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AI‑based automatic segmentation 
of craniomaxillofacial anatomy 
from CBCT scans for automatic 
detection of pharyngeal airway 
evaluations in OSA patients
Kaan Orhan1,2,3*, Mamat Shamshiev4, Matvey Ezhov4, Alexander Plaksin4, Aida Kurbanova5, 
Gürkan Ünsal5,6, Maxim Gusarev4, Maria Golitsyna4, Seçil Aksoy5, Melis Mısırlı5, 
Finn Rasmussen7,8, Eugene Shumilov4 & Alex Sanders4

This study aims to generate and also validate an automatic detection algorithm for pharyngeal 
airway on CBCT data using an AI software (Diagnocat) which will procure a measurement method. 
The second aim is to validate the newly developed artificial intelligence system in comparison to 
commercially available software for 3D CBCT evaluation. A Convolutional Neural Network‑based 
machine learning algorithm was used for the segmentation of the pharyngeal airways in OSA and non‑
OSA patients. Radiologists used semi‑automatic software to manually determine the airway and their 
measurements were compared with the AI. OSA patients were classified as minimal, mild, moderate, 
and severe groups, and the mean airway volumes of the groups were compared. The narrowest 
points of the airway (mm), the field of the airway  (mm2), and volume of the airway (cc) of both OSA 
and non‑OSA patients were also compared. There was no statistically significant difference between 
the manual technique and Diagnocat measurements in all groups (p > 0.05). Inter‑class correlation 
coefficients were 0.954 for manual and automatic segmentation, 0.956 for Diagnocat and automatic 
segmentation, 0.972 for Diagnocat and manual segmentation. Although there was no statistically 
significant difference in total airway volume measurements between the manual measurements, 
automatic measurements, and DC measurements in non‑OSA and OSA patients, we evaluated the 
output images to understand why the mean value for the total airway was higher in DC measurement. 
It was seen that the DC algorithm also measures the epiglottis volume and the posterior nasal 
aperture volume due to the low soft‑tissue contrast in CBCT images and that leads to higher values in 
airway volume measurement.

Obstructive sleep apnea (OSA) is identified by periods of partial or complete upper airway disruption during 
sleep. OSA patients can breathe normally when they are awake but the disruptions occur since those patients 
cannot preserve the pharyngeal airway space when they  sleep1,2. OSA patients who do not receive any treatment 
may have hypertension, heart failure, stroke, and premature  death3. OSA patients are unavailable to preserve the 
pharyngeal airway space when they sleep, however, they can breathe normally when they are  awake2,3.

Inferior displacement of the hyoid bone, mandibular insufficiency, and increased soft palate and tongue vol-
ume are reported in the etiology of OSA in the  literature4. Frequent reasons for collapsing of the upper airway 
are described as; the competence of the airway by reflexes, pharyngeal inspiratory muscle activity, and anatomic 
contraction of the upper  airway5,6. Since the diagnosis of OSA requires a multidisciplinary approach, a dentist, 
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a neurologist, a cardiologist, an otorhinolaryngologist, and a pulmonary medicine specialist should be involved 
in the diagnosis and the treatment  process7.

CBCT is a 3-Dimensional radiographic diagnostic unit that can scan a region of interest with superior hard-
tissue contrast and this provides a thorough analysis of the bony structures which are crucial in OSA  diagnosis8,9. 
Thanks to its lower dose, lower cost, and higher image quality, CBCT is preferred over other advanced imaging 
methods such as Multi-Detector CT in dentistry, especially for the evaluation of the craniofacial  structures10.

Several articles are present in the literature with specific deep learning models for automatic segmentation of 
the maxillofacial structures, mandibular canal, cephalometric landmarks, cervical vertebras, and maxillofacial 
defects such as cleft palate. The majority of these models had U-Net architecture with a high (90%-95%) Dice 
Similarity  Coefficient11–26.

Anatomical structures such as the craniofacial skeleton and soft tissues which surround the muscles and 
pharynx have an important role in the configuration of the upper airway. Pharynx morphology is known to be 
one of the major factors that may cause OSA. Air-flow obstruction in children is also thought to occur due to 
skeletal deficiency since the contraction in the anterior–posterior aspect of the airway ensues from the position-
ing of the mandible and  maxilla27–29.

Numerous software is available to analyze the CBCT data with semi-automatic or manual volumetric meas-
urement  process30, however, most of that software is laborious, time-consuming and a completely automatic 
airway detection algorithm is  limited12. Thus, this study aimed to generate and also validate an automatic detec-
tion algorithm for pharyngeal airway on OSA patients’ CBCT data using an artificial intelligence software of 
Diagnocat (DC).

Materials and methods
The research protocol was performed following the principles of the Declaration of Helsinki and was approved 
by the non-interventional Institutional Review Board (IRB) of Near East University Health Sciences Ethics 
Committee (YDU/2022/87-1251). Written informed consent was obtained from all patients before their radio-
graphic examinations and anonymization was performed in compliance with the Information Commissioner’s 
Anonymization: managing data protection risk code of practice (https:// ico. org. uk/ media/ 1061/ anony misat ion- 
code. pdf). The study data was created only from the deidentified anonymized data.

Anonymized DICOM files of the CBCT images which were taken by 3 different CBCT units were used in this 
study. The CBCT units were Pax-i3D Smart PHT-30LFO0 (Vatech, South Korea), Carestream Health CS 8100 
3D (Kodak, USA), and Orthophos XG 3D (Sirona, Germany). All mentioned CBCT units have isotropic voxels 
which differ between 0.1 and 0.2  mm3.

This study aimed to generate an AI algorithm for segmentation of the craniomaxillofacial anatomy and to 
test this algorithm for automatic detection algorithm for pharyngeal airway both for OSA and control patients. 
Thus, this study has two notable parts dataset preparation for the evaluation and to test the practicability of the 
system to enhance the diagnostic capabilities.

CBCT anatomy localization generated with an AI model. Approach. To handle large volume sizes 
on a reasonably fine scale, we approach this task with a coarse-to-fine approach. In general, a coarse-to-fine 
framework performs an inference at successively finer scales. The approach uses the results from the previous 
coarser stages to guide and speed up inference at the finer stages. A coarse-to-fine framework allows to achieve 
high-quality segmentation masks while being efficient during inference.

In this model, we use a two-stage coarse-to-fine approach. Both stages are defined as semantic segmentation 
tasks but at different voxel scales. At the first (coarse) stage, the whole volume is analyzed at once in a single 
forward pass through the neural network. During this stage, the model operates in coarse resolution of scale 
1 mm. The goal of this stage is to perform a coarse segmentation of anatomical structures in a computationally 
efficient manner.

Next, we pass the results of the first stage as an input to the second (fine) stage. The fine stage allows us to 
achieve accurate segmentation masks by refining the outputs of the coarse stage. In this work, the fine stage is 
implemented as a patch-based semantic segmentation. The main idea of a patch-based approach is to train a 
neural network on small parts of the original images (and not the whole images) which leads to substantially 
reduced required computational resources. During inference, we extract the patches from the original image 
with an overlap and pass them through the model one by one. The results are then aggregated to form the final 
segmentation masks. At this stage, the training and inference are performed on a fine voxel scale of 0.25 mm.

Our approach to training the system consists of 4 main steps which are described in detail in the following 
sections: preprocessing of incoming volumetric image; coarse model training; coarse hint generation; patch-based 
training in fine resolution with a hint from the coarse model.

Data. We use a simple min–max normalization within a fixed window. We clip the intensities to be inside the 
[− 1000, 2000] interval, then subtract a minimum intensity value and divide by a maximum one. Different meth-
ods have also been examined. According to our experiments, the training procedure is not sensitive to the choice 
of preprocessing and all methods lead to approximately the same results. The data is split into training, devel-
opment, and test sets. We use 90% of the data for training, 5% for the development set, and 5% for the test set.

For the Coarse step, we rescale the image to have a 1.0 mm isotropic voxel resolution using linear interpola-
tion. To provide the Coarse model with more information, we obtain soft coarse segmentation ground truth labels 
by the following procedure. First, we encode the original semantic segmentation mask of shape DxHxW with a 
one-hot encoding scheme which results in a tensor of shape tensor CxDxHxW, where C represents the number 
of classes and D, H, and W are the spatial dimensions of the original volume. Next, we use linear interpolation 
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to rescale this tensor to have a 1.0 mm resolution. The resulting tensor consists of the probability distributions 
over classes for each spatial position and is referred to as soft targets.

For the Fine step, the target voxel spacing of the model is 0.25 × 0.25 × 0.25 mm which is also achieved with 
linear interpolation of the image. For this step, we obtain the ground truth labels via a simple nearest-neighbor 
interpolation of original semantic segmentation masks. During training, we randomly sample patches of size 
144 × 144 × 144 voxels.

Model. We formulate both Coarse and Fine steps as a semantic segmentation task, where the background and 
each anatomical element are interpreted as a separate class. For both Coarse and fine steps, we use 3D U-Net31 
which is a standard, widely known, and well-studied fully convolutional neural network  architecture14,32–37. Our 
implementation follows the architecture which is described in detail in the original  paper31.

Since the Fine model is trained using a patch-based approach, it’s crucial to provide the model with global 
information. We achieve it by utilizing a coarse hint. A coarse hint is the Coarse model output which is inter-
polated to the Fine-scale and passed to the Fine model as additional input channels. To prevent possible data 
leakage, we train the Coarse model and prepare coarse hints via three-fold cross-validation. Therefore, the only 
difference between the Coarse and Fine model architectures is the number of input channels: for the Coarse step 
it equals 1, and for the Fine step, it equals the number of classes plus 1.

The class imbalance is known to be a challenging problem in medical semantic segmentation tasks. We 
approach this issue by using a sum of a standard cross-entropy loss and soft multiclass Jaccard loss. To prevent 
overfitting and enhance the performance of the model we also utilize a large variety of data augmentations. For 
the Coarse step the following augmentations are used during training: random blur, random noise, random 
rotations, random scaling, random crops, random elastic deformation, and random  anisotropy38. For the Fine 
step, we used the same set of augmentations except for random elastic deformation and random anisotropy since 
these transformations are computationally expensive when applied to reasonably large images.

Training. To sum it up, our training procedure consists of the following steps. First, we train the Coarse model 
on the coarse training dataset with soft targets. This checkpoint is used during the testing. We also perform 
three-fold cross-validation and use the obtained checkpoints later to generate coarse hints for the Fine step. For 
both cross-validation and full data training, we follow the same procedure. We train for a total of 100 epochs 
using an Adam optimizer with a one-cycle scheduling policy with a maximum learning rate equal to 1e−3, mini-
mum learning rate equal to 1e−6, warmup fraction of 0.05, and a batch size of 1.

Next, we prepare coarse hints for the Fine model. We utilize the checkpoints received via cross-validation 
and make out-of-folds predictions, then linearly interpolate the output probability maps to the Fine model voxel 
spacing and concatenate them with the original intensity value channel. Finally, we train the Fine model for a 
total of 40 epochs, using the Adam optimizer and the same learning rate scheduling policy, as in the Coarse step.

To train the Fine model we use a patch-based approach. At the beginning of the training epoch, we iterate 
over the images, randomly sample 20 patches per volume and store them in a queue of size 180. Once the queue 
has reached a specified maximum length we start to retrieve the random patches from it and pass them to the 
network while simultaneously preparing new patches and adding them to the queue. For evaluation, we use the 
checkpoint with the lowest recorded validation loss for both Coarse and Fine models.

Implementation. Our algorithm was based on the Python implementation of U-net. All training and experi-
ments were done using NVIDIA GeForce RTX A100 GPU. Adam optimizer was used for the network training.

Inference. At test time the patch-based approach is known to produce the predictions of a worse quality near 
the borders of the output patch. To alleviate this issue, we perform inference in overlapping patches and aggre-
gate the predictions with weights which make the center voxel of an output patch contribute more to the final 
result than its borders. We set the patches’ overlap to 16 (Fig. 1).

Patient test dataset. To estimate the generalizability of our model, a retrospective patient CBCT dataset 
from Dentomaxillofacial Radiology Department at Near East University was used. A power analysis was con-
ducted with a statistical power of 90%, a significance level of 0.05 α, and a probability of type II error of 0.2 β. A 
minimum number of 82 CBCT images for both control and OSA groups were required according to the power 
analysis.

Hence, our study was conducted with randomly selected artifact-free 100 OSA and 100 control CBCT images 
existing in our faculty’s database. All patients provided their informed consent before irradiation, and the con-
sent forms were reviewed and approved by the institutional review board of the faculty. Exclusion criteria were 
evident skeletal asymmetries, cleft palate, cleft lip, current ongoing orthodontic treatment, and any teeth that 
overlie the apical region of the incisors.

The dataset of a previous  study39 of ours is used in this study "CBCT records of 200 patients (100 images of 
OSA patients and 100 images of the control group) were retrospectively collected and analyzed along with the 
polysomnography records and body mass index (BMI) of OSA patients at the Department of Allergy, Sleep and 
Respiratory Diseases. AHI is the number of apnea + hypopnea seen each hour during sleep. Sleep apnea sever-
ity was evaluated in 4 different subtypes minimal, mild, moderate, and severe. Patients with Apnea–Hypopnea 
Index (AHI) value lower than 5 were classified as a minimal group while patients with AHI values between 
5–15, 15–30, and more than 30 were classified as mild, moderate, and severe, respectively. 100 OSA patients had 
symptoms of this disease and evaluation of these patients was accomplished by a standardized program at the 
Department of Allergy, Sleep and Respiratory Diseases, which also consists of anthropometric measurements, 
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dental examination, CBCT, and polysomnography. Polysomnography uses various methods like electroenceph-
alography, electromyogram, electro-oculography, respiratory effort measurement, airflow measurement, and 
 snoring29. Control (non-OSA) patients had none of the clinical findings of the OSA patients such as snoring, 
dyspnea, witnessed apnea, coughing, or daytime sleepiness. So their images were used as a control group. The 
mean age for OSA patients was 53.2 years and for non-OSA patients was 46.4 years. Principles characterized in 
the Declaration of Helsinki were applied during the protocol of study along with modifications and revisions.

CBCT images of the test group were obtained by NewTom 3 G Quantitive Radiology s.r.l., (NewTom, Verona, 
Italy). CBCT records for non-OSA patients had been taken for implant planning, evaluation of impacted teeth, 
and prosthodontic and orthodontic purposes. Patients with osteoporosis, skeletal asymmetries, and medication-
related bony alterations were excluded from the study.

Ground truth segmentation process. All CBCT data were exported as DICOM files and then 
anonymized. The axial, coronal, and sagittal slices were oriented to ensure a proper evaluation. The axial slices 

Figure 1.  Inference algorithm of our study.
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were aligned with maintaining the palate line and the ground perpendicular to each other. Coronal slices were 
oriented by aligning the both orbits and midline of the head parallel to the ground and the sagittal slices were 
aligned with the linear orientation of the ANS and PNS.

All CBCT images had been segmented before our study to be used for diagnosis, pharyngeal airway evalu-
ations, and surgical planning using InVivo 5.1.2 (Anatomage Inc., San Jose, CA, USA). DICOM files of the axial 
CBCT images were exported with a 512 × 512 matrix and were imported to InVivo 5.1.2. In this software, the 
evaluation of the pharyngeal airway can be measured by both automatic thresholding and manual tracing with 
semiautomatic thresholding.

The pharyngeal airway is originated from the nasopharynx and the oropharynx. To assess the borders of the 
oropharyngeal airway volume, the ANS-PNS plane which extends to the wall of the pharynx was determined 
as the superior border and the most inferior-anterior point of the 2nd cervical vertebrae which is parallel to the 
superior border was determined as the lower border of the oropharyngeal airway. Since the superior border of 
the oropharyngeal airway is also the lower border of the nasopharyngeal airway, a line perpendicular from the 
PNS to the palatal plane is drawn to form the anterior border of the nasopharyngeal airway. The Sum of the 
nasopharyngeal airway and oropharyngeal airway is calculated with both manual tracing with semi-automatic 
thresholding and automatic thresholding in InVivo 5.1.2. viewer. S.A. and A.K. observed the CBCT images twice 
with a week interval to avoid any intra-observer disagreement for ground truth measurement.

For automatic thresholding, the software itself detects the pharyngeal airway volume, area narrow point area, 
and measures the narrow point automatically.

The manual tracing with semiautomatic thresholding was done by cropping the airway using the "edit masks" 
feature and the connection with the outer air was cropped in each slice with the segmentation tools. The "region 
growing" tool was used to split the segmentation produced by thresholding into several objects and to remove 
floating pixels and the pharyngeal airway volume and area were calculated using the “calculate 3D” tool feature 
of the software.

3D U‑net architecture framework (AI model). Our approach is automatic segmentation focusing on 
the regions of interest: the external surface of the bones, teeth, and airways. This process results in 5 segmenta-
tion masks the upper skull, the mandible, maxillary teeth, mandibular teeth, and the airways. We performed a 
series of trials to choose the best training configuration. Following, the generated STL files were downloaded 
and imported to 3rd party software for volumetric pharyngeal airway measurements (3-Matic Version 15, Mate-
rialise).

Statistical analysis. Statistical analysis was performed using SPSS 22.0 software (SPSS Inc., Chicago, IL, 
USA). Due to the non-normal distribution of the data, the Mann–Whitney U test was used for comparisons 
between paired groups, and the Kruskall Wallis H test was used for comparisons between three or more groups. 
The significance level was set as 0.05 and it was stated that there was a significant difference in the case of p < 0.05, 
and no significant difference in the case of p > 0.05. Interclass correlation coefficient (ICC) analysis with a two-
way mixed model was performed. It was assumed that ICC values greater than 0.75 would guarantee good reli-
ability and ICC values greater than 0.90 would guarantee excellent reliability between observers.

Results
There was no statistically significant difference in airway volume (cc) measurement difference between the 
manual measurement and DC in any of the OSA severity subtypes (p > 0.05). p values were 0.052, 0.942, 0.642, 
and 0.207 for the minimal, mild, moderate, and severe OSA groups, respectively (Table 1). Statistical analysis 

Table 1.  Comparison of the airway volume measurements of Diagnocat and manual technique in patients 
with different OSA severities.

OSA severity The technique (subgroup) Mean Median Min Max SD

Mann Whitney U

Mean rank U p

Airway volume (cc)

Minimal OSA

Manual 21.18 21.03 11.81 34.87 6.49 31.67

252 0.052Diagnocat 17.73 16.20 7.60 29.60 6.16 23.33

Total 19.45 19.66 7.60 34.87 6.51

Mild OSA

Manual 18.32 17.72 7.64 28.46 6.23 19.63

178 0.942Diagnocat 18.11 17.60 7.70 29.50 6.18 19.37

Total 18.22 17.66 7.64 29.50 6.12

Moderate OSA

Manual 22.42 22.55 9.69 35.53 7.45 22.38

202 0.642Diagnocat 21.42 21.20 6.60 35.30 6.96 20.62

Total 21.92 21.92 6.60 35.53 7.14

Severe OSA

Manual 19.21 17.85 7.34 34.97 7.54 36.48

446 0.207Diagnocat 16.79 15.20 5.60 29.60 6.73 30.52

Total 18.00 15.72 5.60 34.97 7.20
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showed excellent ICC (ICC > 0.90) for all inter-evaluator assessments. ICC values were 0.954 for manual and 
automatic segmentation, 0.956 for DC and automatic segmentation, 0.972 for DC and manual segmentation.

Measurements for non‑OSA patients. There was no statistically significant difference in narrowest 
points (mm), airway area  (mm2), and total airway volume (cc) measurements between the manual measure-
ments and DC measurements in non-OSA patients. p values were 0.346, 0.111 and 0.667, respectively. The mean 
value for the narrowest distance was found 5.96 mm with the manual measurement and 5.70 mm with DC. The 
mean value for the airway area was found 883.41  mm2 with the manual measurement and 930.02  mm2 with DC. 
The mean value for the total airway volume was found 17.95 cc with the manual measurement, 17.96 cc with the 
automatic technique, and 18.50 cc with DC (Table 2).

Measurements for OSA patients. There was, also, no statistically significant difference in narrowest 
points (mm), airway area  (mm2), and total airway volume (cc) measurements between the manual measure-
ments and DC measurements in OSA patients. p values were 0.931, 0.305 and 0.139, respectively. The mean 
value for the narrowest distance was found 6.31 mm with the manual measurement and 6.10 mm with DC. The 
mean value for the airway area was found 1057.59  mm2 with the manual measurement and 1013.90  mm2 with 
DC. The mean value for the total airway volume was found 19.63 cc with the manual measurement, 18.27 cc with 
the automatic measurement, and 20.25 cc with DC (Table 3).

Table 2.  Comparison of airway volume, airway area, and narrowest line of the airway measurements of 
Diagnocat, manual technique, and automatic technique in patients without OSA.

Non-OSA patients

n Mean Median Minimum Maximum SD Mean Rank U p Test

Narrowest points (mm)

Manual 100 5.96 5.58 1.89 13.30 2.07 104.36

4614.5 0.346 Mann–Whitney UDiagnocat 100 5.70 5.41 1.69 14.56 2.10 96.65

Total 200 5.83 5.46 1.69 14.56 2.08

Airway area (mm2)

Manual 100 883.41 856.73 437.65 1576.88 212.92 93.97

4347 0.111 Mann–Whitney UDiagnocat 100 930.02 909.00 597.33 1694.00 201.18 107.03

Total 200 906.71 895.67 437.65 1694.00 207.93

Volume (cc)

Manual 100 17.95 17.70 4.90 34.10 5.45 146.12

0.811 0.667 Kruskall-Wallis H
Diagnocat 100 18.50 18.40 5.50 35.20 5.63 156.71

Automatic 100 17.96 18.20 4.80 32.80 5.41 148.68

Total 300 18.14 18.00 4.80 35.20 5.48

Table 3.  Comparison of airway volume, airway area, and narrowest line of the airway measurements of 
Diagnocat, manual technique, and automatic technique in patients with OSA.

OSA patients

n Mean Median Minimum Maximum SD Mean Rank U p Test

Narrowest points (mm)

Manual 100 6.31 5.86 1.48 23.08 3.42 100.14

4964 0.931 Mann–Whitney UDiagnocat 100 6.10 5.76 1.01 19.90 2.50 100.86

Total 200 6.20 5.78 1.01 23.08 2.99

Airway area (mm2)

Manual 100 1057.59 1033.07 598.85 1731.64 244.38 104.70

4580 0.305 Mann–Whitney UDiagnocat 100 1013.90 989.81 466.52 1670.22 256.57 96.30

Total 200 1035.74 1001.13 466.52 1731.64 250.88

Volume (cc)

Manual 100 19.63 19.05 7.40 35.30 6.90 153.05

3.9 0.139 Kruskall-Wallis H
Diagnocat 100 20.25 19.83 7.34 35.53 7.08 161.21

Automatic 100 18.27 17.50 5.60 35.30 6.65 137.24

Total 300 19.38 18.55 5.60 35.53 6.91
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Discussion
According to our review of the literature, this study is the first study that automatically measured the pharyngeal 
airway in OSA patients. However, manual measurements of the pharyngeal airway in OSA patients and auto-
matic measurements of the pharyngeal airway in non-OSA patients are present in the literature. Since the studies 
demonstrated that the pharyngeal airway volume is significantly lower and the morphology is dissimilar in oral 
breathers than in nasal breathers, deep learning algorithms which concentrate on airway volume measurements 
should be trained and tested with various data. In orthodontics, airway volume and the underlying factors play a 
crucial role before orthognathic surgery planning, analyzing the airway volume is indispensable to understanding 
the oral and pharyngeal adjustments to respiratory  conditions12,40–42.

Although there was no statistically significant difference in total airway volume measurements between the 
manual measurements, automatic measurements, and DC measurements in non-OSA and OSA patients, we 
evaluated the output images to understand why the mean value for the total airway was higher in DC measure-
ment. It was seen that the DC algorithm also measures the epiglottis volume and the posterior nasal aperture 
volume due to the low soft-tissue contrast in CBCT images and that leads to higher values in airway volume 
measurement.

The mean total airway volume difference between automatic measurement and manual measurement in non-
OSA patients was just 0.01 cc, however, it was 1.36 cc in OSA patients. Output images were again compared and 
it was seen that there were voxel loss sites at the posterior nasal aperture border in the automatic measurement 
group.

Various authors measured the airway in adults and according to their findings, the difference between 
their manual measurements has occurred due to the “human factor” and different software that is used for the 
 measurements12,43,44. Following an extensive literature research, we have given the ICC values of 5 studies that 
compared the segmentation of AI and ground truth in Table 4. ICC values were reported as 0.899 by Zhang 
et al.45, 0.977 by Leonardi et al.46, 0.985 by Sin et al.12, 0.986 by Park et al.47. Shujaat et al.48 provided precision, 
recall, accuracy, dice, intersection over union values in their study as 0.97 ± 0.01, 0.96 ± 0.03 1.00 ± 0.00 0.97 ± 0.02 
and 0.93 ± 0.03, respectively. In our study, the ICC value between the ground truth and DC was 0.972 which 
indicates that an excellent reliability was present. As the previous studies which aimed to segment and measure 
the pharyngeal airway volume, we also achieved a high ICC value which evidently shows that well-trained deep 
learning algorithms can successfully segment the pharyngeal airway.

In our study, we had an imaging modality-related limitation, which was caused by the limited soft-tissue 
contrast of the CBCT units. Arranging a precise Hounsfield Unit (HU) threshold in the segmentation process 
is not possible with CBCT units since HUs are not applicable for  them49. This limitation might affect the airway 
volume measurements as they have affected our segmentation process. The inconsistent head position of the 
patients, tongue, and breathing positions also cause errors in volumetric measurement, thus, scannings with 
controlling these possible limitations are  required47.

AI is widely known for its functions in image recognition, computer-aided diagnosis, and decision-making 
algorithms. Given that 90% of the clinical data is medical images, AI can collaborate with the Internet of Things 
(IoT) to make health care more advanced with the remote diagnosis that can accelerate the diagnosis and treat-
ment  phases50–52. Activating this potential collaboration for OSA patients would significantly reduce the effort 
and time required for the initial diagnosis and follow-up of these patients.

Table 4.  Comparative table of the studies using deep learning algorithms for pharyngeal airway volume 
segmentation and measurement.

Authors Year Title Modality Softwares
Interclass correlation 
coefficient Intersection over union (IoU)

Zhang et al. 2019
A new segmentation algorithm 
for measuring CBCT images of 
nasal airway: a pilot study

CBCT Airway Segmentor, MIMICS 
19.0, InVivo 5 0.899

Leonardi et al. 2020
Fully automatic segmentation of 
sinonasal cavity and pharyngeal 
airway based on convolutional 
neural networks

CBCT Own model 0.977

Sin et al. 2021
A deep learning algorithm pro-
posal to automatic pharyngeal 
airway detection and segmenta-
tion on CBCT images

CBCT Own model 0.985

Park et al. 2021
Deep learning based airway 
segmentation using key point 
prediction

CBCT Own model 0.986

Shujaat et al. 2021
Automatic segmentation of the 
pharyngeal airway space with 
convolutional neural network

CBCT, MSCT Own model – 0.93

This study 2022

AI-based automatic segmenta-
tion of craniomaxillofacial 
anatomy from CBCT scans for 
automatic detection of pharyn-
geal airway evaluations in OSA 
patients

CBCT Diagnocat, InVivo 5

Manual-Automatic 0.954

DC-Automatic 0.956

DC-Manual 0.972
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