective, the mutual 
consistency condition predicts a non-trivial connection among monodromies of different types of Fuchsian 
systems that do not seem to be related in obvious ways. In principle, one could study these Fuchsian systems and 
verify the relation between their monodromy structures. Due to the author’s lack of expertise in the subject, we 
refrain from making further comments. We hope to inspire further studies or explanations of this phenomenon, 
especially from mathematicians.

Instead, let us trace the physical origin of the connection. Recall that without making any approximations, 
the degeneracy conditions for distinct degenerate operators ψ̂r are independent: the differential equations are 
satisfied by five-point functions 

〈

O1O2ψ̂r(z)O3O4

〉

 which are independent objects for different ψ̂r’s. Therefore 
at the exact level, there is no connection between their consequences. What ties them together is the assumption 
that the five-point functions factorize as (2) in the semi-classical limit for r ≪ c such that the degenerate operator 
behaves like a probe. From this observation we are led to the insight that the connections between the Fuchsian 
systems that define different monodromy methods, in the form of mutual consistencies described before, serve 
to reflect the physical principle underlying the method, i.e. factorization (2) in the semi-classical limit. We can 
interpret this in two-folds: on the one hand, the mutual consistency connections between the Fuchsian systems 
appear non-trivial because they stem from an assumption that is inspired by physical principle; on the other 
hand, the fact that these connections can in principle be verified mathematically also implies that the assumption 
has a certain mathematical foundation in its truthfulness, where for  example21 has provided some scaling argu-
ments for it.

It is interesting to discuss our results with other works involving conformal blocks. In the  paper46, the author 
provided a simple algebraic iterative method to compute the conformal blocks to any order in x, without taking 
the large central charge limit which we have taken in our paper. After taking the large c limit, the author found 
that the results agree with the one obtained by our standard monodromy method and level-three method which 
assume the exponentiation ansatz (4) of conformal blocks in the large central charge. The author also explored 
the monodromy method for the torus topology, gave the results for the classical blocks, and compared them with 
the conformal blocks under the large central charge limit  in47. It would be useful to generalize our higher-level 
monodromy problems to these torus conformal blocks and discuss the rich algebraic structures behind them. 
Recently, in the  work48, the level-three degenerate operators arise in the monodromy problem in CFT with  W3 
algebra. The reason why the level-three degenerate operator must appear here is rooted in the  W3 algebra, i.e. 
the  commutat ion relat ions,  whose generators   W-1 and  W-2 cannot  s imply act  l ike 
L−1 = ∂z , L−m =

∑

i

(

(m−1)hi
(wi−z)m

− 1
(wi−z)m−1 ∂wi

)

, m ≥ 2 by acting on ψ(z) . In this sense, it is reasonable to 

take the higher-level monodromy methods based on the Virasoro algebra and the monodromy method for the 
 W3 algebra blocks to be different implementation variants of the same  idea30. This can be seen more clearly from 
the differential equation of the  W3 algebra monodromy method  in48, which differs from the third-order differ-
ential Eq. (41) we got by only one term contributed by the generator  W-3.

We proposing some future directions. Firstly, as mentioned before it would be interesting to further study 
the mathematical connections among the Fuchsian systems dictated by mutual consistencies among the mono-
dromy methods, i.e. to verify or explain them. Secondly, from a practical point of view it would be interesting 
to explore whether there are problems for which other variants of the monodromy method are better suited. 
Related to this, it is also worth thinking about whether combining multiple monodromy methods can provide 
additional mileage in computing conformal blocks, for example by providing independent constraints mimick-
ing the idea of CFT bootstrap. Next, it is curious to study what would happen as we increase the level r of the 
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degenerate operator, until it becomes semi-classical itself and the factorizable ansatz (2) breaks down; how does 
this breakdown manifest at the level of the connections we discovered among the Fuchsian systems. Last but 
not least, it would be useful to generalize our calculations and analyses to other types of conformal blocks such 
as WN conformal  blocks29, Neveu-Schwarz superconformal  blocks49, superconformal torus  blocks50, etc. There 
are different differential equations and rich algebraic structures that are worth exploring.
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