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Altered genome‑wide hippocampal 
gene expression profiles 
following early life lead exposure 
and their potential for reversal 
by environmental enrichment
G. Singh1*, V. Singh1, T. Kim3, A. Ertel2, W. Fu3 & J. S. Schneider1*

Early life lead (Pb) exposure is detrimental to neurobehavioral development. The quality of the 
environment can modify negative influences from Pb exposure, impacting the developmental 
trajectory following Pb exposure. Little is known about the molecular underpinnings in the brain of the 
interaction between Pb and the quality of the environment. We examined relationships between early 
life Pb exposure and living in an enriched versus a non‑enriched postnatal environment on genome‑
wide transcription profiles in hippocampus CA1. RNA‑seq identified differences in the transcriptome 
of enriched vs. non‑enriched Pb‑exposed animals. Most of the gene expression changes associated 
with Pb exposure were reversed by enrichment. This was also true for changes in upstream regulators, 
splicing events and long noncoding RNAs. Non‑enriched rats also had memory impairments; enriched 
rats had no deficits. The results demonstrate that an enriched environment has a profound impact on 
behavior and the Pb‑modified CA1 transcriptome. These findings show the potential for interactions 
between Pb exposure and the environment to result in significant transcriptional changes in the brain 
and, to the extent that this may occur in Pb‑exposed children, could influence neuropsychological/
educational outcomes, underscoring the importance for early intervention and environmental 
enrichment for Pb‑exposed children.

A number of perinatal environmental and behavioral factors influence the development and maturation of the 
brain and subsequent cognitive and behavioral functioning. Early life exposure to environmental neurotoxicants 
such as lead (Pb) have the ability to derail neural and cognitive/behavioral development, with lifelong negative 
consequences. However, early developmental exposures to environmental neurotoxicants are inevitably inter-
twined with co- or sequentially occurring early life behavioral experiences that can vary widely in their character, 
and have the potential to modify the influences of environmental neurotoxicants on the brain and behavior. Thus, 
interactions between these influences have the potential to shape the brain and impact neurodevelopmental 
vulnerability or resilience, influencing the likelihood of behavioral/cognitive problems in childhood and later 
in adulthood.

Developmental Pb exposure is an ongoing public health concern in the United States and elsewhere. Adverse 
and persistent effects on cognition and behavior, including reductions in IQ and learning, memory, attention, and 
executive functioning deficits are associated with developmental Pb exposure in humans and in animal models 
(ex., Refs.1–6). Detrimental effects of Pb at blood levels (BLLs) below 10 µg/dL are well-documented and BLLs 
even below 5 µg/dL are associated with impaired cognition and school  performance7–10, suggesting there may be 
no safe level of Pb in a child’s blood. Primary prevention of Pb exposure and the reduction or elimination of Pb 
from a child’s environment is critical but expensive, and sadly, prevention has focused primarily on attempting to 
reduce the exposure following identification of Pb-poisoned children, using children as proverbial canaries in the 
coal mine to identify toxic  environments11. With wide-scale primary prevention lacking, the question becomes, 
what can be done to ameliorate the effects of Pb poisoning for the millions of children already exposed to Pb?
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Socioeconomic status (SES) is one of the social/behavioral variables known to interact with Pb exposure. A 
child’s SES affects not only the likelihood of exposure to Pb but also the outcome from Pb exposure. Low SES chil-
dren have a higher likelihood of being exposed to Pb, have higher BLLs, and more severe outcomes from expo-
sure to Pb compared to high SES  children12. Various concomitants of low SES may enhance Pb’s  neurotoxicity12. 
 Rutter13 hypothesized that economically disadvantaged children, because of a neuropsychological status rendered 
fragile by environmental influences, might be more vulnerable to the neurotoxic effects of Pb. Winneke and 
 Kraemer14 reported that SES interacted with the effects of Pb on visual-motor integration and reaction time such 
that performance deficits were greater in lower SES Pb-exposed children than their higher SES counterparts. 
Similar effects were reported by  Bellinger12. More recently, Marshall et al.15 reported that with increasing risk 
of Pb exposure, children from lower SES families had lower cognitive test scores, smaller cortical volumes, and 
smaller cortical surface areas compared with children from higher SES families. These authors suggested that 
reducing Pb-exposure risk might preferentially benefit low SES children, and that further understanding of the 
interacting factors of SES and Pb exposure will be critical for improving outcomes in  children15.

We16,17 and  others18 have shown that an animal analog of SES, i.e., environmental enrichment (EE) or impov-
erishment, can modify the effects of Pb on the brain and affect cognitive outcomes. We were the first to dem-
onstrate that rearing rats in impoverished or enriched environments could modulate learning and memory 
in the Morris water maze (MWM) in Pb-exposed animals and affect trophic factor gene expression in the 
 hippocampus17. This initial study demonstrated that Pb-induced neurotoxicity and cognitive deficits were poten-
tially modifiable by environmental conditions, but it had several shortcomings in the use of only post-weaning 
Pb exposures, animals with relatively high BLLs (> 20 µg/dL), and use of behavioral extremes [enrichment vs. 
isolation (i.e., single animal housing)]. In a follow-up study, we examined effects of enriched environment (6 
animals to a large enclosure containing various toys and climbing and nesting materials that were changed twice 
weekly) and non-enriched environment (animals housed 3 to a small enclosure containing no environmental 
enhancements) on Morris water maze (MWM) performance in males and females with different levels of peri-
natal Pb exposure (gestation through weaning). This study revealed complex interactions between sex, rearing 
environment, and Pb exposure, even at BLLs ≤ 10 µg/dL16. Other groups have also since described beneficial 
effects of environmental enrichment on spatial learning and memory and NR1 and BDNF gene expression in 
hippocampus in male rats with high levels of Pb exposure (1500 ppm from conception through weaning) and 
housing extremes of enrichment versus isolation  rearing18. Others have also described effects of enrichment 
on MWM performance and long-term potentiation in the hippocampus in male rats with high perinatal Pb 
exposures (1500 ppm from conception through weaning)19.

Although the effects of early life Pb exposure, especially on hippocampal-based behaviors and expression of 
a few pre-selected genes, have been shown to be modifiable by the quality of the postnatal housing environment, 
the interactive effects of Pb exposure and quality of the environment on whole genome transcriptional profiles 
and functional networks are unknown. The present study sought to delineate the relationship between early 
life low level exposure to Pb and living in an enriched versus a non-enriched postnatal environment on gene 
transcription profiles in CA1 of the hippocampus, a part of the brain critically involved in learning and memory, 
using an RNA-sequencing (RNA-seq) approach, to provide new and detailed insight into the interactive effects 
of Pb exposure and the complexity of the postnatal environment at a molecular /systems level.

Methods
Animals and Pb exposure. The use of animals in this study was approved by the institutional animal care 
and use committee at Thomas Jefferson University and was in compliance with NIH Guidelines for the Care 
and Use of Laboratory Animals. The study was carried out in compliance with the ARRIVE guidelines. Animals 
received early postnatal (EPN) exposure to Pb. Dams were fed RMH 1000 chow with no added Pb during gesta-
tion and were fed chow with or without added Pb acetate (150 ppm) beginning at day of birth (postnatal day 
1) and pups continued to receive this exposure to Pb through weaning at postnatal day 21. EPN Pb exposure at 
150 ppm has been previously used in our studies and produces blood Pb values in offspring at postnatal day 21 
of ~ 4.8 µg/dL20. Litters were culled to equal numbers of pups to standardize litter size at postnatal day 7, with an 
aim of having 8 pups per litter. Females with EPN Pb exposure were used for the present behavioral and molecu-
lar studies as previous research showed that EPN Pb exposure induces an associative memory deficit in females 
but not in  males21. No more than one female from any litter was included in any experimental (housing) group. 
Post-weaning, rats were housed 3 to a standard cage (47.6 cm × 25.9 cm) with no added stimuli (non-enriched) 
or 6 to a cage (61 cm × 43.5 cm) containing a variety of toys, climbing and nesting materials, and tunnels that 
were changed twice per week (enriched group). Other than the differences already described, animals were 
handled in exactly the same manner and all animals were exposed to a 12 h:12 h light:dark cycle for the duration 
of the study. At postnatal day 55, some animals were used for behavioral testing and others were euthanized for 
collection of tissue for RNA sequencing. The experimental setup and timeline are shown in Fig. 1A.

Trace fear conditioning. Trace fear conditioning was carried out as described by us  previously21 using Ugo 
Basile Fear Conditioning chambers (30 cm deep × 34 cm wide × 41.5 cm high) and ANY-maze software (Version 
4.99; Stoelting Co., Wood Dale, IL) to automatically measure freezing responses. The trace fear conditioning 
protocol consisted of habituation, conditioning, and short- and long-term retrieval testing at Days 1, 2 and 10 
post conditioning as previously  described21. Briefly, animals were habituated to the fear conditioning chamber, 
located within a dimly lit sound attenuating enclosure with white background noise, for 15 min one day prior 
to conditioning trials. During conditioning trials, animals were given 180 s to habituate to the test chamber and 
then given a series of 6 pairings of tone (conditioned stimulus; CS, 3000 Hz, 80 dB for 15 s) and shock (uncondi-
tioned stimulus; US, 0.8 mA for 1.0 s) with a 20 s trace period between CS and US, and pseudorandom intertrial 
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intervals of 1–3 min. Freezing, defined by absence of all but respiratory movements, was measured every second 
during the 20 s of the trace period. Retention testing was performed at 1, 2 and 10 days post conditioning. For 
retention testing, animals were placed back into the same chamber in which they were initially trained but with 
different visual and olfactory cues. On each retention testing day, animals were habituated to the chamber for 
180 s followed by presentation of 3 tones for 15 s each, in the absence of foot shock, with a pseudo random ITI 
(1–4 min.) between presentation of tones. Freezing was measured every second during the 20 s after tone pres-
entation.

Statistical analysis. Analysis of trace fear conditioning behavioral outcomes was performed by two-way 
ANOVA followed by posthoc pairwise comparisons using Prism 8.0, with a significance level set at P < 0.05 
(Graphpad Software, San Diego, California USA).
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Figure 1.  (A) Experimental study design. Long Evans rats received early postnatal (EPN) Pb exposure 
(150 ppm) via dams receiving Pb-containing diet beginning at postnatal day (PND) 1 through weaning (PND 
21). On PND 21, female pups were randomly assigned to either the enriched or non-enriched environment. 
Controls (no Pb, 0 ppm) were similarly randomized to an enriched or non-enriched environment at weaning. 
The four experimental groups were: Control (0 ppm)_non-enriched, Control (0 ppm)_enriched, EPN Pb 
(150 ppm)_non-enriched, and EPN Pb (150 ppm)_enriched. At PND 55, some animals were randomly taken 
for trace fear conditioning while others were randomly selected for tissue collection. Behaviorally tested animals 
were assessed for post-conditioning memory retention at 1, 2 and 10 days after conditioning. Behaviorally naïve 
animals were euthanized to collect CA1 of the HIPP for RNA-sequencing. (B) Environmental enrichment 
mitigated negative effects of EPN Pb exposure on associative memory in the trace fear conditioning test. Lead-
exposed animals living in the non-enriched environment had memory deficits detected at 1, 2 and 10 days 
after training. In contrast, Pb-exposed animals living in the enriched environment had no significant memory 
deficits. Data shown are group mean ± S.E.M; N = 6 per group; *p < 0.05.
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RNA sequencing. At postnatal day 55, naïve (no behavior) animals (N = 3 per group for RNA-seq) were 
euthanized by decapitation, brains removed fresh, sliced in a rat brain tissue matrix over ice, and CA1 of the hip-
pocampus was quickly dissected from brain slices, frozen, and stored at – 80 °C until used. RNA was extracted 
manually using Qiagen RNeasy kits. Purity and RNA integrity were assessed using a NanoDrop 2000 spectro-
photometer and an Agilent Bioanalyzer. Next generation sequencing libraries were prepared using the Illumina 
TruSeq Stranded Total RNA kit with ribosomal RNA depletion, following the manufacturer’s protocol. Total 
RNA libraries were sequenced at the Cancer Genomics and Bioinformatics Core facility, Thomas Jefferson Uni-
versity, using an Illumina NextSeq 500 and 75 bp paired-end chemistry.

Sequencing analyses. Differentially expressed genes (DEGs) were identified through the in-house pipe-
line as follows. To remove adaptors and low-quality reads, read trimming was performed using trimmomatic 
(version: trimmomatic-0.38-1)22.Then raw paired-end FASTQ sequencing reads were mapped to the rat refer-
ence genome (rn6_refseq.gtf (rn6_refGene downloaded on Feb. 2017 from USSC Table browser)) using STAR 
(Spliced Transcripts Alignment to a Reference; version: STAR_2.6.1a_08-27) -alignMatesGapMax 2000 -out-
SAMtype BAM  aligner23 followed by featureCounts ((version: 1.6.2) -T 5 -p -M -t exon -g gene_id)24 to calcu-
late how many reads map to each gene/feature with parameters ‘-M’ (with multi-mapped reads) and ‘-t exon’ 
(within exon region). Detailed information of featureCounts can be found in the user guide, https:// bioco nduct 
or. org/ packa ges/ relea se/ bioc/ vigne ttes/ Rsubr ead/ inst/ doc/ Subre adUse rsGui de. pdf. Finally, DESeq2 [(version: 
1.16.1) default  arguments]25 identified DEGs by comparing the gene expression values of genes among the dif-
ferent groups of samples as (i) EPN_non-enriched vs Control_non-enriched, (ii) EPN_enriched vs EPN_non-
enriched, (iii) Control_enriched vs Control_non-enriched, and (iv) EPN_enriched vs Ctrl_enriched. R-code for 
DESeq2 analysis can be found in Supplementary Material 9. Principal component analysis (PCA) and volcano 
plots were created by R package DESeq2 and  ggplots26. GO and KEGG enrichment analysis was performed on 
DEGs above using clusterProfiler v3.16.027–29.

Genes identified to have significant differential expression were further analyzed to define long non-coding 
RNA transcripts (lncRNA) and mitochondrial transcript subsets. lncRNA transcripts were identified based on 
Ensembl release 90 biotype definitions. To explore the potential interactions between differentially expressed 
(DE) lncRNAs and mRNAs identified in the RNA-seq datset, we constructed a lncRNA-mRNA co-expression 
network. The Pearson correlation coefficient of DE mRNA-lncRNA pairs was calculated to measure linear cor-
relation and thus co-expression30–33. If the Pearson correlation coefficient was greater than 0.95, and the P value 
was less than 0.0001, we considered this DE lncRNA-mRNA pair to be linearly correlated and hence co-expressed. 
The co-expression network was established using Cytoscape software. Mitochondrial transcripts were identified 
to include both RNA transcribed from the mitochondrial genome as well as nuclear genes in the MitoMiner 
database known to contribute to mitochondrial  function34. Pathway analyses were performed using Ingenuity 
Pathway Analysis (IPA; QIAGEN Inc.).

The Multivariate Analysis of Transcript Splicing tool (rMATs) was used to explore differential splicing events 
under the different experimental  conditions35. In brief, rMATS identified differential alternative splicing (AS) 
events from two-group RNA-seq data with replicates (N = 3). rMATS is based on hierarchical framework that 
simultaneously models the variability among replicates and the estimation uncertainty of isoform proportion 
in each replicate. To estimate the p-value and FDR of the inclusion levels between two comparison groups of 
RNA-seq data, rMATS uses a likelihood-ratio test. In the present study, FDR < 0.05 was set as the threshold for 
differential AS events.

Results
Effects of Pb exposure and housing environment on associative memory function. Living 
in an enriched environment post-weaning modified EPN Pb-induced associative memory deficits (Fig.  1B). 
Animals housed in the non-enriched environment, Pb-exposed or not, tended to have less efficient learning 
compared with animals housed in the enriched environment, although these differences were not statistically 
significant. Pb-exposed animals from the enriched environment (EPN_enriched) had a learning profile indis-
tinguishable from that of control, enriched animals (Control_enriched). EPN Pb-exposed animals raised in the 
non-enriched environment (EPN_non-enriched) had significant associative memory deficits detected at 2 and 
10 days post-conditioning (Fig. 1B). There was a main effect of Pb (F (1, 15) = 13.81, p = 0.0021) and environment 
(F (1, 21) = 23.35, p < 0.0001) on memory. EPN_non-enriched animals had memory impairments compared to 
Control_non-enriched animals and the difference was significant at Day 10 (p = 0.03). EPN_enriched animals 
had no memory impairments and were not significantly different from Control_enriched animals (Fig.  1B). 
Significant differences in memory in EPN_enriched vs. EPN_non-enriched animals at Day 2 (p = 0.04) and Day 
10 (p = 0.01) were observed (Fig. 1B).

Overall influence of Pb exposure and housing environment on CA1 gene expression pro‑
files. Early postnatal Pb exposure (150 ppm or 0 ppm) and housing environment (enriched or non-enriched) 
resulted into four experimental groups: Control (0 ppm)_non-enriched, Control (0 ppm)_enriched, EPN Pb 
(150 ppm)_non-enriched and EPN Pb (150 ppm)_enriched. Principal Component Analysis (PCA) across the 
samples and treatment conditions, based on overall gene expression profiles, was used to obtain an initial over-
view of the influences of Pb exposure and housing environment on the transcriptome (Fig. 2A). PCA identified 
two distinct clusters in the dataset. The samples from the EPN_non-enriched condition were grouped under one 
cluster while samples from the other three treatment conditions (EPN_enriched, Control_non-enriched and 
Control_enriched) were grouped into second cluster. The PCA result indicates that the post-weaning housing 
environment had no effect on the gene expression profiles of control (no Pb) animals and that the gene expres-

https://bioconductor.org/packages/release/bioc/vignettes/Rsubread/inst/doc/SubreadUsersGuide.pdf
https://bioconductor.org/packages/release/bioc/vignettes/Rsubread/inst/doc/SubreadUsersGuide.pdf
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Figure 2.  Principle component analysis (PCA) and hierarchical clustering of HIPP CA1 RNA-seq data. (A) 
PCA analysis across all samples and treatment conditions, based on overall gene expression profiles, shows 
EPN_non-enriched animals clustered in a distinct group compared to the other groups (Control_non-enriched, 
Control_enriched and EPN_enriched). (B) Heatmaps generated from unsupervised clustering of genes with the 
highest variation across the dataset show effects of Pb exposure and enrichment on gene expression patterns 
(FDR < 0.05, one-way ANOVA across all the treatment groups, see Supplementary Material 5). Transcriptomic 
changes in the EPN_non-enriched groups were distinct from those in the Control_(enriched or non-enriched) 
and EPN_enriched groups, while the heatmaps from EPN_enriched and Control_(enriched or non-enriched) 
animals were quite similar. N = 3 per group.
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sion profile of Pb-exposed animals living in an enriched environment (EPN_enriched) was comparable to that 
of Control_non-enriched and Control_enriched animals. A similar result was evident in the heat map gener-
ated from one-way ANOVA data across all the treatment groups (FDR < 0.05), see Supplementary Material 5 
(Fig. 2B). Although some differences can be observed in the transcriptional profiles between Control_enriched 
and Control_non-enriched groups, the most dramatic differences in transcriptional profiles was seen with the 
interaction of EPN Pb exposure and housing environment. The transcriptional profile of EPN_non-enriched 
animals is substantially different than that observed in EPN_enriched animals, whose profile is more similar to 
that observed in normal, non-Pb-exposed animals.

Subsequent to the PCA analysis, a differential gene expression analysis (FDR < 0.05) was performed for each 
treatment group and revealed a total of 1746 downregulated and 1767 upregulated genes associated with Pb expo-
sure only (EPN_non-enriched vs. Control_non-enriched). Living in the enriched environment further modified 
the Pb-altered transcriptome, resulting in 2130 downregulated and 2285 upregulated genes (EPN_enriched 
vs. EPN_non-enriched). A comparatively minimal effect of the enriched environment on the gene expression 
profile of control animals was observed, resulting in only 3 downregulated genes and 37 upregulated genes 
(Control_enriched vs. Control_non-enriched). Comparison of EPN_enriched vs. Control_enriched animals 
showed no differential expression of genes between the two conditions. Supplementary Table S1 lists the top 25 
most significant genes (FDR < 0.05) in each group comparison (see Supplementary Material 2). Volcano plots 
(FDR < 0.05) depict expression changes of highly significant genes (Fig. 3A–D). Lead exposure resulted in signifi-
cant downregulation of gene expression in non-enriched animals (Fig. 3A). Living in the enriched environment 
modified the Pb-altered transcriptome, resulting in a gene expression profile that was almost the mirror image of 
the Pb-altered profile in non-enriched animals (Fig. 3B). Minimal significant differential gene expression changes 
were observed as a consequence of living in the enriched environment in normal control animals and the tran-
scriptome of EPN_enriched animals was indistinguishable from that of Control_enriched animals (Fig. 3C,D).

Based on the distinct transcriptome profile in Pb-exposed animals and the similarity in profiles between 
EPN_enriched and control animals (non-enriched or enriched), we further explored the extent to which living 
in the enriched environment was able to mitigate the Pb-induced gene expression changes (Fig. 3E). We first 
assessed the number of genes that were downregulated by Pb exposure but that might have been upregulated by 
environmental enrichment. Upon performing set comparison analysis (FDR < 0.05), we found 1487 genes that 
were downregulated due to Pb exposure in EPN_non-enriched animals were upregulated by living in the enriched 
environment in the EPN_enriched animals. We next investigated the extent to which the enriched environment 
was capable of reversing the expression of genes that were upregulated as a consequence of Pb exposure. We 
found a set of 1242 genes that were upregulated due to Pb exposure in EPN_non-enriched animals but became 
downregulated upon environmental enrichment in the EPN_enriched animals. The set comparison revealed 
888 downregulated genes and 797 upregulated genes that were unique to only environmental enrichment effect 
(EPN_enriched vs EPN_non-enriched). We also found 524 upregulated and 259 downregulated genes due to Pb 
exposure (EPN_non-enriched vs Control_enriched) that were not reversed by living in the enriched environ-
ment. Thus, living in the enriched environment largely reversed Pb-induced alterations to the transcriptome. 
Supplementary material 6 lists the genes with expression modified by Pb exposure and with expression levels 
further modified by the enriched environment.

Gene ontology (GO) analysis. Gene Ontology (GO) analysis classified DEGs into three groups: biologi-
cal processes, cellular components and molecular functions (Fig. 4). GO analysis was performed only on two 
comparisons, EPN_non-enriched vs Control_non-enriched and EPN_enriched vs EPN non-enriched. The 
other two comparisons, Control_enriched vs Control_non-enriched and EPN_enriched vs Control_enriched, 
had such a low number of DEGs that GO analyses could not be performed. Among the enriched GO pro-
cesses, neuronal-related processes were among the top upregulated processes due to Pb exposure (Fig. 4A) and 
included processes such as synapse organization (GO:0050808), post-synapse organization (GO:0099173), reg-
ulation of synapse structure or activity (GO:0050803) and regulation of synapse organization (GO:0050807). 
The top downregulated processes associated with Pb exposure included regulation of chromosome organiza-
tion (GO:0033044), regulation of chromatin organization (GO:1902275), plasma membrane bound cell projec-
tion assembly (GO:120031), mRNA processing (GO:0006397) and regulation of gene expression, epigenetic 
(GO:0040029) (Fig. 4B). Consistent with the results of the DEseq analysis, the biological, cellular, or molecular 
processes that were downregulated due to Pb exposure were upregulated by environmental enrichment and vice 
versa. For example, covalent chromatin modification (GO:0016569), histone modification (GO:0016570) and 
regulation of chromosome organization (GO:0033044) were among downregulated processes in the EPN_non-
enriched group and were upregulated in the EPN-enriched group (Fig. 4C). We also performed Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) analysis on the DEGs dataset and the results of this analysis are shown in 
Supplementary Material 2, Supplementary Fig. S1). GO analysis was performed to gain insight into the biologi-
cal significance of the genes with expression levels either reversed or not reversed by the environmental enrich-
ment in the Pb-exposed animals (shown in Fig. 3E) and the results for this analysis are shown in the Supple-
mentary Material 3. Among the genes with downregulated expression following Pb exposure that were reversed 
by upregulation in environmental enrichment, several RNA splicing biological process terms were present, with 
mRNA splice site selection (GO:0006376) having the highest enrichment.

Ingenuity pathway analysis (IPA). Ingenuity Pathway Analysis (IPA) was used to identify significant 
biological pathways (p < 0.05) that were most affected by the gene expression changes consequent to Pb exposure 
and the type of post-weaning housing environment. Table 1 shows the top 10 canonical pathways (activated and 
inhibited pathways ranked based on z-score ≥ 2 or ≤ − 2, respectively) identified as affected by Pb exposure and 
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Figure 3.  Analysis of differentially expressed genes (DEGs) showed that the Pb-altered transcriptome was further modified 
by environmental enrichment. (A–D) Volcano plots show log2 fold changes and associated p-values for DEGs in the various 
group comparisons: (A) EPN_non-enriched vs Control_non-enriched; (B) EPN_enriched vs EPN_non-enriched; (C) 
Control_enriched vs Control_non-enriched; (D) EPN_enriched vs Control_enriched. Green colored circles indicate genes 
that were significantly differentially downregulated; magenta-colored circles indicate genes that were significantly differentially 
upregulated (FDR < 0.05); grey colored circles indicate genes with expression unchanged. (E) Set comparison analysis of DEGs 
(FDR < 0.05) showed that environmental enrichment largely reversed Pb-induced transcriptome alterations. DEG sets are 
shown at the bottom with red and blue bars indicating the relative gene set size, where blue highlights downregulation and 
red highlights upregulation. Connectors joining two DEG set rows indicate overlap between those sets, where the bar heights 
on the graph represent set intersection sizes (noted by the numbers above each bar). Living in enriched environment resulted 
in upregulation of 1487 genes that were downregulated due to Pb exposure and downregulation of 1242 genes that were 
upregulated by Pb exposure.
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further modified by enriched environment. The activity pattern (z-score) for several canonical pathways altered 
by enriched environment in Pb-exposed animals was reversed when compared to non-enriched Pb-exposed 
animals (Table 1). The full list of significant biological pathways identified by IPA is shown in the Supplementary 
Table S2. This observation is similar to what was seen for DEGs where many gene expression changes induced by 
Pb exposure were reversed consequent to living in the enriched environment. IPA did not reveal any significant 
pathways altered in control animals housed in an enriched environment.

We also examined IPA results for the top diseases and disorders significantly associated with Pb exposure and 
environment. The top five significant diseases and disorders, molecular and cellular functions, and physiologi-
cal system development and functions enriched for each group comparison are shown in the Supplementary 
Table S3. Notable findings were the enrichment of neurological disease, psychological disorders, cellular devel-
opment, and nervous system development function in non-enriched Pb-exposed animals.

Figure 4.  Gene ontology (GO) analysis of DEGs. Biological, Cellular, and Molecular processes that were 
significantly enriched due to Pb exposure associated with (A) upregulated or (B) downregulated genes (EPN_
non-enriched vs Control_non-enriched). Panels (C) and (D) similarly show Biological, Cellular, and Molecular 
processes that were significantly enriched in response to environmental enrichment in Pb exposed animals 
(EPN_enriched vs EPN_non-enriched) and associated with upregulated or downregulated genes, respectively.
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Using IPA Upstream Regulator Analysis, we also identified upstream regulators that may contribute to gene 
expression changes observed in our dataset (Table 2). In Pb-exposed animals from the non-enriched environ-
ment, JAK1/2 kinases were identified as top upstream regulators affected by Pb exposure, with a predicted acti-
vated state. We next examined the expression levels of the JAK1/2 signaling associated genes and found that Pb 
exposure resulted in upregulation of several genes (BAIAP2, BCL11B, BHLHE22, C1QL3, CNIH2, CTXN1, DDN, 
HPCA, ICAM5, ITPKA, LHX2, NEUROD6, NPTX1, NRGN, PSD, PTK2B, RGS14, RPRML, RSPO2, SLC17A7, 
WIPF3; FDR < 0.05) and downregulation of two genes (FAM81A and KCNG; FDR < 0.05). The expression change 
values are listed in the Supplementary Material 4. The next topmost upstream regulator with a predicted activa-
tion state was cAMP dependent protein kinase A, PKA. Transcription factors NFkB and CREB3 were also among 
top upstream regulators affected by Pb exposure but were not significantly upregulated. SHANK3, essential for 
proper functioning of synapses and a leading candidate gene for  autism36–38, was also one of the top upstream 
regulators identified, although its directional state was not predicted by IPA. MAX, a transcription regulator 
that forms a complex with another transcription regulator  MYC39–42 was significantly inhibited by Pb exposure.

Compared to upstream regulators with mostly positive z-scores and predicted activated states in the Pb-non-
enriched group, IPA analysis of upstream regulators in Pb-exposed enriched animals identified upstream regula-
tors with mostly negative z-scores and with predicted inhibited states (Table 2). For example, JAK1/2 kinases, 
activated in association with Pb exposure, were inhibited in Pb-exposed animals housed in the enriched envi-
ronment. Upon further examination we found that JAK1/2 signaling associated genes which were upregulated 
(mentioned above) due to Pb exposure in non-enriched animals (EPN_non-enriched vs Control_non-enriched) 
became downregulated in animals living in the enriched environment. Similarly, the two genes, FAM81A and 
KCNG, that were downregulated in Pb-exposed non-enriched animals, were upregulated in Pb-exposed animals 
housed in the enriched environment. Several upstream regulators were predicted to be inhibited in EPN_enriched 
vs. non-enriched: Sirtuin 2 (SIRT2), a histone deacetylase and abundantly found in brain regions like hippocam-
pus, cortex and striatum was significantly  inhibited43,44; SOX10, which plays a crucial role in glial differentiation 
was also  inhibited45; mammalian target of rapamycin, MTOR, a serine/threonine kinase that plays an important 
role in neuronal growth and  plasticity46. Other regulators that had negative z-score but were not predicted to be 
inhibitors included SMAD3, LEP, SMYD1, FSH and SHANK3. Two transcription regulators, HNF4A and MYC, 
had positive z-scores but their activation state was not predicated as an activator.

Eight genes were identified as upstream regulators in enriched control animals but none with an activation 
z-score or an identified activation state.

Table 1.  Top canonical pathways from ingenuity pathway analysis (activation z-score ≥ 2 or ≤  − 2 and 
p-value < 0.05). Top 10 canonical pathways whose expression was modified by Pb exposure in animals from the 
non-enriched condition and in which enrichment reversed the direction of the gene expression change. EPN 
early postnatal Pb exposure.

Canonical pathways z-score

EPN_non-enriched vs Control_non-enriched

Ephrin receptor signaling 4.1174614

Regulation of actin-based motility by rho 3.6565517

Ceramide signaling 3.57770876

Actin nucleation by ARP-WASP complex 3.57770876

Oxidative phosphorylation 3.5

RhoA signaling 3.18198052

Rac signaling 3.12358076

Signaling by rho family GTPases 2.94883912

Actin cytoskeleton signaling 2.82842712

fMLP signaling in neutrophils 2.69407953

Small cell lung cancer signaling − 2.3094011

EPN_enriched vs EPN_non-enriched

Small cell lung cancer signaling 2.49615088

Oxidative phosphorylation − 5.7445626

Regulation of actin-based motility by rho − 4.1576092

Superpathway of cholesterol biosynthesis − 3.8729833

RhoA signaling − 3.5688713

Ceramide signaling − 3.544745

Actin nucleation by ARP-WASP complex − 3.4112115

Ephrin receptor signaling − 3.1013194

Cholesterol biosynthesis I − 2.8284271

Cholesterol biosynthesis II (via 24,25-dihydrolanosterol) − 2.8284271

Cholesterol biosynthesis III (via desmosterol) − 2.8284271
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Effects of Pb exposure and environment on mitochondrial gene expression. Our transcrip-
tomic analysis revealed differential expression of several genes (FDR < 0.05; absolute FC ≥ 1.5) involved in 
mitochondrial metabolism and cellular energy regulation as a result of Pb exposure. Lead exposure induced 
a down regulation of important mitochondrial oxidative phosphorylation (OXPHOS)-related genes (Supple-
mentary Table  S4), including NADH dehydrogenase 1 (ND-1) and NADH dehydrogenase 6 (ND-6) that play 
crucial roles in the assembly of complex I, Cytochrome B (Cytb), the only mitochondrial encoded component 
of complex III, Cytochrome C oxidase (COX) I, II and III, electron receptors in the ATP production process, 
and ATP synthase (ATP6) of ATP synthase complex V, that produces ATP from ADP in the last step of the oxi-
dative  phosphorylation47. Negative effects of Pb exposure on mitochondrial gene expression were reversed by 
EE. Mitochondrial OXPHOS genes that were downregulated in EPN_non-enriched animals and upregulated in 
EPN_enriched animals are shown in Supplementary Table S5.

In addition to alterations in expression of mitochondrial OXPHOS genes, we also observed changes in gene 
expression (FDR < 0.05; absolute FC ≥ 1.5) for nuclear encoded mitochondrial genes (See Supplementary Material 
2, Supplementary Table S6). As seen with the OXPHOS genes, environmental enrichment reversed the direction 
of expression changes in all of the genes significantly affected by Pb exposure, such that previously upregulated 
Nat8l, P2ry1 and Ucp2 genes were downregulated as a consequence of environmental enrichment and previously 
downregulated genes Acadsb, Cpt1b, Cyp11b2, Ddit4, Dmgdh, Myo19, Slc9b2, and Slc8a3 genes were upregulated 
by environmental enrichment.

Effects of Pb exposure and environment on alternative splicing (AS). The enrichment of the GO 
terms RNA splicing (GO:0008380) and mRNA processing (GO:0006397) in the gene dataset led us to investigate 
the extent to which differential AS events, if any, occurred in association with Pb exposure and/or EE. The analy-
sis focused on five basic types of AS events: alternative 5′ splice site, alternative 3′ splice site, mutually exclusive 

Table 2.  Top upstream regulators (ranked by z-score) affected by Pb exposure and housing condition. 
Upstream regulators in red font are those in which the directional state was modified by Pb exposure in 
animals from the non-enriched condition and in which the directional state reversed direction in enriched 
animals. EPN early postnatal Pb exposure.

Gene p-value Function Activation z-score Predicted activation state

EPN_non-enriched vs Control_non-enriched

JAK1/2 6.90E−04 Kinase 3.962 Activated

Pka 2.18E−01 Enzyme complex 2.646 Activated

NFkB 3.30E−01 Transcription regulator complex 1.986 –

ERK 2.94E−01 Kinase 1.98 –

CREB3 6.63E−02 Transcription regulator 1.982 –

SHANK3 1.82E−04 Other 1.134 –

MAX 7.23E−03 Transcription regulator − 2 Inhibited

MYC 3.62E−03 Transcription regulator − 0.728 –

EPN_enriched vs EPN_non-enriched

JAK1/2 1.33E−02 Kinase − 3.545 Inhibited

SIRT2 5.65E−02 Transcription regulator − 2.449 Inhibited

SOX10 1.78E−01 Transcription regulator − 2 Inhibited

MTOR 5.22E−01 Kinase − 2 Inhibited

SMAD3 1.80E−01 Transcription regulator − 1.98 –

LEP 5.12E−01 Growth factor − 1.8 –

SMYD1 8.90E−03 Transcription regulator − 1.109 –

FSH 2.48E−02 Complex − 1 –

SHANK3 3.52E−02 Other − 0.447 –

HNF4A 7.69E−04 Transcription regulator 1.972 –

MYC 7.69E−04 Transcription regulator 0.847 –

Control_enriched vs Control_non-enriched

PRKCA 4.78E−05 Kinase – –

MTA2 6.65E−03 Transcription regulator – –

NAB2 6.65E−03 Transcription regulator – –

Ppp1cc 6.65E−03 Phosphatase – –

CHD4 1.11E−02 Enzyme – –

EGR2 1.33E−02 Transcription regulator – –

IGBP1 1.33E−02 Phosphatase – –

Cdkn1c 2.85E−02 Other – –
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Figure 5.  Alternative splicing (AS) events affected by Pb exposure and environmental enrichment. (A) Illustration of the 
five AS event types examined. (B) Types of AS events and number of involved genes detected in exposure-wise comparisons. 
The most significantly enriched AS event was skipped exon events. (C–E) Examples of differential exon skipping events 
in genes with neuronal functions in different exposure-wise comparisons. Boxplots showing the shifts in percent spliced 
in (PSI) values. Exon 9 in Arhgap17 transcripts was significantly more included in the CA1 of Pb exposed, non-enriched 
animals compared to control, non-enriched animals. (C) Lead exposure resulted in a decrease in inclusion of exon 16 in 
Dckl1 transcript as compared to non-enriched controls. (D) Exon 25 of Calcium Voltage-Gated Channel Subunit Alpha1E 
(Cacna1e) was significantly less included among the transcripts in EPN_enriched compared to EPN_non-enriched animals. 
In comparison to Control_non-enriched females, Exon 6 in Netrin G1 (Ntng1) transcripts were more included in Control_
enriched females. (E) Exon 29 in Kinesin Family Member 21A (Kif21a), and exon 17 in Semaphorin 6A (Sema6a) transcripts 
were significantly less included among the transcripts in the CA1 of EPN_enriched animals vs Control_enriched animals for 
these two genes involved in brain development (FDR < 0.05 and delta PSI ≥ 0.05).
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exon, skipped exon, and retained intron (Fig. 5A). Based on an FDR < 0.05, we identified skipped exon as the 
most abundant splicing event affected in Pb exposed non-enriched animals, Pb exposed enriched animals, and 
control enriched animals, suggesting that Pb exposure, environmental enrichment, and the combination of these 
factors may influence AS events (Fig. 5B). Further analysis (Fig. 5C–E) revealed skipped exon events for a num-
ber of genes associated with various neuronal functions, including Rho GTPase Activating Protein 17(Arhgap17 
or Nadrin), a GTPase-activating protein regulates calcium dependent exocytosis in nerve  endings48, Doublecor-
tin-like kinase 1(Dclk1), which plays important roles in neurogenesis and neural  plasticity49, Calcium Voltage-
Gated Channel Subunit Alpha1E (Cacna1e), involved in neurotransmitter  release50,51, and Netrin G1 (Ntng1), 
a cell adhesion molecule involved in regulating fear and anxiety  behaviors52. Similar to what was observed in 
other analyses discussed earlier, we also observed environmental enrichment to reverse the direction of effect 
of Pb exposure on AS events (Table 3) that included the genes Dckl1 (described above), cyclin dependent kinase 
like 1(Cdkl1) a serine-threonine protein  kinase53–55, Cytochrome P450 Family 2 Subfamily R Member 1(Cyp2r1) 
a member of the P450 superfamily of genes that are involved in maintaining the levels of neurochemicals in the 
 brain56, Influenza Virus NS1A Binding Protein (Ivns1abp) that regulates pre-mRNA  splicing57–59 and Leukocyte 
Immunoglobulin Like Receptor B3a (Lilrb3a) that is involved in immune  response60. For example, the inclu-
sion level of Dckl1 alternatively spliced exon 16 that was decreased in EPN_non-enriched animals (Fig. 5C and 
Table 3) was higher in EPN_enriched animals.

Effects of Pb exposure and environment on long noncoding RNA (lncRNA) and mRNA net‑
works. We detected a total of 69 differentially expressed lncRNAs in response to Pb exposure and all 69 
lncRNAs were downregulated (FDR ≤ 0.05) (Supplementary Table S7). Expression of 63 of these 69 lncRNAs 
were upregulated in EPN_enriched vs. EPN_non-enriched animals. In control animals, environment (enriched 
or non-enriched) had no significant effect on expression of lncRNAs.

To explore the potential biological association between differentially expressed lncRNAs and mRNAs in 
our RNA-seq dataset, we constructed a lncRNA–mRNA co-expression network. A pair of lncRNA–mRNA was 
considered to be co-expressed if the expression levels of lncRNA and mRNA could be consistently correlated 
across the  samples30–33. We identified more than 900 pairs in the network (See Supplementary Material 2, Sup-
plementary Figs. S2 and S3). Among these correlations, we found 733 positive and 205 negative correlations in 
the EPN_non-enriched vs Control_non-enriched and 737 positive and 214 negative correlations in the EPN_
enriched vs EPN_non-enriched. We found lncRNA AABR07065531.5 and LOC102550577 to be co-expressed 
with the highest number of mRNAs, 142 and 123, respectively, in EPN_non-enriched vs Control_non-enriched 
conditions and also in EPN_enriched vs EPN_non-enriched conditions (See Supplementary Material 2, Sup-
plementary Figs. S4 and S5).

Discussion
There are a number of different perinatal environmental and behavioral factors that may influence the develop-
ment of the brain and affect subsequent cognitive and behavioral functioning. Early developmental exposure to an 
environmental neurotoxicant such as Pb, with adverse consequences for cognitive and behavioral development, 
is inevitably intertwined with co- or sequentially occurring early life experiences that can vary in their charac-
ter. Both early exposures to an environmental risk factor such as Pb, and the nature of behavioral experiences, 
have the potential to modify the structure and function of the brain as well as the epigenetic and transcriptional 
landscape underlying physiological and plasticity-related processes. Dynamic interactions between these influ-
ences shape the brain and impact neurodevelopmental vulnerability or resilience, influencing the likelihood of 
behavioral/cognitive problems in childhood and later in adulthood.

The present study examined the impact of the complexity of the postnatal environment on behavioral and 
transcriptional outcomes related to early postnatal Pb exposure. We observed that living in an enriched envi-
ronment had no effect on memory abilities of normal animals and caused minimal differences in gene expres-
sion profiles in CA1 in non-Pb-exposed animals raised in an enriched environment vs. animals raised in a 
non-enriched environment. In contrast, on the background of early life Pb exposure, the quality of the post-
natal environment, non-enriched or enriched, had a significant impact on associative memory function and 

Table 3.  Environmental enrichment modifies Pb exposure-induced exon skipping events. PSI Percent Spliced 
In, deltaPSI: PSI (EPN_non-enriched—Control_non-enriched) or PSI (EPN_enriched—EPN_non-enriched), 
EPN early postnatal Pb exposure.

Gene symbol

Pb exposure regulated exon skipping events
Environmental enrichment modifies the pattern of Pb regulated exon 
skipping events

EPN_non-enriched PSI
Control_non-enriched 
PSI

EPN_non-enriched vs 
Control_non-enriched 
deltaPSI EPN_enriched PSI EPN_non-enriched PSI

EPN_enriched vs EPN_
non-enriched deltaPSI

Dclk1 0.404 0.546 − 0.142 0.520 0.404 0.116

Cdkl1 0.993 0.88 0.113 0.888 0.993 − 0.105

Cyp2r1 0.927 0.588 0.339 0.530 0.927 − 0.397

Ivns1abp 0.056 0.144 − 0.088 0.496 0.056 0.109

Lilrb3a 0.848 0.254 0.594 0.193 0.848 − 0.656
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gene expression patterns in CA1. These findings are consistent with previous work from our  lab16,17 and other 
 groups18 that have described positive effects of environmental enrichment on cognitive/behavioral functions in 
Pb-exposed animals and positive effects on expression of select genes. The current work is the first to present a 
comprehensive picture of the interactions between early life Pb exposure and quality of the postnatal environ-
ment on the transcriptional landscape in hippocampus CA1 and the first to specifically assess these impacts on 
mitochondrial genes, lncRNAs, and AS events.

Principal component analysis (PCA) showed that both control groups and EPN_enriched animals grouped 
together while EPN_non-enriched animals were grouped separately. Heat maps showed very similar gene expres-
sion patterns for both control groups and EPN_enriched animals and these differed significantly from the 
gene expression pattern of the EPN_non-enriched animals. Additionally, living in the enriched environment 
was capable of reversing the expression changes of genes that were either downregulated or upregulated as a 
consequence of Pb exposure. Environmental enrichment was able to allow the brain to not only overcome the 
detrimental effects of early life Pb exposure on associative memory function but in many instances, to reverse 
the effects of Pb exposure on the CA1 transcriptome. These findings emphasize the importance of the quality 
of the postnatal environment for influencing the response of the brain to the detrimental effects of early life Pb 
exposure. Importantly, these findings indicate that the negative effects of early life Pb exposure on the brain and 
behavior are not immutable and can be influenced by the quality of the postnatal environment.

To the best of our knowledge, ours is the first exploration of the effects of Pb exposure and environment on 
the CA1 transcriptome and upstream regulators of gene expression. We show that several molecular pathways 
that were altered due to developmental Pb exposure showed changes in the opposite direction with enrich-
ment. For example, Ephrin Receptor Signaling was among the top canonical pathways identified as differentially 
upregulated in the EPN_non-enriched group and downregulated in the EPN_enriched group. Ephrin (Eph) 
receptors and their ephrin ligands are present pre- and postsynaptically, and are involved in regulating synaptic 
transmission, plasticity, and memory  formation61. Due to their complex and wide influence on other genes, Eph 
receptors are capable of influencing a variety of biological  outcomes62–64. Dysregulated Eph receptor signaling 
has been implicated in abnormal neural development and altered synaptic  transmission65,66. Gene networks of 
RhoA signaling, Rac signaling, and Signaling by Rho Family GTPases also play important roles in neuronal 
functioning, and were upregulated in the EPN_non-enriched group and downregulated in the EPN_enriched 
group. Interestingly, Eph receptors also regulate Rho GTPAse family genes including RhoA and Rac1 that are 
involved in  synaptogenesis64,67.

One of the top upstream regulators affected by Pb exposure, JAK1/2 kinase, with a predicted activated state 
in EPN_non-enriched animals, was affected in the opposite direction (i.e., predicted inhibition state) in Pb-
exposed, enriched animals. This is particularly interesting as in addition to being involved in brain inflammation 
and neuronal/glial  survival68,69, JAK1/2 kinases and JAK-STAT signaling are also associated with hippocampal 
synaptic  plasticity68 and may play roles in a variety of neurological  disorders68,70.

Ingenuity Pathway Analysis identified top diseases and biological functions with transcriptomic changes in the 
different treatment groups, with results highly overlapping between the EPN_non-enriched and EPN_enriched 
groups. However, closer inspection of the data revealed that the direction of the changes in the genes constituting 
the top identified networks were in opposite directions in enriched versus non-enriched Pb-exposed animals 
and showed that environmental enrichment could reverse multiple gene pathway changes that occurred as a 
result of Pb exposure.

We believe that the current report is also the first exploratory study to identify effects of developmental Pb 
exposure and quality of housing environment on expression of mitochondrial genes. Mitochondria and the 
mitochondrial genome are known to be sensitive to  Pb71. Chronic Pb exposure in humans also adversely affects 
mitochondrial calcium dependent enzyme systems, ATPases, and mitochondrial  OXPHOS72. In the present study, 
mitochondrial genes encoding OXPHOS system components were significantly downregulated due to EPN Pb 
exposure in non-enriched animals, with the potential for compromising mitochondria ATP production. Environ-
mental enrichment reversed the effects of Pb exposure on gene expression of these mitochondrial OXPHOS com-
ponents. Several of the same mitochondrial genes affected in our study are also affected in humans occupationally 
exposed to  Pb71. Interestingly, although EPN Pb exposure resulted in a significant reduction (log2FC > 1.5) in 
expression of OXPHOS pathway-related mitochondrial genes suggesting a downregulation of this pathway, IPA 
analysis suggested the OXPHOS pathway to be upregulated. The IPA-identified upregulated OXPHOS pathway 
included mainly 15 upregulated nuclear encoded OXPHOS mitochondrial genes with fold enrichments of small 
magnitudes (log2FC < 1.5). Gene expression changes of these magnitudes may not be biologically relevant at a 
single gene level but could become important if several genes with small expression changes are part of a single 
pathway. If mitochondria encoded OXPHOS genes were significantly downregulated at a high level but nuclear 
encoded OXPHOS genes showed small differences in expression and yet the OXPHOS pathway was identified 
as upregulated, what could be the significance of the observed changes in mitochondrial OXPHOS gene expres-
sion? One possibility is that there may be a differential effect of Pb exposure on the mitochondrial and nuclear 
genomes and net influences of mitochondria and nuclear (mitonuclear) crosstalk may determine the direction 
of change in the OXPHOS  pathway73–75. Lead exposure was also associated with significant changes in gene 
expression for nuclear encoded mitochondrial genes [not associated with OXPHOS pathway and (log2FC ≥ 1.5)] 
and living in an enriched environment reversed the direction of expression change. These observations suggest 
that dysfunction of the OXPHOS pathway due to Pb exposure and its potential modification by environmental 
enrichment is worthy of further investigation.

Global AS alterations due to environmental exposures to chemicals, heavy metals, and stress have recently 
been  reported76–78 and we identified perturbations in the normal pattern of AS in several genes due to Pb expo-
sure. The most significantly affected AS event was exon skipping. Identification of a significantly abrupted splic-
ing pattern in several genes suggests that Pb exposure may affect post-transcriptional regulatory mechanisms, 



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11937  | https://doi.org/10.1038/s41598-022-15861-9

www.nature.com/scientificreports/

however, the extent to which these Pb-affected alternative exons influence cellular functioning is not clear. A 
prior RNA-seq study showed an association between Pb exposure and splicing alterations in an in vitro model 
system, however very high Pb concentrations (30 µM) were  used79. In our study, among the 49 genes showing an 
altered splicing pattern associated with Pb exposure, 5 genes showed an opposite pattern in Pb-exposed animals 
from the enriched environment. This suggests that the specific factors (cis or trans) perturbed by Pb exposure 
responsible for regulating the balance of normally spliced transcripts do not completely overlap with factors 
affected by environmental enrichment at a genome-wide level. Among the genes whose splicing pattern was abol-
ished in the EPN_enriched group, Dclk1 is interesting in that it plays an important role in synaptic plasticity and 
 neurodevelopment49,80,81. Enriched environment also influenced the abundance of alternatively spliced mRNA 
isoforms in non-Pb-exposed animals, however, different genes were influenced by environmental enrichment 
in control animals versus Pb exposed animals. While the degree to which such changes have any physiological 
impact remains to be characterized, our findings suggest that AS may be an important aspect of the response of 
the brain to both Pb and environmental enrichment.

Another unique observation from our study is the differential expression of epigenetic regulators, lncRNAs, 
in response to Pb exposure and the ability of environmental enrichment to modify these Pb exposure-induced 
alterations in lncRNA expression. As the biological function of most of the lncRNAs is unknown, construction 
of lncRNA-mRNA networks allows us to predict the function of a lncRNA based on the function of mRNA co-
expressed with a specific  lncRNA30–33,82. We constructed co-expression networks between differentially expressed 
lncRNA and mRNAs in the EPN_non-enrich vs Control_non-enrich and EPN_enrich vs EPN_non-enrich 
revealing more than 900 relationships in each condition. Two lncRNAs, AABR07065531.5 and LOC102550577 
were co-expressed with the greatest number of mRNAs. lncRNAs are known to interact with a variety of chroma-
tin modifying proteins influencing the gene  expression83,84 and we found that AABR07065531.5 is positively cor-
related with Lysine Demethylase 5A (Kdm5a) that encodes a chromatin regulator and regulates gene  expression85. 
Previously, some studies also reported the involvement of lncRNAs in Pb-induced neuronal  apoptosis86–88. Thus, 
in addition to studying expression of mRNAs, investigating the functional role of lncRNAs and their targets 
may provide an enhanced understanding of the molecular mechanisms involved in Pb-induced neurotoxicity.

The present study has a few limitations. First, this study used only females, so it is not known the extent to 
which the transcriptomic changes observed here are specific to females. We have previously reported sex-specific 
differences in gene expression changes due to developmental Pb  exposure89–91 and therefore, it is quite possible 
that there may be a sex-dependent transcriptomic response to Pb ± environmental enrichment at a genome-wide 
level as well. Another limitation of our study is that we cannot differentiate between what may be adaptive or 
maladaptive responses from the experimental manipulations using only RNA-seq. Alterations in the transcrip-
tome do not always reflect functional changes. Hence, future studies integrating various omics technologies 
(such as epigenomics, proteomics and metabolomics) with transcriptomics could potentially provide a more 
comprehensive understanding of the pathways and mechanisms involved in the response of the brain to Pb 
exposure and how environmental enrichment may modify those effects.

The present study did not detect an effect of enrichment on associative memory or transcriptional regula-
tion in normal animals and there are several possible explanations for this. The fear conditioning paradigm 
used was designed to detect memory deficits in Pb-exposed animals and is less sensitive to detecting any pos-
sible enhancement above normal consequent to environmental enrichment due to a ceiling effect. Previously 
published studies investigating the effect of enrichment on gene expression in the brain (examining selected 
genes or gene expression using microarrays or RNA-seq) have reported significant changes in gene expression 
due to environmental  enrichment18,92,93. The limited transcriptomic response detected in hippocampus CA1 
in control animals in our study compared to previous studies could be related to differences in the duration of 
living in the enriched environment, type of enrichment, frequency with which objects in the environment were 
changed, numbers of conspecifics in the enrichment cage, and whether the group for comparison consisted of 
socially housed animals or isolation housed  animals94, as well as brain region examined, species, strain, and sex. 
Different types of environmental enrichment (i.e., cognitive stimulation (exposure to toys), exercise (running 
wheel), motor learning) have been shown to have discrepant effects on memory in female mice, with exercise, 
but not cognitive stimulation, improving  memory95. Our enriched environment did not include an exercise 
component (i.e., no running wheels). Similarly, studies in young adult rats that have demonstrated effects of 
environmental enrichment on learning and memory have been performed almost exclusively in males and our 
study was performed using females. This may be an important difference as sex-related in differences in response 
to enrichment have been  reported96.

Conclusions
In summary, our study shows widespread effects of developmental Pb exposure on the CA1 transcriptome and 
numerous biological processes, signaling pathways, nuclear and mitochondrial gene expression, AS events, 
and lncRNA expression that correspond with expression of associative memory deficits in EPN Pb-exposed 
rats. Enrichment provided post-weaning reversed many of Pb-induced transcriptional changes and improved 
associative memory functioning. It is increasingly appreciated that early life experiences affect broad life-course 
trajectories at least in part through modification of transcriptional  regulation97. While the interactive effects of 
socioeconomic status (SES) and Pb exposure on neuropsychological outcomes in children have been known for 
quite some time, the effects of SES on the structure of the developing brain and the interaction with childhood 
Pb exposure has only recently begun to be  explored15. In addition to the structural changes described by Marshall 
et al.15 the current findings suggest that interactions between Pb exposure and environment might also result in 
significant transcriptional changes in the brains of Pb-exposed children that could have profound influences on 
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neuropsychological and educational outcomes, further underscoring the potential importance of early interven-
tion and environmental enrichment especially for low SES, Pb-exposed children.

Data availability
Genomic data from this project is available in GSE180354.
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