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Noisy propagation of Gaussian 
states in optical media with finite 
bandwidth
Berihu Teklu1, Matteo Bina2 & Matteo G. A. Paris2,3*

We address propagation and entanglement of Gaussian states in optical media characterised 
by nontrivial spectral densities. In particular, we consider environments with a finite bandwidth 
J(ω) = J

0

[

θ(ω −�)− θ(ω −�− δ)
]

 , and show that in the low temperature regime T ≪ �−1 : 
(i) secular terms in the master equation may be neglected; (ii) attenuation (damping) is strongly 
suppressed; (iii) the overall diffusion process may be described as a Gaussian noise channel with 
variance depending only on the bandwidth. We find several regimes where propagation is not much 
detrimental and entanglement may be protected form decoherence.

Engineering and control of quantum systems in the presence of noise is a crucial step in the development of 
quantum technology1–10. In turn, much attention has been devoted to describe the dynamics of open quantum 
systems for different kind of environments, i.e. different sources of damping and decoherence11–14. It is often 
challenging to obtain the exact dynamics of an open quantum system and different kinds of approaches have 
been developed to derive an approximate description at different levels of accuracy. Besides assuming a weak 
coupling, the approximations usually employed to obtain analytic master (or Langevin) equations15 for the 
system under investigation include neglecting memory effects (Markovian approximation), using time coarse 
graining (not accounting for potential contributions coming from the short-time dynamics), and assuming 
some simplified form for the spectral density of the environment, e.g. a Lorentzian one or an Ohmic one with 
a large frequency cut-off.

On the other hand, there are several systems where nontrivial spectral densities appear, e.g. polarons in metals 
and semi-conductors, photonic crystals and micro-mechanical oscillators, and a question arises on the effect 
of the interaction with this kind of media on the quantum properties of a given system16–19. Moreover, memory 
effects, backflow of information and short-time dynamics can play a significant role in these scenarios and a 
non-Markovian approach should be employed20–22. Structured environments have been thoroughly studied 
and characterized from the point of view of quantum probing, both in the continuous- and discrete-variables 
regimes23–25, in the context of bath engineering for controlled systems. In particular, we focus attention on com-
posite systems where the propagation of frequencies in a limited range is forbidden, owing to the spectral proper-
ties of their constituents. A relevant example is that of photonics crystals made of materials with very different 
optical properties (e.g. different refraction indices), overall resulting in the creation of photonic band gaps26–30.

In this paper, motivated by some recent experimental implementations in photonic crystal wave guides31–33, 
we address the propagation of Gaussian states of light through a medium characterized by a finite bandwidth δ , 
i.e. the spectral density J(ω) of the structured environment is non-vanishing only in a given interval [�,�+ δ] . 
Though our analysis is based on a simple model, it shows that these spectral features result in a peculiar short-
time dynamics of the system, where the secular terms may be neglected, pure attenuation is strongly suppressed, 
and the overall dynamics may be described as a Gaussian noise channel with variance depending only on the 
bandwidth parameters δ and J0 and not on the natural frequency ω0 of the mode, nor on the location � of the 
bandwidth in the spectrum. We then use our results to study the propagation of Gaussian entangled states in 
media with finite bandwidth.

The paper is structured as follows: in section “The interaction model”, we describe our model and present 
the non-Markovian master equation. Section “Dynamical evolution of Gaussian states” illustrates the solution 
of the master equation with an initial Gaussian state. In addition, we review how to quantify entanglement 
for two-mode continuous-variable (CV) Gaussian state. In section “Validity of the secular approximation and 
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entanglement dynamics” we investigate the validity of the secular approximation, and discuss the dynamics of 
entanglement. Section “Conclusions” closes the paper with some concluding remarks.

The interaction model
Let us consider a single-mode field at natural frequency ω0 , the system, interacting with an environment that we 
assume at thermal equilibrium. The interaction Hamiltonian in natural units may be written as

where α (dimensionless) is the overall coupling strength between the system and the environment, X and P are 
the canonical operators of the system mode, Xj and Pj are operators of the environmental modes. We remind that 
in terms of the field mode, the quadrature operators are given by X(ϕ) = (a e−iϕ + a†eiϕ)/

√
2 , with X ≡ X(0) 

and P ≡ X(π/2) . Finally, the quantities ωj denote the frequencies of the environmental modes, and γj are the 
(dimensional) couplings between the system and the j-th environmental mode. At t = 0 we assume a factorized 
state ̺ 0 ⊗ E , where ̺ 0 is the initial state of the system and E an equilibrium (thermal) state of the environment, 
i.e. E = e−βHB/Z , where β = T−1 is the inverse temperature, HB the free energy of the environment and Z the 
partition function. This is a Gaussian state too. We use natural units and thus besides � = 1 we also have the 
Boltzmann constant kB = 1.

Upon evolving the overall system and tracing out the environmental degrees of freedom we obtain a time-
local master equation, which describes the noisy evolution of the system mode11,34,35

where H0 is the free Hamiltonian (first term in Eq. (1)), and [·, ·] and {·, ·} denote commutators and anticommu-
tators, respectively. The first term in Eq. (2) is due to the unitary part of the time evolution, whereas the second 
one induces a time-dependent energy-shift. The third term is a damping term and the last two are responsible 
for diffusion. The different time-dependent coefficients link the non-Markovian features of the dynamics with 
the spectral structure of the environment and its thermal excitations. Up to second order in α we have

where J(ω) = α2
∑

j
γj
2 δ(ω − ωj) is the spectral density of the environment. The average number of ther-

mal excitations for the mode at frequency ω is given by N(ω) =
(

eβω − 1
)−1 = 1

2 (coth
βω
2 − 1) , i.e. 

coth
βω
2

= 2N(ω)+ 1.

A general solution of the master equation (2) can be found through the quantum characteristic approach36 
in terms of the canonical variables z = (x, p) , assuming a weak coupling regime which corresponds to fulfill 
the condition α ≪ 1:

where

Since the Hamiltonian (1) is at most bilinear in the system quadrature operators, it is easy to prove that it induces 
a Gaussian evolution map, i.e. a map which preserves the Gaussian character of any initial Gaussian state37. For 
this reason, the resulting dynamics is usually referred to as a Gaussian channel.

Dynamical evolution of Gaussian states
In this section we review the solution of the master equation for Gaussian states36. In particular, we focus on 
two-mode Gaussian states (each one interacting with its own environment) in order to analyze the dynamics 
of entanglement. On the other hand, the conclusions about the features of the channel are general, and apply to 
signals with any number of modes.

Let us thus consider a single two-mode Gaussian state, with characteristic function at time t = 0 
χ0(z) = exp{− 1

2z
Tσ0 z − i zT X̄in} . The initial covariance matrix σ0 is a 4× 4 matrix

(1)H =
ω0

2

(

P2 + X2
)

+
∑

n

ωn

2

(

P2n + X2
n

)

− α X ⊗
∑

j

γjXj ,

(2)
˙̺ (t) = −i

[

H0, ̺(t)
]

+ i r(t)
[

X2, ̺(t)
]

− i γ (t)
[

X, {P, ̺(t)}
]

−�(t)
[

X, [X, ̺(t)]
]

+�(t)
[

X, [P, ̺(t)]
]

,

(3)γ (τ) =
∫ τ

0
ds sin(ω0 s)

∫ ∞

0
dω J(ω) sin(ωs), �(τ) =

∫ τ

0
ds cos(ω0 s)

∫ ∞

0
dω coth

βω

2
J(ω) cos(ωs),

(4)r(τ ) =
∫ τ

0
ds cos(ω0 s)

∫ ∞

0
dω J(ω) sin(ωs), �(τ) =

∫ τ

0
ds sin(ω0 s)

∫ ∞

0
dω coth

βω

2
J(ω) cos(ωs),

(5)χ [z ](t) = e−z
TW(t)zχ

[

e−
Ŵ(t)
2 R−1(t)z

]

(0) ,

(6)Ŵ(t) = 2

∫ t

0
γ (τ)dτ

(7)R(t) ≃
(

cos(ω0t) sin(ω0t)
− sin(ω0t) cos(ω0t)

)

M(τ ) =
(

�(τ) −�(τ)
2

−�(τ)
2 0

)

(8)W(t) = e−Ŵ(t)
[

R−1(t)
]T
W(t)R−1(t) W(t) =

∫ t

0
eŴ(τ)RT (τ )M(τ )R(τ )dτ .
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where A0 = a I , B0 = b I , C0 = Diag(c1, c2) , with a,b > 0 and c1 , c2 real numbers, and I the 2× 2 identity matrix. 
We remind that the system-environment interaction, and thus the time evolution, maintains the Gaussian 
character34,38–40. The evolved state is a two-mode Gaussian state with mean and covariance matrix described by

Upon substituting the expression of the coefficients obtained in the weak-coupling approximation, into Eqs. (10) 
and (11), the covariance matrix at time t may be written as

where

and

In order to obtain the compact forms (13) and (14), we have introduced the following expression

and the secular coefficients 

 In situations where the secular terms may be neglected (as we will see, this is our case) the diagonal blocks of 
the covariance matrix evolve as

Let us now introduce the main ingredient of our analysis, i.e. a specification of the properties of the bosonic 
reservoirs through the form of the spectral density. In order to describe the presence of a finite bandwidth, i.e. 
the fact that the propagation of certain frequencies, or a certain range of frequencies, is forbidden, we consider 
a spectral density of the form

The parameter δ represents the bandwidth of the distribution, � specifies its location within the spectrum and 
J0 is the amplitude of the spectral density. In the low temperature regime, i.e. T ≪ �−1 , we may safely assume 
N(ω) ≈ 0 and coth ω

2T ≈ 1 in Eq. (3), and obtain an analytic expression for the relevant coefficients. In particular, 
we get a simplified form of the master equation coefficients

Using these expressions, it is straightforward to obtain the time-integrated functions. We have 
Ŵ(t) = 1

6 J0 δ ω0 � t4 , and �Ŵ(t) = 1
2 J0δ t

2 . In the following, we express all the quantities in units of ω0 , i.e. we 
make the replacements t → τ = ω0 t , J0 → J0/ω0 , � → �/ω0 , and δ → δ/ω0 . In this way, we may write the 
time-integrated functions in terms of the dimensionless time τ and the dimensionless parameters δ , J0 , and �

Notice that the damping term depends on all the parameters, whereas the diffusion one does not depend on � , 
i.e. on the location of the bandwidth. Since the memory effects due to the non-Markovian nature of the environ-
ment are taking place over short times, the above results imply that attenuation (damping) is strongly suppressed 

(9)σ0 =
(

A0 C0

C
T
0

B0

)

,

(10)X̄t = e−Ŵ(t)/2
[

R(t)⊕ R(t)
]

X̄in

(11)σt = e−Ŵ(t)
[

R(t)⊕ R(t)
]

σ0
[

R(t)⊕ R(t)
]T + 2(W̄(t)⊕ W̄(t)).

(12)σ t =
(

At Ct

Ct
T

At

)

,

(13)At = A0e
−Ŵ(t) +

(

�Ŵ(t)+
[

�co(t)−�si(t)
]

−
[

�si(t)−�co(t)
]

−
[

�si(t)−�co(t)
]

�Ŵ(t)−
[

�co(t)−�si(t)
]

)

(14)Ct =
(

c e−Ŵ(t) cos(2ω0t) c e−Ŵ(t) sin(2ω0t)

c e−Ŵ(t) sin(2ω0t) −c e−Ŵ(t) cos(2ω0t)

)

.

(15)�Ŵ(t) = e−Ŵ(t)

∫ t

0
eŴ(s)�(s)ds

(16a)�co(t) = e−Ŵ(t)

∫ t

0
eŴ(s)�(s) cos[2ω0(t − s)]ds �si(t) = e−Ŵ(t)

∫ t

0
eŴ(s)�(s) sin[2ω0(t − s)]ds

(16b)

�co(t) = e−Ŵ(t)

∫ t

0
eŴ(s)�(s) cos[2ω0(t − s)]ds �si(t) = e−Ŵ(t)

∫ t

0
eŴ(s)�(s) sin[2ω0(t − s)]ds.

(17)At = A0 e
−Ŵ(t) +�Ŵ(t) I.

J(ω) = J0[θ(ω −�)− θ(ω −�− δ)].

(18)�(t) = J0 δ t, γ (t) =
1

3
J0 δ ω0 � t3.

(19)Ŵ(τ) =
1

6
J0 δ � τ 4, �Ŵ(τ) =

1

2
J0 δ τ

2.
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in the propagation through media with a finite bandwidth. Moreover, if the secular terms may be neglected, the 
overall diffusion process is governed by Eq. (17) and by the expression of �Ŵ(τ) . In other words, in this case the 
dynamics corresponds to a Gaussian channel where gain and loss compensate each other and the resulting effect 
is that of a diffusion38. This situation is usually referred to as a Gaussian noise channel. In our case, the variance 
of the Gaussian noise is depending only on the bandwidth parameters δ and J0 , and not on the location �.

Quantification of entanglement.  The entanglement of a two-mode CV system may be quantified by dif-
ferent entanglement monotones, including entanglement negativity41 and entanglement of formation42–44. Both 
may be computed starting from the covariance matrix of the system. Here, for analytic convenience, we adopt 
the negativity EN as an entanglement quantifier,

where κ is the minimum symplectic eigenvalue of the partially transposed Gaussian state under investigation. 
In terms of the the covariance matrix σ t in Eq. (12), and exploiting the fact that we are dealing with symmetric 
states we may write κ as

 The quantities Ik are the symplectic invariants of the covariance matrix, i.e. I1 = det[At] , I3 = det[Ct] and 
I4 = det[σ t ].

Validity of the secular approximation and entanglement dynamics
Protecting entanglement during evolution and avoiding entangled sudden death9,45–53 is a major task in different 
areas of quantum information science. In this framework, it has been shown54 that some beneficial effects may be 
obtained by engineering structured environment such as a photonic bandgap materials55,56, and this motivates 
us to analyze in some details the dependence of the dynamics on the parameters of spectral density, and their 
interplay with the natural frequency of the involved modes.

The evolution induced by the master equation Eq. (2) corresponds to a Gaussian map, i.e., an initial Gaussian 
state maintains its character. It is thus possible to obtain the expression of the covariance matrix at time and then 
evaluate entanglement at any time for the two modes initially excited in any entangled Gaussian state57. To be 
specific, we address situations where the system of two modes is initially prepared in a twin-beam (TWB) state, 
i.e. a maximally entangled Gaussian state having covariance matrix coefficients a = b = cosh 2r , c = sinh 2r 
with r > 0 (see Eq. (9)) and analyze the state propagation in a reservoir with a finite bandwidth spectral density.

At first, we investigate the validity of the secular approximation, i.e. we check when the secular terms may be 
dropped. To this aim, we calculate the symplectic eigenvalue κ with and without the secular terms for an initial 
TWB state with parameter r and compare results for different values of the involved parameters. Using the secular 
approximation, the expression of κ reads as follows

whereas the full expression including the secular terms is rather cumbersome and it is not reported here. Notice 
also that κ depends on the product J0δ rather than on the two parameters independently. We will thus set J0 = 1 
(which means J0 = ω0 in the original dimensional system) in the following.

The comparison between the secular and non secular solution is illustrated in Fig. 1. More specifically, in the 
left panel of Fig. 1a we show κ as a function of τ for δ = 10−4 , � = J0 = 1 and for different values of the TWB 
parameter r. In the center panel, κ as a function of τ is shown for δ = 10−3 and the same values of the other 

(20)EN = max
(

0,−2 log κ
)

(21)κ =
√
2

√

I1 − I3 −
√

(I1 − I3)2 − I4.

(22)κ =
1

2

(

τ 2 J0δ + e−2r− 1
6 τ

4 J0δ �
)

Figure 1.   Comparison between the results obtained with and without the secular terms. The three panels 
show the symplectic eigenvalue κ as a function of the dimensionless time τ for different values of the other 
(dimensionless) parameters. The solid black curves denote results obtained with the secular approximation (i.e. 
dropping the secular terms) whereas the red dashed curves denote the full expression including the secular 
terms. In the left panel [panel (a)] we show results for δ = 10−4 , � = J0 = 1 and different values of the TWB 
parameter r (from top to bottom r = 0.01, 0.1, 0.3, 0.5 , and 0.9). In panel (b), we show results for δ = 10−3 and 
the same values of the other parameters as in panel (a). In panel (c), we show results for δ = 10−3 , J0 = 1 , � = 3 
and for different values of the TWB parameter [as in panel (a)].
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parameters. Finally, in the right panel of Fig. 1c we show κ as a function of τ for δ = 10−3 , J0 = 1 , � = 3 and 
for different values of the TWB parameter r. In all the plots, the solid black lines denote the results without the 
secular terms and the red dashed lines with the secular terms. We remind that all the involved parameters are 
in units of ω0.

The first observation is that the validity of the secular approximation is a property of the channel, i.e. it is 
almost independent on the TWB parameter. Moreover, we see that for short times the secular approximation is 
always valid, independently on the other parameters. How “short” should be the time depends instead on the 
property of the environment. More precisely, the secular approximation holds for longer times if the bandwidth 
δ and the location � are smaller. We also notice that the region of validity of the secular approximation coincides 
with the region where the dynamics for different values of r differ: when the function κ(τ) no longer depends 
on the initial value of r the secular approximation starts to fail (though the behaviour of the different functions 
may be closer also before that time).

Having established that the secular approximation holds in a rather wide of the parameter range and for a 
rather long period of time, we now proceed by studying the dynamics of entanglement, i.e. we study the behav-
iour of EN [calculated according to Eqs. (20) and (22)] as a function of time for different values of the involved 
parameters. Results are reported in Fig. 2, where we show EN as function of τ for: � = 1 , J0δ = 0.01 and different 
values of r [panel (a)], � = 1 , r = 1 , and different values of the product J0δ [panel (b)], J0δ = 0.01 , r = 1 , and 
different values of � [panel (c)].

The first observation is that the EN is not monotone in time, a clear signature of non-Markovianity53,58. Moreo-
ver, we observe the phenomenon of entanglement sudden death45,46 which occurs at a time determined only by 
the bandwidth [compare results in panels (a) and (c), where δ is fixed, to those in panel (b) where δ is varying].

Overall, the results of Fig. 2 may be summarised as follows. The initial entanglement (determined by r) influ-
ences the dynamics at short times, but then the behaviour becomes universal and determined by the properties 
of the environment. In particular, sudden death occurs at a time determined by the bandwidth. The location of 
the bandwidth influences entanglement to a lesser extent. On the other hand, it may be fruitfully exploited, since 
increasing � leads to an increase of non-Markovianity and, in turn, to a temporary increase of entanglement 
[see panel (c)], at least for large �.

Conclusions
In this work, we have analyzed the entanglement dynamics in optical media characterized by a finite band-
width. Upon assuming weak coupling and low temperature, we have obtained an exact analytic solution for 
the time dependent two-mode covariance matrix describing a Gaussian state of our system in the short time 
non-Markovian limit. Our results show that attenuation (damping) is strongly suppressed whereas the diffusion 
term depends only on the bandwidth.

We have investigated the entanglement dynamics as a function of the bandwidth, the natural frequency and 
the initial amount of entanglement and show that there exist a wide range of situations where decoherence is not 
much detrimental and entanglement may persist for a longer time. We have also proved that secular terms may 
be neglected in the short time non-Markovian limit. Our results are encouraging and show that materials with 
a photonic bandgap may provide a reliable way to transmit entanglement over long distance.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.

Received: 11 May 2022; Accepted: 30 June 2022

Figure 2.   Entanglement negativity EN as a function of the dimensionless time τ for different values of the 
involved (dimensionless) parameters. In panel (a) we show results for � = 1 , J0δ = 0.01 and different values 
of r, from top to bottom r = 10, 2, 1, 0.5, 0.1 , corresponding to gray, magenta, green, blue and red curve, 
respectively. In panel (b) we show results for � = 1 , r = 1 , and different values of the product J0δ , from top to 
bottom J0δ = 10−3, 10−5/2, 10−2, 10−3/2, 10−1 [same colors as in panel (a)]. In panel (c) we show results for 
J0δ = 0.01 , r = 1 , and different values of � , from top to bottom � = 10, 2, 1, 0.5, 0.1 [same colors as in panel 
(a)].
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