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In order to perform their daily activities, a person is required to communicating with others. This can 
be a major obstacle for the deaf population of the world, who communicate using sign languages 
(SL). Pakistani Sign Language (PSL) is used by more than 250,000 deaf Pakistanis. Developing a SL 
recognition system would greatly facilitate these people. This study aimed to collect data of static 
and dynamic PSL alphabets and to develop a vision‑based system for their recognition using Bag‑of‑
Words (BoW) and Support Vector Machine (SVM) techniques. A total of 5120 images for 36 static PSL 
alphabet signs and 353 videos with 45,224 frames for 3 dynamic PSL alphabet signs were collected 
from 10 native signers of PSL. The developed system used the collected data as input, resized the 
data to various scales and converted the RGB images into grayscale. The resized grayscale images 
were segmented using Thresholding technique and features were extracted using Speeded Up Robust 
Feature (SURF). The obtained SURF descriptors were clustered using K‑means clustering. A BoW was 
obtained by computing the Euclidean distance between the SURF descriptors and the clustered data. 
The codebooks were divided into training and testing using fivefold cross validation. The highest 
overall classification accuracy for static PSL signs was 97.80% at 750 × 750 image dimensions and 500 
Bags. For dynamic PSL signs a 96.53% accuracy was obtained at 480 × 270 video resolution and 200 
Bags.

In today’s fast-growing world, communication is key, whether it is communication between different machines, 
between people or both of them combined. A person cannot perform their everyday tasks without communicat-
ing with others. This poses a major problem for the deaf population of the world. According to the World Health 
Organization, around 466 million people worldwide have disabling hearing loss, which are estimated to increase 
to over 900 million people by  20501.

The deaf people rely on sign languages (SL), native to their countries, to communicate with others and this is 
an issue that still remains because not all people are familiar with their local sign languages. Researchers around 
the world have been working to bridge this communication gap between the deaf and the normal population 
and have come up with a solution, i.e., automated sign language recognition systems.

According to the Pakistan Association of the Deaf, there are approximately 250,000 hearing-impaired 
 Pakistanis2, and many of them use Pakistani Sign Language (PSL) as a medium of communication. Developing 
a SL recognition system would be greatly beneficial for these people. In all the studies mentioned in the next 
section, only a few have used PSL in their SL recognition systems which means that vision-based Pakistani SL 
recognition is still a relatively unexplored area of research.

The studies mentioned in the literature review, give us the overall layout of all the techniques used for various 
SL recognition systems. These techniques can be explored for developing PSL recognition systems. Vision-based 
PSL alphabets’ datasets consisting of bare-handed images and videos, i.e., without any sensors, are not publicly 

OPEN

1Department of Biomedical Engineering, Faculty of Engineering, Science, Technology and Management, Ziauddin 
University, Karachi, Pakistan. 2Department of Software Engineering, Faculty of Engineering, Science, Technology 
and Management, Ziauddin University, Karachi, Pakistan. 3Department of Electrical Engineering, Faculty of 
Engineering, Science, Technology and Management, Ziauddin University, Karachi, Pakistan. 4Department 
of Speech Language and Hearing Sciences, Faculty of Health Sciences, Ziauddin University, Karachi, 
Pakistan. *email: shaheer.mirza@zu.edu.pk; sj.khan@zu.edu.pk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-15864-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21325  | https://doi.org/10.1038/s41598-022-15864-6

www.nature.com/scientificreports/

available so researchers have to collect their own dataset in order to perform their studies. The datasets that are 
available either use sensors to detect PSL signs or are of PSL words. The proposed system will use image for 
static (still) signs and videos for dynamic (signs that require movement of the hand) signs of PSL alphabets. 
All previous PSL studies only focused on static PSL alphabets and none have used dynamic PSL alphabets and 
only dynamic PSL words have previously been classified. Feature extraction techniques such as SURF, have not 
yielded good accuracies while being used with SVM and Bag-of-Words (BoW) technique has yet to be applied 
on vision-based PSL recognition systems.

Therefore, a vision-based PSL alphabets recognition system will be developed in this study, that will form 
BoW using SURF features and K-means clustering and classify the obtained codebooks of static and dynamic 
PSL alphabets using Support Vector Machines.

The objectives of this research are as following:

1. To create a dataset containing static and dynamic PSL alphabets, with uniform background and lighting 
conditions.

2. To develop a vision-based system for the recognition of Pakistani Sign Language (PSL) alphabets using Bag-
of-Words (BoW) and Support Vector Machine (SVM) techniques.

The paper is organized as follows: second section explains the methods used for the literature review and the 
related studies obtained; third section describes the approach in this study, including the data collection protocol 
used, and the techniques used for the recognition of PSL alphabets; fourth section provides the experimental 
results and their discussion; fifth section concludes this paper.

Literature review
Several studies have been performed to develop SL recognition systems using different image processing and 
learning methods. Most of these studies extract specific features and then use machine learning algorithms to 
classify the SL images. Many different SL have been used in these studies, namely  American3–11, Amharic  SL12, 
Arabic  SL13–17, British  SL18,19, Chinese  SL20,21, German  SL22,23, Indian  SL24, Mexican  SL25, Pakistani  SL26–31, Persian 
 SL32, and more in combination such as American and German  SL33, American and Thai  SL34 and American and 
Indian  SL35.

The literature review done of the SL mentioned, was focused between the time period of 2010 and 2021. 
Instead of sensor-based recognition systems, i.e., systems that use Cyber-gloves, leap motion controller, acceler-
ometers or EMG sensors, vision-based SL recognition systems were focused. Specifically, those systems that used 
images and videos from a single camera of bare hands, instead of those that used multiple cameras or different 
object tracking technologies for their study. Many systems used a combination of image and video-based datasets 
as input and used different classifiers, such as, Neural Networks like Convolutional Neural Network (CNN) and 
Multilayer Perceptron (MLP), Support Vector Machine (SVM), K Nearest Neighbor (KNN), Hidden Markov 
Model (HMM), etc. to recognize their respective SLs.

Singha et al., used dynamic American SL and features including location, position, velocity, acceleration, 
orientation, distance and many more to obtain an accuracy of 92.23% using a fusion of classifiers like KNN, SVM 
and Artificial  NN5. Dardas et al., used the Bag-of-features technique with Scale Invariant Feature Transform 
(SIFT) and SVM to achieve 96.23% accuracy of static American  SL8. Inception v3 CNN with SVM was used by 
Abiyev et al., to obtain a 99.90% accuracy for classification of American  SL10. AlexNet and VGG16 were used with 
SVM by Barbhuiya et al., to classify static American SL to obtain 99.82% and 99.76% accuracies,  respectively11. 
Tamiru et al., collected Amharic SL and extracted shape features using Fourier descriptor (FD), motion fea-
tures such as direction and angle and colour feature to obtain a 98.06% accuracy using  SVM12. Dahmani et al., 
extracted Tchebichef moments, Hu moments and geometric features from Arabic SL to classified them using SVM 
to obtain a 96.88%  accuracy17. Charles et al., used dynamic British SL signs from TV broadcasts used Histogram 
of gradients with K-means clustering and SVM to obtain a classification accuracy of 75%19.

Cheng et al., collected static Chinese SL and extracted features from palm centroids, their key points, and 
the Euclidean distance between them and, performed feature reduction using uncorrelated linear discriminant 
analysis (ULDA). Then Dynamic Time Warping (DTW)-distance-based feature mapping was used in combina-
tion with SVM to obtain a 99.03%  accuracy21. Athira et al., used Indian SL with Zernike moments and centroid 
of signs to recognize static signs with 90.1% and dynamic signs with 89% accuracies using  SVM24. Cabrera et al., 
obtained a 96.27% accuracy by classifying dynamic Mexican SL using SVM and Geometric features, such as Fou-
rier descriptors, Hu moments, Ellipse, Gupta descriptors and Flusser  moments25. Joshi et al., used static American 
and Indian SL, using shape-based features and using SVM obtained accuracies of 98.6% using Indian SL with 
uniform background, and 98.8% using Jochen–Triesch static hand posture with uniform background  datasets35.

The literature review was done for Pakistani SL (PSL) to identify the protocols used for the collection of data 
for static and dynamic PSL alphabets and the methods used for the recognition of PSL alphabets. The protocol 
used by the researchers of all the included PSL studies used RGB images and single-handed static signs of PSL 
alphabets except for Saqib et al., who used dynamic PSL  words31. The studies used various lighting conditions 
and studies by Kausar et al.26, and Shah et al.30, mentioned that the clothing should be separate from the skin 
colour of the participant. Khan et al.29, and Ahmed et al.28, used complex backgrounds to collect the data while 
the rest used uniform backgrounds.

Khan et al., collected a total of 500 (426 training/74 testing) images of 37 PSL alphabets, converted the RGB 
images to grayscale, segmented based on skin colour, resized the images to 300 × 400 pixels, applied Discrete 
Wavelet Transform (DWT) to extract features and achieved 84.6% classification accuracy using  MLP29. Ahmed 
et al., used 10 PSL alphabets and collected 600 (360 training/240 testing) images from 60 participants, resized 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21325  | https://doi.org/10.1038/s41598-022-15864-6

www.nature.com/scientificreports/

them to 640 × 480, used ROI segmentation in HSV color space to extract skin pixels, extracted global features 
including length, area, rectangularity, eccentricity, and more and shape features and used multi-class SVM to 
obtain an 83%  accuracy28. 80% accuracy was obtained by Kausar et al., using 37 Urdu alphabets and 9 numbers, 
totaling to 455 images (245 training/210 testing), K-means clustering based segmentation, centroid distance 
signature in mathematical modelling (polynomial, sinusoidal, exponential, gaussian) and  KNN26. Multiclass SVM 
was used by Shah et al., to achieve 77.18% accuracy, with six statistical features of local binary pattern histogram 
i.e., standard deviation, variance, skewness, kurtosis, entropy and energy, with skin detection being done in HSV 
domain from 3414 images (2384 training/1030 testing), using 37 PSL  alphabets27.

Saqib et al., used 20 dynamic PSL words, with 8000 videos (6480 training/1520 testing) collected from 15 
participants, resized the images to 234 × 234 and converted them to grayscale, and used CNN with Convolution 
layers and fully connected layers, along functional layers such as max pooling Layers, Rectified Linear Units 
layer (ReLU layer) and SoftMax activation function to achieve a 90.79%  accuracy31. Shah et al., classified 36 PSL 
alphabets, with 6633 images (4643 training/1990 testing) collected from 6 participants using SVM and using 
K-means clustering-based segmentation and converting them to grayscale, obtained classification accuracies of 
15.41% using Speeded Up Robust Features (SURF), 87.67% using Edge Orientation Histogram (EOH), 45.71% 
using Local Binary Patterns (LBP), and 89.52% using Histogram of Oriented Gradient (HOG) and the final 
reported accuracy of 91.98%30.

Methodology
The methodology for this study was divided into 2 parts:

• Data Collection and,
• Data Analysis.

Data collection. The data was collected for this study over the course of three months at Ziauddin College 
of Speech Language and Hearing Sciences, Ziauddin University, Clifton, Karachi. The data collection protocols 
were approved by the Ziauddin University Ethical Review Committee (Reference Code: 4611221SJBME) and 
the data collected was in accordance to their guidelines and regulations. Native signers of PSL were selected 
as participants for this study, irrespective of their race, gender, age, height and skin colour and their written 
informed consent was obtained. The protocol used for the collected data is mentioned in Table 1. A total of 39 
signs of PSL alphabets were collected for this study, i.e., 36 static signs and 3 dynamic signs, as specified in the 
Figs. 1 and 2, respectively.

The participants were provided with a black lab coat to keep the same clothing conditions and asked to stand 
in front of the camera with black background. A separate white light source was attached with the camera with 
uniform intensity for all the participants. The height and the distance between the camera and the participant 
were not constant. The participants were then asked to perform the signs as they naturally would and the images 
and videos were captured.

Data analysis. The images and videos from the collected data were stored in labelled folders. The videos 
were processed frame by frame, act as static images. The flowchart for the entire data analysis processing is 
shown in Fig. 3.

Preprocessing. The collected data was resized to different scales of the original images and videos, i.e., 0.125 
(375 × 375), 0.25 (750 × 750), 0.375 (1225 × 1225) and 0.5 (1500 × 1500) for images and 0.125 (240 × 135), 0.25 

Table 1.  PSL data collection protocol.

Parameters Our dataset

Imaging technique used 48MP smart phone camera

Image dimensions 3000 × 3000

Video resolution and frames per second 1920 × 1080 (1080p) at 60fps

image and video type RGB

Hands used in performing signs One Hand

Static signs Images of the hand

Dynamic signs Videos of the signer

Clothing requirements Uniform clothing for all the participants

Lighting conditions Uniform lighting

Background conditions Uniform background

Total number of signs 36 Static Urdu alphabets + 3 Dynamic Urdu alphabets

Number of images/videos At least 10 samples per sign per participant

Number of participants 10

Selection of participants Native PSL users who can perform the required signs
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Figure 1.  PSL static alphabets.

Figure 2.  PSL dynamic alphabets.
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(480 × 270) and 0.375 (720 × 405) for videos. Once the images were resized, they were converted from RGB to 
grayscale, in order to reduce their complexity and computation time.

Segmentation. The hand sign was detected by applying a threshold on the grayscale images whose value was set 
low enough to capture all the skin components in that image. As the grayscale pixel value ranges from 0 to 255, 
an initial threshold value was randomly selected and applied on all the PSL data. These values were then manu-
ally adjusted by checking the data before and after segmentation. The final threshold value was manually set at 
105 for static and 100 for dynamic signs and applied on all the hand signs’ data. The black background and the 
black clothing conditions facilitated this process of thresholding.

To crop the segmented hand sign, the bounding box technique was used. The thresholded signs were bound 
in boxes and their areas were calculated. A single image contained multiple skin components including the hand 
signs. The bounded box that had the largest area in the image, i.e., the hand sign, was cropped from each image 
and saved as the segmented image. The remaining skin components were excluded from the final segmented 
data. The segmented images obtained were of different dimensions, according to the signs being performed in 
the images. For videos, a uniform resolution size was required for segmented frames of a specific sign in order to 
save the cropped video. Zero padding was applied to convert all the segmented frames into uniform resolution. 
This process is shown in Fig. 4 and further discussed in Sect. 4 of this study.

Feature extraction. The SURF algorithm was applied on the images to extract their SURF features. The SURF 
points were detected for each image and then these points were used to extract the key point descriptors which 

Figure 3.  PSL recognition flowchart.

Figure 4.  PSL data segmentation.
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are also called the SURF features. The same method was used for dynamic sign videos. As videos are a series of 
images or frames, each frame of every video was considered as an image and their features were extracted.

The SURF algorithm is based on the Hessian  matrix36, because of its better performance in the required 
computation time and the overall detection accuracy. It relies on the determinant of Hessian for the selection of 
both, the scale and the location. Given a point x = (x, y) in an image I, the Hessian matrix H(x, σ) in x at scale 
σ is defined as follows

where Lxx(x, σ) is the convolution of Gaussian second order derivative ∂
2

∂x2
g(σ ) with the image I in point x , and 

similarly for Lxy(x, σ) and Lyy(x, σ).
The key point descriptors in SURF were detected by first, constructing a circular region around the key points 

and then computing the Haar-wavelet responses in both x and y directions to get the orientation. Then using this 
orientation, a square region was constructed around the interest points. The square regions were split into 4 × 4 
sub regions, to contain the relevant spatial information. Haar-wavelet responses dx and dy were weighted with a 
Gaussian centered at the interest point and summed over each sub region. The sum of the absolute values of the 
responses were also calculated |dx| and 

∣∣dy
∣∣ , to extract information about the polarity of intensity changes. With 

this, each sub region had a four-dimensional descriptor vector,

This produced the standard SURF descriptor of length 64 for all 4 × 4 sub regions.
These extracted features of all the images were then clustering using unsupervised learning algorithm, 

K-means ++ clustering. The k-means ++ algorithm uses a heuristic method to find centroid  seeds37.
The algorithm chooses seeds as follows, assuming the number of clusters is k . It then selects a descriptor at 

random from the images features dataset, X . The chosen descriptor is the first centroid, and is denoted c1 . It then 
computes the distances from each descriptor to c1 . The distance between cj and the descriptor k as is denoted as 
d(xm, cj) . Then it selects the next centroid, c2 at random from X with probability

In order to choose center  j , it computes the distances from each descriptor to each centroid, and assign 
each descriptor to its closest centroid. For m = 1, . . . , n and p = 1, . . . , j − 1 , it selects the centroid  j at random 
from X with probability

where Cp is the set of all descriptor closest to centroid cp and xm belongs to Cp , i.e., it selects each subsequent 
center with a probability proportional to the distance from itself to the closest center that was already chosen. 
The process to choose the center j , is repeated until k centroids are chosen.

A set of K-cluster values were used to form Bags (clusters) for the extracted features and each Bag is called 
a visual word. A set of these Bags form the visual vocabulary which are in-turn used to form the codebook or 
Bag-of-words. To select the K-cluster values for Bag formation, the maximum number of SURF descriptors were 
found for each scale of images and videos used, which were 90, 202, 307 and 444 for 375 × 375 (0.125), 750 × 750 
(0.250), 1225 × 1225 (0.375) and 1500 × 1500 (0.500), image dimensions (scale), respectively, for static signs and 
84 for all video resolutions (scale) used i.e., 240 × 135 (0.125), 480 × 270 (0.250), 720 × 405 (0.375) for dynamic 
signs. Using these maximum descriptors, 500 K-cluster value (Bag) was selected for static signs and 200 K-cluster 
value (Bag) was selected for dynamic signs.

An empty codebook was used to start the process. The Euclidean distance between each surf descriptor or 
feature and the centroid for each Bag and the feature was calculated. The least value of Euclidean distance was 
then assigned to the codebook as a part of that Bag using the formula,

where d(xi , ci) is the distance between and the descriptor xi and the centroids ci.
The same procedure was repeated until each and every feature of all the images was assigned a Bag. If a spe-

cific Bag matched with more than one descriptor, the number of descriptors were added up. The final codebook 
obtained contained the number of features that each centroid had the least distance with, or the number of times 
each centroid was activated. The codebook obtained had the dimensions of the K-cluster value used and the 
total number of images. The labels for each image were then added to the codebook. This process of generating 
the codebook is shown in Fig. 5. The obtained codebook was then used for the classification of these images.

Classification. In k-fold cross-validation, the dataset being was partitioned into k disjoint subsets, known as 
folds, of approximately equal size. This partitioning is randomly performed by sampling the dataset without 
replacement.

(1)H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]

(2)v =

(∑
dx ,

∑
dy ,

∑
|dx|,

∑∣∣dy
∣∣
)

(3)
d2(xm, c1)∑n
j=1 d

2(xj , c1)

(4)
d2(xm, cp)∑

{h;xh∈Cp}
d2(xh, ch)

(5)d(xi , ci) =
√∑

(xi − ci)
2
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The Support Vector Machine classifier (SVM) was used for classification. SVM used a part of the partitioned 
dataset, the training set, to find the optimal separating hyperplane between classes of the training data. The 
feature vectors near the hyperplane, the support vectors, are shown in Fig. 6. The SVM classifier used the train-
ing dataset to build a model that predicted whether the given example fell into one class of the target variable 
or the other.

The value of k = 5 was chosen for k-fold cross-validation in this study, which partitioned the combined 
dataset, containing all the participants’ data according to their classes, into 80% for training and 20% for testing. 
As the dataset was folded five times, five training and five testing datasets were obtained, and the five training 
datasets were used to train five SVM models.

The validation or testing dataset was applied on the trained models, and the performance was measured. This 
process was repeated until all of the k subsets served as testing sets. The cross-validated accuracy was obtained, 
by averaging the five accuracies achieved on the test sets. The cross-validated estimate of the prediction error, 
∈̂cv , is then given as

(6)∈̂cv =
1

n

n∑

i=1

L(yi , f̂−k(xi))

Figure 5.  Bag-of-words generation.

Figure 6.  Margin Optimization.
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where f̂−k is the model trained on all but the k th test subset, ŷi = f̂−k(xi) is the predicted value for the real class 
label, yi , of case xi , which is an element of the k th  subset38.

Performance metrics. The performance of the developed system was evaluated using four metrics, i.e., accu-
racy, precision, recall, and F1-score, where T.P is true positive, T.N is true negative, F.P is false positive, and F.N 
is false negative. These metrics are shown in Eqs. (7) to (10). The overall accuracy of the system was computed by 
averaging the training and testing accuracies. The remaining 3 metrics were calculated using the obtained testing 
matrices. The training and testing time of the system was were also recorded.

Statistical analysis. An ANOVA with repeated measures was performed using IBM Statistical Package for 
Social Sciences (SPSS) Version 26.0, on a Windows 10 machine to investigate whether a statistically significant 
difference existed between the reported testing accuracies of various image dimensions and video resolutions 
for static and dynamic signs respectively. This was followed by post hoc analysis with a Bonferroni adjustment to 
conduct pairwise comparisons between the testing accuracies.

Results and discussion
The samples and details of the data collected per participant are mentioned in Table 2. In this study, fivefold cross 
validation was applied on the obtained codebook for static and dynamic signs, yielding five training codebooks 
and five testing codebooks for each K-cluster value of Bags used. As a size of 500 Bags was used for static signs 
with four different image scale sizes, as previously mentioned, a total of 20 models were trained for static images. 
The number of images used in each model were 4096 for training and 1024 for testing. The subsequent training 
and testing accuracies obtained from these 20 models are shown in Table 3 and their performance metrics in 
Table 4. The overall accuracies were obtained by averaging the training and testing accuracies of each model. The 
image scale size of 0.250 with 750 × 750 image dimensions and using 500 Bags yielded the highest overall clas-
sification accuracy for static signs of PSL alphabets, i.e., 97.80%. This 750 × 750 image dimensions also resulted 
in the highest precision, recall and F1-score that were computed using the testing matrices, as shown in Table 4. 
Figure 7 shows the confusion matrix of the testing model, which was obtained by averaging the testing confusion 
matrices of all the five models.

A repeated measures ANOVA with a Greenhouse–Geisser correction determined that mean testing accuracies 
for static signs differed statistically significantly between various image dimensions (F(2.027, 8.109) = 16.130, 
p < 0.001). Post hoc analysis with a Bonferroni adjustment revealed that there was a statistical significance 
between the testing accuracies of 750 × 750 and 1500 × 1500 dimensions (2.11 (95% CI 0.42 to 3.80), p < 0.023), 
and 750 × 750 and 375 × 375 dimensions (1.66 (95% CI 0.69 to 2.63), p < 0.007), but not between 750 × 750 and 
1225 × 1225 dimensions (0.78 (95% CI − 1.37 to 2.93), p = 0.922), 1225 × 1225 and 1500 × 1500 dimensions (1.33 

(7)Accuracy =
T .P + T .N

T .P + T .N + F.P + F.N
× 100

(8)Precision =
T .P

T .P + F.P
× 100

(9)Recall =
T .P

T .P + F.N
× 100

(10)F1− Score = 2 ∗
Precision× Recall

Precision+ Recall
× 100

Table 2.  PSL data per participant and total collected data.

Participant Image samples total (min, max) Video samples total (min, max)
Video duration in seconds
Total (min, max)

Video frames
Total (min, max)

1 511 (10, 16) 32 (10, 11) 80.26 (1.33, 3.68) 4755 (78, 216)

2 392 (10, 16) 38 (12, 14) 58.20 (0.71, 2.55) 3447 (42, 149)

3 423 (10, 15) 34 (10, 12) 69.16 (1.15, 3.57) 4138 (68, 215)

4 520 (11, 17) 35 (10, 14) 45.24 (0.70, 3.12) 2700 (40, 187)

5 514 (12, 16) 35 (10, 13) 66.31 (1.29, 3.07) 3915 (78, 185)

6 547 (15, 16) 40 (13, 14) 91.99 (1.08, 3.67) 5523 (65, 221)

7 548 (15, 16) 36 (11, 13) 91.82 (1.03, 5.09) 5532 (62, 307)

8 549 (13, 17) 34 (10, 13) 59.09 (0.92, 2.87) 3560 (55, 173)

9 547 (14, 17) 31 (10, 11) 61.71 (1.33, 3.22) 3717 (80, 194)

10 569 (15, 16) 38 (12, 13) 131.69 (1.96, 4.93) 7937 (118, 297)

Total 5120 353 755.47 45,224
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(95% CI − 0.35 to 3.01), p = 0.110), 1225 × 1225 and 375 × 375 dimensions (0.88 (95% CI − 0.73 to 2.49), p = 0.338), 
and 375 × 375 and 1500 × 1500 dimensions (0.42 (95% CI − 0.81 to 1.71), p = 0.937).

Similarly, a size of 200 Bags was used for dynamic signs with three different video scale sizes, a total of 15 
models were trained for dynamic signs. The number of video frames used for training in one model were 36,180 
and 36,179 for the other four models and for testing in one model were 9044 and 9045 for the other four mod-
els. The subsequent training and testing classification accuracies obtained from these 15 models are shown in 
Table 5 and their performance metrics in Table 6. The video scale size of 0.250 with 480 × 270 video resolution 
and using 200 Bags yielded the highest overall classification accuracy for dynamic signs of PSL alphabets, i.e., 
96.53%. This 480 × 270 video resolution also resulted in the highest precision, recall and F1-score, as shown in 
Table 6. Figure 8 shows its testing confusion matrix, which was obtained by averaging the testing confusion 
matrices of all the five models.

A repeated measures ANOVA with a Greenhouse–Geisser correction determined that mean testing accu-
racies for dynamic signs did not differ statistically significantly between various video resolutions (F(1.343, 
5.374) = 0.218, p = 0.727). Post hoc analysis with a Bonferroni adjustment further revealed that there was no 
statistical significance between the testing accuracies of 480 × 270 and 720 × 405 resolutions (0.11 (95% CI − 0.76 
to 0.98), p = 1.000), 480 × 270 and 240 × 135 resolutions (0.08 (95% CI − 0.36 to 0.51), p = 1.000), and 240 × 135 
and 720 × 405 resolutions (0.04 (95% CI − 0.64 to 0.72), p = 1.000).

For the collection of data, recruiting participants of different race, gender, age, height and skin colour, added 
variations to the collected dataset, such as different skin colours, hand size and so on. Asking the participants 
to perform the hand signs as they naturally would, caused variations in the orientation of the signs being per-
formed, and minor variations due to different joint flexibility of the participants. By varying the height and 
distance between the camera and the participant according to the participants comfort also added variations in 
the scale of the data being collected. The data collected only required the hand to be captured. If the data of PSL 
sentences was captured, also collecting the facial expressions of the participants would increase the complexity 
of the system being developed.

The black background and clothing conditions helped in the thresholding technique used during segmenta-
tion, as the skin colour in grayscale was easily distinguished from the background and clothes. During the video 
segmentation, all the frames in the video had to be of the same size, in order save them for further processing. 
This issue was resolved by applying zero padding to the videos. This was done by finding the maximum dimen-
sions from each video’s segmented frames and using that as a reference value to apply zero padding to the frames 
with lesser dimensions. This resulted in a uniform resolution size for that specific video. Zero padding was an 
effective technique for the dataset used in this study as the background chosen for the collected data was black 

Table 3.  Classification accuracies for static signs at 500 bags. Significant values are in bold.

Image dimensions (scale) Model 1 Model 2 Model 3 Model 4 Model 5 Overall

1500 × 1500 (0.500)

Training 94.80 94.90 95.10 95.60 95.10 95.10

Testing 95.21 96.19 96.09 96.00 96.68 96.03

Overall 95.01 95.55 95.60 95.80 95.89 95.57

1225 × 1225 (0.375)

Training 96.60 96.60 96.10 96.40 96.10 96.36

Testing 97.66 97.07 97.66 96.39 98.05 97.37

Overall 97.13 96.84 96.88 96.40 97.08 96.86

750 × 750 (0.250)

Training 97.40 97.30 97.80 97.40 97.40 97.46

Testing 98.24 98.05 97.95 98.73 97.75 98.14

Overall 97.82 97.68 97.88 98.07 97.58 97.80

375 × 375 (0.125)

Training 96.00 95.80 96.00 95.80 95.90 95.90

Testing 96.48 96.88 96.29 96.39 96.39 96.49

Overall 96.24 96.34 96.15 96.10 96.15 96.19

Table 4.  Performance metrics for static signs at 500 bags. Significant values are in bold.

Image dimensions (scale) Overall accuracy (%) Precision (%) Recall (%) F1-Score (%) Training time (s) Testing time (s)

1500 × 1500 (0.500) 95.57 96.14 96.00 96.03 318.67 21.84

1225 × 1225 (0.375) 96.86 97.41 97.35 97.36 308.68 20.11

750 × 750 (0.250) 97.80 98.17 98.14 98.14 303.71 19.82

375 × 375 (0.125) 96.19 96.55 96.48 96.48 297.15 19.49
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Figure 7.  Confusion matrix of static PSL signs at 750 × 750 image dimensions and 500 bags.

Table 5.  Classification accuracies for dynamic signs at 200 bags. Significant values are in bold.

Video resolution (scale) Model 1 Model 2 Model 3 Model 4 Model 5 Overall

720 × 405 (0.375)

Training 96.10 96.90 96.30 96.20 96.40 96.38

Testing 96.93 96.45 96.21 97.00 96.40 96.60

Overall 96.52 96.68 96.26 96.60 96.40 96.49

480 × 270 (0.250)

Training 96.40 96.30 96.30 96.40 96.30 96.34

Testing 96.56 97.06 96.64 96.54 96.75 96.71

Overall 96.48 96.68 96.47 96.47 96.53 96.53

240 × 135 (0.125)

Training 96.20 96.20 96.20 96.30 96.10 96.20

Testing 96.80 96.63 96.67 96.46 96.61 96.63

Overall 96.50 96.42 96.44 96.38 96.36 96.42

Table 6.  Performance metrics for dynamic signs at 200 Bags. Significant values are in bold.

Video resolution (scale) Overall accuracy (%) Precision (%) Recall (%) F1-score (%) Training time (s) Testing time (s)

720 × 405 (0.375) 96.49 96.85 96.79 96.82 273.13 6.05

480 × 270 (0.250) 96.53 96.94 96.91 96.92 267.13 5.89

240 × 135 (0.125) 96.42 96.88 96.85 96.87 257.67 5.68
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and by applying zero padding black pixels were added to the videos as 0 represents black when the pixels of 
images are visualized.

The training and testing time obtained for the models decreased as the dimensions of the data was decreased. 
This suggests that as the number of pixels and thus the features decreased, the time required to train and test the 
models also decreased. However, this faster computation time did not result in higher classification accuracies.

Table 7 shows comparison between the studies performed on static SL and Table 8 compares studies per-
formed on dynamic SL. the A similar study by, Dardas et al.8, used the Bag-of-features technique with SIFT and 
SVM to obtain 96.23% accuracy using 10 signs of static American SL with cluttered background. Another study 
by Farman Shah et al.30, used SURF with SVM but obtained 15.41% accuracy and the final reported accuracy 
using Histogram of Oriented Gradient (HOG) and SVM was 91.98%, which was also the highest classification 
accuracy reported, to the best of my knowledge, using static PSL alphabets. Our method yielded a 97.80% 
accuracy which exceeds the previous studies performed for static PSL alphabets. Studies by Abiyev et al.10 and 
Barbhuiya et al.11 used deep learning technique in combination with SVM and Cheng et al.21 used DTW map-
ping with SVM to obtain high classification accuracies. Joshi et al.35 used feature-level fusion techniques such as 
canonical correlation analysis (CCA) and discriminant correlation analysis (DCA) for their shape-based features 
to achieve high recognition accuracies.

Figure 8.  Confusion matrix of dynamic PSL signs at 480 × 270 video resolution and 200 bags.

Table 7.  Comparison with other static SL methods.

Static method Number of signs used (total image samples) Accuracy (%)

Dardas et al.8 10 (1000) 96.23

Abiyev et al.10 24 (34,627) 99.90

Barbhuiya et al.11 36 (22,634) 99.82 and 99.76

Dahmani et al.17 30 (2880) 96.88

Cheng et al.21 39 (21,450) 99.03

Athira et al.24 24 (900) 90.10

Shah et al.27 37 (3414) 77.18

Ahmed et al.28 10 (600) 83.00

Shah et al.30 36 (6633) 91.98

Joshi et al.35 26 Indian SL (2300) and 10 American SL (418) 98.60 and 98.80

Our method 36 (5120) 97.80

Table 8.  Comparison with other dynamic SL methods.

Dynamic method Number of signs used (total video/frame samples) Accuracy (%)

Singha et al.5 40 (11,600) 92.23

Tamiru et al.12 52 (1710 videos) 98.06

Charles et al.19 Not specified (20 videos with each over 40,000 frames) 75.00

Athira et al.24 2 (700 videos) 89.00

Cabrera et al.25 249 (2241 frames) 96.27

Our method 3 (353 videos and 45,224 frames) 96.53
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Cabrera et al.25 used neural networks to detect skin colour and then extract features from their 2241 keyframes 
extracted from 249 videos. Tamiru et al.12 extracted 34 shape, motion and colour features to obtain their high 
classification accuracy. Shazia Saqib et al.31, used dynamic PSL words with CNN with Levenshtein distance to 
obtain 90.79% accuracy. No previously performed study has classified dynamic PSL alphabets, to the best of my 
knowledge, so the classification accuracy of 96.53% for dynamic PSL signs cannot be compared to any PSL study.

The limitations of this study were that the dataset collected used only uniform lighting and uniform back-
ground conditions and the data was only captured with the participant facing the camera, i.e., only from one 
angle using their dominant right hand. Furthermore, the system was developed in such a way that it used offline 
testing along with the offline training.

For future work, a PSL dataset could be created that uses various lighting and complex background conditions. 
The data of the signer could be captured from multiple angles. More participants can be recruited, to increase 
the size of the dataset. The system could also be implemented using real-time testing of the trained models. The 
developed system can be implemented in comparison other sign languages.

Conclusion
The purpose of this study was to collect data of static and dynamic PSL alphabets and to develop a vision-based 
system for their recognition using BoW and SVM techniques. 36 static PSL alphabet signs and 3 dynamic PSL 
alphabet signs were collected with uniform background, uniform lighting at various orientations and scale, 
from 10 native signers of PSL and used as input in the developed system. The data was resized to various scales, 
segmented and converted into Bag-of-Words by finding the Euclidean distance between SURF descriptors and 
clustered value obtained by K-means clustering. The obtained codebooks were trained using SVM and tested to 
obtain the highest overall classification accuracy of 97.80%, precision of 98.17%, recall of 98.14% and F1-Score 
of 98.14% of for static PSL signs. For dynamic PSL signs an overall accuracy of 96.53%, precision of 96.94%, 
recall of 96.91% and F1-Score of 96.92% was obtained.
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