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On the generation of realistic 
synthetic petrographic datasets 
using a style‑based GAN
Ivan Ferreira 1,3, Luis Ochoa 2 & Ardiansyah Koeshidayatullah 1,3*

Deep learning architectures have transformed data analytics in geosciences, complementing 
traditional approaches to geological problems. Although deep learning applications in geosciences 
show encouraging signs, their potential remains untapped due to limited data availability and the 
required in‑depth knowledge to provide a high‑quality labeled dataset. We approached these issues 
by developing a novel style‑based deep generative adversarial network (GAN) model, PetroGAN, 
to create the first realistic synthetic petrographic datasets across different rock types. PetroGAN 
adopts the architecture of StyleGAN2 with adaptive discriminator augmentation (ADA) to allow 
robust replication of statistical and esthetical characteristics and improve the internal variance of 
petrographic data. In this study, the training dataset consists of > 10,000 thin section images both 
under plane‑ and cross‑polarized lights. Here, using our proposed novel approach, the model reached 
a state‑of‑the‑art Fréchet Inception Distance (FID) score of 12.49 for petrographic images. We 
further observed that the FID values vary with lithology type and image resolution. The generated 
images were validated through a survey where the participants have various backgrounds and level 
of expertise in geosciences. The survey established that even a subject matter expert observed the 
generated images were indistinguishable from real images. This study highlights that GANs are a 
powerful method for generating realistic synthetic data in geosciences. Moreover, they are a future 
tool for image self‑labeling, reducing the effort in producing big, high‑quality labeled geoscience 
datasets. Furthermore, our study shows that PetroGAN can be applied to other geoscience datasets, 
opening new research horizons in the application of deep learning to various fields in geosciences, 
particularly with the presence of limited datasets.

Advances in artificial intelligence and machine learning in the last decades have accelerated the process of digital 
transformation in geosciences and helped to generate meaningful insights from geological data like never before, 
using a vast array of  algorithms1–4. Recently, with the advent of generative models like Generative adversarial 
networks (GANs)5, Variational Auto-Encoders (VAEs)6, transformer  GANs7, and Diffusion  models8, applica-
tions of deep learning have led to state-of-the-art results in various aspects, including geosciences. In addition, 
some reports reveal that the outcomes of these generative models could match geologist-level analysis in various 
aspects of visual recognition (Table 1). Studies have demonstrated that GANs are a powerful tool to generate 
realistic and diverse images in an unsupervised manner and are already adopted in several fields, including 
superresolution, image-to-image translation, text-to-image translation, style-mixing, and generation of realistic 
images (Table 1). In general, GANs objective is to capture the data distribution via a minimax two-player game 
that aims to produce synthetic samples based on the original dataset, mimicking its statistical and esthetical 
 characteristics5 even going as far as deceiving human observers in the ability to discriminate real images from 
generated  ones9–11. In recent years, geosciences have adopted deep learning-based analytics in their workflows, 
such as image processing tasks. However, the lack of high-quality labeled, varied, and sufficiently large  datasets12 
has resulted in images being overtrained and overfit to certain geological  contexts13, or there is insufficient data 
to yield satisfactory results with deep learning algorithms such as Convolutional Neural Networks (CNNs)14. 
As a result, transfer learning has been suggested as an alternative  approach4,15,16 to avoid or minimize the risk of 
overtraining in a single geological context using such an approach. Furthermore, the high accuracy obtained from 
the transfer learning methods creates another dimension of uncertainty whereby a model trained to recognize 
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animals or other daily objects can be applied to classify geological images, such as seismic and petrographic 
images that have entirely different distributions and features (high- and low-level). Therefore, there is still a gap 
in image processing and analysis that generative models could help address by bringing deep learning applica-
tions closer to geological tasks.

Historically, clustering techniques and edge detection algorithms were the main algorithms for digital image 
 processing17. Recent studies have explored and utilized deep CNNs to address visual recognition and image 
processing in  geosciences4,17. The implementation of GANs in geosciences, particularly the petrographic image 
dataset, has been limited and still relatively under-explored. One of the significant limitations to applying GANs 
in petrographic images is that most GAN architectures require a massive amount of data, as illustrated in the 
first implementation of GAN with the MNIST and CIFAR datasets (60,000 images each)5. Additionally, the use 
of image datasets in the 1000s range has led to the overfitting of the generator in  GANs18. This work addresses 
the implementation of GANs for petrographic images by (i) experimenting with different dataset sizes, (ii) 
using various image resolutions, and (iii) applying truncation values to create a framework to generate realistic 
synthetic petrographic datasets. Our work uses the adaptive discriminator augmentation (ADA) application of 
 StyleGAN219–21 to realistically generate synthetic petrographic images due to the high-quality of generated images 
by this model, backward compatibility, stability, and the viability of its use in nonfacial generation datasets. In 
addition, employing the state-of-the-art Fréchet Inception Distance (FID)22 scores provides a better metric to 
evaluate the generated images. The dataset size limitation in petrographic thin sections is a problem addressed in 
this paper, as images collected and sliced were of a sufficient volume after preprocessing to produce meaningful 
results using this generative model. The ultimate objectives of this work are to

1. Explore the best image resolution and dataset size to generate realistic thin sections.
2. Develop a novel deep learning framework to generate petrographic synthetic datasets.
3. Discuss the properties of a petrographic GAN model using latent space, transfer learning, interpolation, 

truncation, and feature  extraction21,23–25.
4. Evaluate the synthetic datasets through a simple survey from subject matter experts.

    We further aim to highlight the application of GAN algorithms and other generative models as a way forward 
for exploring self-labeling and image generation tasks and how it could support the successful execution of deep 
learning algorithms and provide a novel workflow for image analysis in geosciences.

Related work. Recently, GANs have been widely adopted in geosciences with the motivation to explore 
and apply generative models to generate and manipulate a latent space associated with the geological data of 
interest, i.e., the highdimensional space where a representation of the data is  encoded2,26,27. This space is used to 
upscale the dimensionality and upsample the quality of image datasets. Previous works have demonstrated the 
far-reaching impact and application of GANs in geosciences, from reservoir simulation to history matching (see 
Table 1)2,27–30.

Furthermore, GANs have been proposed as a tool to create synthetic carbonate  components4 and for obtain-
ing superresolution micro-computed tomography (Micro-CT)  images29,32 for digital rock physics workflows. 
Additionally, GANs have also been used successfully to assist in the reconstruction and classification of carbonate 
thin  sections31, positioning GANs as a possible tool to enhance carbonate lithology interpretation workflows in 
combination with core images and Fullbore Formation MicroImager (FMI) images. Recent applications have 
also repurposed GANs designed for 2D image generation to 1D time-series generation, an implementation that 
could have extensive applications in the  geosciences33.

Methods
In this study, the datasets consisted of cross-polarized (XPL) and plane-polarized (PPL) RGB thin section images. 
Information from XPL and PPL images is crucial to determine the type of minerals and lithological variations 
in thin sections. The datasets were prepared using (i) the provided dataset tool generation from the Style-
GAN  repository20,21 and (ii) image slicing as a data augmentation technique. The StyleGAN architecture was 
selected based on its state-of-the-art (SoTA) scores and the ability to experiment with the generated latent space 

Table 1.  Applications of GANs for geological data generation.

References GAN Algorithm Problem Addressed
2 Volumetric DCGAN Reconstruction of porous media from images of sedimentary rocks
28 Dimension Augmenter GAN Generate 3D Stochastic fields from 2D images for hydrology
31 Conditional GAN Reconstruction and classification of carbonate thin sections
29 Cycle-in-Cycle GAN Improve the resolution of 3D micro-CT images
27 Progressive growth GAN Generation of 2D geological facies models
30 GAN and Ensemble Kalman filter Assisted history matching for a Deepwater lobe system
32 SRGAN and ESRGAN Image Superresolution of Micro-CT images
33 DCGAN, LSGAN and WGAN Time-series generation of mud logs
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(Table 2),20,21. This architecture and its derivatives are the current SoTA for unconditional image generation with 
the CIFAR-10 dataset (Table 3)34.

PetroGAN architecture. In this work, the  proposed  GAN  model, PetroGAN, adopts a style-based 
GAN architecture (Fig. 1). The model consists of (i) a mapping network from the latent vector z (i.e., the latent 
vector representation of an image in latent space Z), (ii) a mapping of this vector using eight fully connected lay-
ers in the W Space the space of all style vectors w, and (iii) used in conjunction with Adaptive Instance Normali-

Table 2.  Comparison of Fréchet Inception Distance (FID) scores of images generated at 256 × 256 for 
different dataset sizes from the Flickr Faces HQ Dataset (FFHQ) using StyleGAN2 with BigGAN, and the 
StyleGAN2 + ADA. Adapted from the StyleGAN2 + ADA original  paper21.

GAN Implementation 2k Training set 5k Training set 10k Training set 140k Training set

BigGAN23 60.47 32.34 15.85 11.08

StyleGAN220 66.77 39.42 8.80 3.81

 + ADA21,35 15.76 10.78 5.40 3.79

Table 3.  CIFAR-10 FID score benchmark for unconditional image generation. GAN: Generative Adversarial 
Network; VAE: Variational AutoEncoder. Diffusion: Diffusion model. StyleGAN and derivatives in boldface.

References Model ↓ FID Type Year
36 StyleGAN-XL 1.85 GAN 2022
37 LSGM 2.10 VAE 2021
38 Subspace Diffusion 2.10 Diffusion 2021
39 CLD-SGM 2.23 Diffusion 2021
40 StyleGAN2 + DiffAugment + D2D-CE 2.24 GAN 2021
41 INDM 2.28 Diffusion 2021
40 StyleGAN2 + ADA 2.32 GAN 2021
40 StyleGAN2 + ADA + D2D-CE 2.32 GAN 2021
41 UDM 2.33 Diffusion 2021
42 BDDM 2.38 Diffusion 2022

Figure 1.  Original StyleGAN architecture, (a) The latent vector z introduced, (b) eight fully connected 
layers used to obtain, (c) latent code w containing the features and (d) a series of AdaIN, normalization and 
convolutions using progressive growth to generate high- resolution  images19. Major modifications were made to 
(e) StyleGAN in (f) StyleGAN2. The model is simplified by removing the initial processing of the constant (1), 
the removal ofremoving the mean in the process of normalizing the features (2), and the transfer of the noise 
module (+) outside of the style block (3). M(modified from the StyleGAN and StyleGAN2 papers)19,20.
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zation (AdaIN)  layers35 to control the features in the generator. This is managed using progressive image growth, 
reducing the complexity of generating high-resolution images by taking a step-by-step  approach19. However, 
this has been linked to the production of artifacts in the generated image, one of the main reasons behind the 
re-engineering of the model adopted in  StyleGAN220,21.

Eq. (1) is a special normalization operation where the input feature map, xi, is normalized by instance, then 
scaled and biased using the style information, µ being the mean and σ the standard deviation of xi, with ys,i and 
yb,i being a pair of style  values21.

For this reason, we use the second iteration of the StyleGAN line of models, Fig. 1f20,21, which further devel-
oped the original  StyleGAN19. This architecture is constantly developed and improved and has backward com-
patibility with the preceding StyleGAN architectures with the same dataset preparation tools, accepted image 
resolutions, and workflows utilized. Although the latest iteration of this model is  StyleGAN343, we did not choose 
this architecture because an acceptable FID score was not achieved, and the model diverged with the same dataset 
size. The generation of unintended artifacts in StyleGAN, primarily due to the progressive growth technique, 
was addressed by creating the StyleGAN2  model20,21. This was achieved by simplifying and eliminating steps in 
the architecture (Fig. 1f). Instead of using progressive growth to generate high-resolution images, we employed 
skip connections in  StyleGAN220. This method allows skipping some layers in the model and feeding this output 
to the subsequent layers as realized in the Residual Networks (ResNet)  architectures44. Style-mixing is a different 
application of this architecture, with styles extracted after the fully connected layers by an Affine transform (A 
in Fig. 1e); these style blocks further extract coarser and fine styles from an image dataset. For a facial dataset, 
this ranges from pose (coarse) to eye color (fine). The style blocks of this architecture consist of modulation, 
convolution, and normalization layers; the style block starts with a modulation operation, Eq. (2), being applied, 
which scales each input feature from the extracted  style21.

where w and w′ are the modulated weights and si is the scale for each input. This is followed by a 3 × 3 convolution 
operation, finalizing the style block with a normalization of the weights using Eq. (3), with a constant ε added 
to avoid instability during training.

Dataset sources. Petrographic images were collected from publicly available sources, as listed in Table 4. 
The dataset consists of high-resolution images of 1701 × 1686 pixels collected from the Virtual Petrographic 
Microscope project (VPM) in PPL and XPL with different rotation angles for each  image45 (Fig. 2e). This dataset 
is complemented by 800 × 533 pixel petrographic images taken from the Strekeisen project (Fig. 2a–d)46 Images 
from all datasets were divided into four main rock types: (1) plutonic, (2) volcanic, (3) metamorphic, and (4) 
sedimentary classes. Magnifications were also considered to obtain several representations of various minerals, 

(1)AdaIN
(

xi , y
)

= ys,ixi − µ(xi)/σ (xi)+ yb,i

(2)w′

ijk = si · wijk

(3)w′′

ijk = w′

ijk/

√

∑

i,k

w′

ijk′ + ε

Figure 2.  Four lithology classes extracted from Streckeisen dataset: (a) plutonic, (b) metamorphic, (c) volcanic 
and (d) sedimentary rocks in thin sections, (e) example of image slicing applied to the VPM dataset. Image 
slicing was applied to MacQuarie university images, splitting the original into five representative subsections.
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ranging from 10× and 20× from the Strekeisen project and the Atlas of sedimentary rocks  book47, 4× from JD. 
Derochette  project48, and full thin section photomicrographs for the VPM.

Image slicing and final dataset. Data processing was performed through standard image manipulation 
made available as part of the StyleGAN2 application,  Numpy49, OpenCV, Pillow, and  PyTorch50. As per the 
requirements of the StyleGAN2 architecture, images needed to be in a square format with dimensions in pow-
ers of two (i.e., 32×32, 256×256, 512×512 px, etc.). The original images were cropped or sliced to 512x512 px 
to achieve a sizable dataset for the GAN to train and satisfy the StyleGAN2 dataset  requirement18–20 using the 
highest possible resolution while preserving the essential features of the petrographic dataset. The final dataset 
consisted of 10070 petrographic images belonging to four classes; this combined set of images is used to train 
the GAN for generating 512x512 px images. One of the main objectives of the generated dataset was to achieve  
greater than 10k images and have a class balance between lithologies, as shown in Table 5.

Training procedures. Stage I. As a Minimum Viable Product (MVP), training was conducted using only 
igneous images consisting of 15,294 images with 32×32 pixels in size. Images were taken exclusively from the 
igneous rocks available from the VPM and SP. The objective of this test was to ensure that convergence in the 
model was viable, as training time for GAN models usually needs extensive training and high-end computing 
capabilities entailing one or several Graphical Processing Units (GPU). The MVP trained for four days and 13 
hours, using a Quadro M4000 with 8 Gb of video RAM, 30 Gb of RAM, and an eight-core CPU; the model con-
verged and achieved an FID score of 7.49.

Stage II. The images were set to a standard size of 512x512 px, which was the maximum size possible with the 
available dataset. The final dataset consisted of 10,070 representative images of thin sections in both XPL and 
PPL from four different classes; (i) plutonic, (ii) volcanic, (iii) metamorphic, and (iv) sedimentary rocks. Moreo-
ver, the initial model was evaluated using the FID score when it reached 80 Kimgs to assess the training speed. 
The following model was evaluated every 140 Kimgs processed. Additional models were trained using 256x256 
and 128x128 px versions of the dataset with to evaluate how well the FID score performed under various reso-
lutions while keeping the same dataset size. The training was terminated when the values did not improve and 
started oscillating, i.e., convergence, the model with the lowest FID score was selected. The training was con-
ducted using a Quadro RTX 5000 with 16 Gb of video RAM, 30 Gb of RAM, and an eight-core GPU taking (1) 
264 GPU hours for the 512x512 px model, (2) three days and five hours for the 256x256 px model, and (3) 72 
GPU hours for the 128x128 px model.

Stage III. To evaluate the model’s capability to adapt to specific lithologies, we tested the 512 × 512 model as 
a starting step for generating domain-specific thin section models. With this in mind, we used three lithology 
classes from the original dataset, using data augmentation and slicing on the original dataset. The main goal is to 
generate the highest number of domain-specific lithologies without the limitation of class balancing, previously 
used in the all-lithology model. The training was resumed using the 512 × 512 all-lithology model and trained 
during 1120 Kimgs, and it lasted for 44 h with the GPU used.

Metrics. Several metrics help evaluate a GAN performance, such as the FID score, Inception score, and 
evaluation with domain experts. The most used and state-of-of-the-art metric is the Fréchet Inception Distance 
 score9,19,21,22, which is a way of capturing the similarity of generated images to real ones; it is better than the other 
metrics like the Inception  score24. In addition, this metric evaluates the statistical distribution of the generated 
images and its proximity to the statistical distribution of real images, using the last layer of the InceptionV3 
model to capture features of the generated and real images, summarizing the activation as a multivariate Gauss-
ian distribution, and calculating its means and  covariance22. Finally, the distance between the distributions, real 
and fake, is computed using the similarity via the Fréchet  distance22. Figure 3 illustrates the behavior of the FID 
scores reacting to progressive image contamination in the context of petrographic images. The lower the FID 
score, the closer two image distributions, i.e., the closer a generated image dataset is to real images.

Visual evaluation. As an additional step for evaluating the performance of the final model, a survey was 
made to assess if the generated thin sections were indistinguishable from the real ones; this survey was aimed 
at subject matter experts from academia and industry with both geoscience and non-geoscience backgrounds, 

Table 4.  Data precedence for thin sections used for training, SP: Strekeisen Project, VPM: Virtual Microscope 
Project, Adams: Atlas of sedimentary rocks [Adams et al., 1984], JD: J. M. Derochette.

Source
Number of images (Quantity per 
dataset) Average resolution Class Images sliced (512 × 512)

SP, VPM (2549,20) 800 × 533, 1701 × 1686 Igneous plutonic 2645

SP, VPM, JD (1756,60,45) 800 × 533, 1701 × 1686, 
2600 × 1700 Igneous volcanic 2281

SP, VPM, Adams (695,150,217) 800 × 533,1701 × 1686, 1120 × 820 Sedimentary 2530

SP, VPM (2086,132) 800 × 533,1701 × 1686 Metamorphic 2614
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globally. In the survey, ten actual petrographic images were selected randomly from the training dataset, and 
ten randomly generated artificial images with randomly selected seed numbers were compared. In addition, the 
location of the correct image was also randomized. For example, the correct image is on the right and corre-
sponds to an Aillikite from the Strekeisen dataset, and the generated image to the left corresponds to seed 0008 
in the model, as seen in Fig. 4. In total, more than two hundred responses were received during a short three-day 
survey.

Results
Model performance. The FID score obtained for the reduced size 32x32 px model was low compared with 
other resolutions, and the final FID score obtained was 7.5 for this dataset (Fig. 5a). A timelapse of the generated 
images for the 32x32 and 512x512 px models is shown in (Fig. 5). The images reveal the evolution of a 3 × 3 grid 
of images from noise to low-resolution artificial thin sections in the 32x32 px model and a single thin section 
in the 512x512 px model. For every 240 Kimgs processed, the FID score was evaluated for the 32x32 px pixel 
dataset. Furthermore, it was evaluated for the 512x512 px pixel image dataset for every 140 Kimgs. As stated in 
the methods section and after proving that a generative model using StyleGAN2 was feasible with the MVP, the 
network was trained with 512x512 px resolution images, and the FID score obtained was 12.49 (Fig. 5b). Based 
on the literature review, this is encouraging because this is a state-of-the-art FID score for a GAN model trained 
on microphotographs encompassing all three lithologies. In training, the FID score stabilized at around 2740 

Figure 3.  Comparison of different disturbances on FID score for a nepheline foidite from Streckeisen dataset; 
(a) Original image, (b) increasing the kernel size median filter applied to the original image, (c) adding salt 
and pepper noise to the image, (d) increase in FID score for corresponding kernel size in median filter, and (e) 
increasing the noise-to-signal ratio effect on FID score.
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Kimgs, and no significant increase was observed after 6520 Kimgs; hence, we obtained the lowest FID score 
achieved as the final model.

The final model was used to train specific petrographic groups of thin sections of various dataset sizes. Using 
it as a way of transfer learning and style-mixing in the context of GANs, training was stopped at 1120 Kimgs for 
each lithology compared to the 6520 Kimgs reached by the original model. Different lithologies and image sizes 
were trained. A summary of training iterations is provided in Table 5.

Synthetic petrographic images. The images were generated in grids when the FID score was calcu-
lated every 140 Kimgs in the case of the 512 × 512 px model, evaluating the progressive improvement in the qual-
ity of the generated images, as shown in Fig. 5. The GAN starts from random noise and progressively improves 
until it reaches convergence, i.e., the point where no further training would improve the model, as seen in Fig. 5. 
The grid visualization also helps spot mode collapse, whereby the generator becomes proficient at producing one 
thin section and only generates variants of that image. Nine selected generated images are shown in Fig. 6 with 
different FID scores during the training of the 512 × 512 model; the seeds were the same, showing a progressive 
improvement of mineral-like structures in the synthetic images.

Survey results. Results of the survey to evaluate the quality of the generated images are presented in Fig. 7. 
The survey was applied to 205 individuals worldwide from different backgrounds in industry and academia con-
texts. Most responses come from undergraduate and postgraduate geoscience students (backgrounds are shown 

Figure 4.  First question presented on the survey. Two images side by side with three answers options, the right 
image (B) being the real one in this case.

Figure 5.  Fréchet Inception Score evolution for (a) 32x32 training converging around FID score of 7.24. 
A 3 × 3 grid of image evolution during training, and (b) evolution of FID Score for the 512x512 primary 
training converges around FID score of 12.5.
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in Fig. 7). Although the survey’s overall results in various backgrounds were similar, we observe that the perfor-
mance of participants with different backgrounds (“other” in Fig. 7), is generally lower than those with a geo-
science background. Across all background categories, undergraduate students have the highest performance, 
postgraduates have the lowest performance, and researchers have the highest percentage of doubts. Overall, the 
survey results show that, on average, the generated images perform better on all backgrounds.

Table 5.  Value of FID scores obtained on different lithologies and dataset sizes. Models in boldface were 
trained from scratch *models trained using transfer learning applied to all lithologies 512x512 model.

Lithology Resolution Dataset size Training Kimgs FID score GPU used

All lithologies 512 × 512 10,070 6520 12.49 RTX5000

Sedimentary* 512 × 512 5995 1120 24.19 RTX5000

Metamorphic* 512 × 512 13,325 1120 14.40 RTX5000

Igneous* 512 × 512 11,350 1120 16.11 RTX5000

All lithologies 256 × 256 10,070 6160 11.89 RTX5000

All lithologies 128 × 128 10,070 8320 10.41 RTX5000

Igneous plutonic 32 × 32 15,294 4720 7.24 M4000

Figure 6.  Comparison of different stages of training for selected images that generated (a) 74.59, (b) 32.84, and 
(c) 12.49.

Figure 7.  (a) Academic or industry experience for individuals with a geoscience related background and (b) 
results of the experiments, with average results by population.
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Discussion
The proposed use of GAN trained on geological data and with petrographic images enables the visualization of 
thin sections as a moving system. This could be a way to picture the changing state of different lithologies. Thus 
far, this application aims to provide a real thin section not seen by the model during training and searching for 
the associated latent vector. This could lead to similar images found in the model. For example, an oolitic lime-
stone taken from the University of Oxford Rocks Under the Microscope  project52 is transferred to the model 
(Fig. 8a), which then proceeds to search for the most similar image within its latent space (Fig. 8b)—resulting 
in a vector generated for the artificial image found within latent space. The proposed use of this feature is to 
search for similar thin sections and experiment with proximal vectors and lithology visually. Searching for a 
similar thin section in latent space could help us visualize how a computer machine learning model organizes a 
petrographic set of images, which sections it tends to group, and which ones uses to group lithologies in latent 
space, what features are more dominant, and how to control the most important ones from a geological point 
of view, e.g., grain size or foliation, to generate specific textures. The Truncation Trick is a modification of the 
latent distribution by applying a truncation of the normal distribution used to generate images, i.e., truncating 
the values which fall above a certain  threshold23. This has been shown to improve and boost the FID score of the 
generated images and was used in the survey to increase the probability of an artificial thin section appearing 
as a real one, using 0.7 as a truncation value. The truncation value experimentation generates more unrealistic 
minerals the greater the  threshold value, producing images with varying threshold values as shown in Fig. 9. 
Conversely, reducing the truncation value produces more down-to-earth minerals, albeit with a tendency to 
make the general color of the thin section gray.

An application of synthetic data generation is the ability to extract human-readable feature vectors in latent 
space. We used the Closed-Form  Factorization24 of latent vectors for the all lithologies 512 × 512 model. This 
method could be used in the future for visualizing different features being modified on the same mineral assem-
blage, Fig. 10. Moreover, we could use the trained model to extract vectors that can be used to modify the same 
thin section and add or remove certain constituents. Future applications of this factorization could be petro-
graphic and petrological modeling, especially if this vector can be associated with certain characteristics of 
geological environments. An interesting application is grain size modification and the kind of minerals present; 
this model could also be used to visualize facies and lithological changes and assist in geological workflows that 
rely heavily on petrographic information.

We also applied this method to an image classification problem, using 200 images of landscapes and 200 
artificial thin sections. We trained a deep convolutional neural network architecture and tested the model using 
images of landscapes and actual thin sections. The model reached 95% accuracy with the training data and 80% 
with the testing set. Synthetic images were more prone to be classified as real, Fig. 7, than actual thin sections. 
This phenomenon could be explained because generated images tend to look more like an average thin section, 
given that they are trained to assimilate an entire distribution of images. This "archetypical" thin section is erro-
neously classified as the real one compared with a single real thin section in a binary classification task, i.e., real, 
or fake, when a human is used as the classifier. Images that are ’more real than real’ have already been observed 
in GANs trained with faces10,11, and Gestalt theory has been previously used in deep learning in preprocessing 
steps to obtain efficient image descriptors for  CNN53 training. We propose that this "gestalt," i.e., the laws on our 
ability to make meaningful perceptions of the  world54, GAN phenomenon could extend to nonfacial geological 
datasets and that should be considered and further studied. This phenomenon could indicate continuity, memory, 
similarity, closure, and superior figure in the sense of Gestalt theory regarding our understanding and perception 
of synthetic and real petrographic data. We attempted to address one of these Gestalt principles with a symmetry 
test between the real and fake images used for the survey, which were found to have higher symmetry.

Figure 8.  Results of interpolating an image into the model (a) Ooilitc  limestone52, and (b) interpolated oolitic 
limestone in model’s latent space.
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Figure 9.  Results of applying truncation to two generated images show a progressive change in truncation and 
its effects, with (a) 1.25, (b) 1.0, (c) 0.75, (d) 0.5 as truncation values.

Figure 10.  Feature Extraction of important vectors in the model, the same seed, 168,947, in the center is 
changed (a) modifying colors of the minerals and (b) changing the percentage of matrix in the thin section.
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The significance of this model is enabling the generation of artificial thin sections. With further studies, 
it could be used as a viable method for dataset augmentation, with the potential as a tool for self-labeling being 
input to semi-supervised and unsupervised learning algorithms; explainability of this kind of model is also an 
area of research and could elucidate in the future how a GAN organizes data in its latent space. It is also noted and 
encouraged that the final model can be used as the starting point for training more domain-specific petrographic 
datasets, and this could be done through style-mixing of the GAN model, to generate more specific generative 
models, e.g., in the generation of carbonate  constituents4 or an only metamorphic thin section generator. The use 
of style-mixing in a petrographical dataset is shown in Fig. 11, where the model learns parameters such as grain 
size and XPL/PPL, changing them as the style of the thin section is mixed between domains (Source A and B in 
Fig. 11). Style-mixing features of interest in a geological dataset could be used to increase diversity or even fill 
under-represented  classes32. This architecture also makes it possible for the images to be generated according to 
a signal, application of this being the audio-reactive GAN "MAUA"  implementation55. Further exploration and 
evaluation of the generated thin sections in latent space could aid in evaluating how a given lithological feature 
evolves. In the future, this could be used to assist in interactive explanation and visualization or modeling of 
petrographic environments, e.g., the impact of varying levels of metamorphism on a thin section and the effects 
of change in energy levels in a sedimentary environment. We also observe that, with the different image sizes 
tested, we expect to get lower scores, i.e., better, for smaller image sizes. A comparison in Table 5 gives us an idea 
of the dataset size needed to achieve a target FID score. For validation against other geological datasets, we test 
the same architecture with two other geoscience-related datasets, a foraminifera species-level dataset collected, 
and a general-level pollen dataset published. Both datasets were collected for CNN-Classification tasks, and we 
selected the nine foraminifera species and five pollen genera with the most images, i.e., 103. These datasets were 
resized to 18,166  2562 px images for the foraminifera and 7925  642 px images for the pollen dataset, reaching 
15.8 and 18.68 FID scores, respectively Fig. 12.

Future recommendations. We encourage implementing the recently released StyleGAN3 model and 
upcoming GAN architectures to improve the current model further and use the trained model in more domain-
specific datasets. Exploration of latent space and feature modification of thin sections is needed as ways to prove 
that this type of architecture will help in the visualization of changing variables in geological environments by 
way of changes in latent space, image-to-image translation is suggested to generate petrographic images from 
another type of images, and implementation of super-resolution29 would be most needed to upsample available 
petrographic datasets resolutions. Exploration of features extracted from the model is a way forward to control 
specific geological characteristics of the generated data, i.e., a feature for controlling the grain size, the predomi-
nance of the matrix over grains, or the abundance of a particular mineral species. It is also recommended to 
explore ways to associate latent vectors with geochemical data to visualize the effects of changing modal compo-
sition on a thin section; this could be useful, for example, to generate thin sections based on modal composition 
in metamorphic petrology modeling. A more discrete survey is advised, i.e., generating a model trained on a spe-
cific lithology, thus enabling more domain-specific tests to be made, e.g., assessing sedimentologists or petrolo-
gists to give an artificial thin section tentative metamorphic or sedimentary  facies56,57. We tested the GAN model 
capacity as a tool to generate datasets for other machine learning algorithms. For this, we trained a binary image 
classifier using a convolutional neural network over 100 synthetic thin sections versus 100 landscape images, the 
model achieved over 90% accuracy on training and testing, and when tested against 40 real thin sections, the 
accuracy dropped but was over 80% nonetheless, further validation is needed to use this kind of model as a data 
augmentation tool in future geoscience workflows.

Figure 11.  Style-mixing of thin sections from a sample (Source A) to another (Source B).
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Conclusions

1. It is possible to generate an artificial dataset of petrographic thin sections using Generative adversarial net-
works, via the architecture of StyleGAN2. Training of a viable GAN using StyleGAN2 in this context needs 
at least 5000 images to achieve sufficiently good images, and more than 10,000 images are recommended to 
generate an optimal model (i.e., lower than 15 FID score).

2. Based on the result of the survey, we conclude that artificially generated thin sections can be indistinguish-
able from real ones and even be seen as more authentic than real ones, allowing this tool to generate thin 
sections of sufficient quality to be able to deceive domain subject experts.

3. Latent space exploration of the model is a method of visualization and interpolation of real thin sections into 
the model. Further exploration of styles in the context of petrography is needed to support GAN models as 
a technique for petrographic modeling.

4. Closed form factorization of latent space in a petrographic image generator is used for extracting at least two 
human readable vectors that could be used in the future for modeling purposes in the geosciences.

5. Both dataset size requirements  103—104 and GPU computing costs prevent the application of GAN-based 
frameworks, especially in certain geological subfields where data is limited and/or high dimensional.

Data availability
The dataset and code used and/or analysed during the current study available from the corresponding author 
on reasonable request. This is a manuscript under review process and the trained models will be available soon. 
For the StyleGAN2 + ADA implementation please refer to https:// github. com/ NVlabs/ style gan2- ada- pytor ch.
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