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A deep learning framework 
for epileptic seizure detection 
based on neonatal EEG signals
Artur Gramacki1* & Jarosław Gramacki2

Electroencephalogram (EEG) is one of the main diagnostic tests for epilepsy. The detection of epileptic 
activity is usually performed by a human expert and is based on finding specific patterns in the 
multi-channel electroencephalogram. This is a difficult and time-consuming task, therefore various 
attempts are made to automate it using both conventional and Deep Learning (DL) techniques. 
Unfortunately, authors do not often provide sufficiently detailed and complete information to be able 
to reproduce their results. Our work is intended to fill this gap. Using a carefully selected 79 neonatal 
EEG recordings we developed a complete framework for seizure detection using DL approch. We share 
a ready to use R and Python codes which allow: (a) read raw European Data Format files, (b) read data 
files containing the seizure annotations made by human experts, (c) extract train, validation and test 
data, (d) create an appropriate Convolutional Neural Network (CNN) model, (e) train the model, (f) 
check the quality of the neural classifier, (g) save all learning results.

Epilepsy is a neurological disorder of the brain that affects people of all ages. Around 50 million people world-
wide have epilepsy, making it one of the most common neurological diseases globally. It is estimated that up 
to 70% of people living with epilepsy could live seizure-free if properly diagnosed and treated with the help of 
anti-epileptic  drugs1. A relatively small number of patients require surgical intervention (mainly those who are 
resistant to drug therapy) and/or electrical  stimulation2,3.

The source of this disease is still not well understood. However, despite this, many patients can be medically 
treated if seizures are diagnosed on time. As a gold standard, the electroencephalogram (EEG) signal is very 
important in the diagnosis of epilepsy. The EEG recordings are collected by placing electrodes on the scalp of 
the patient and then record the electrical signals produced by the brain. Typically, diagnosis using EEG signals 
is carried out using the knowledge and experience of experts, based on visual inspection of the seizure signals 
recorded during EEG sessions. However this process is subject to errors, expensive and slow. It is not so rare 
that two independent experts will evaluate the same electroencephalogram significantly  different4. This is not a 
desirable situation, as it may lead to, for example, improper treatment.

The aim of this paper was to develop a complete framework for EEG-based seizure detection using Deep 
Learning (DL) techniques. We have chosen Convolutional Neural Network (CNN) approach as currently one of 
the most promising technologies used in the area of data analysis. To present the developed framework we chose 
the EEG database with carefully selected 79 neonatal EEG recording along with seizure annotations made by 
three human  experts5. Let us mention that this dataset was also used by other researchers in their  works6–8.  In6 
the authors developed a novel method for detecting the nonstationary periodic characteristics of EEG signals 
to detect periods of seizure and nonseizure activities.  In7the authors use similar to ours methodology based on 
CNNs and also note the need for large amounts of training data to achieve satisfactory results. They use a concept 
called weak  annotations9 to increase the amount of training data.  In8 authors assess how different deep learning 
models and data balancing methods influence learning in neonatal seizure detection. They also propose a model 
which provides a level of importance to each of the EEG channels which help clinicians understand which chan-
nels contributed most to the detection of seizure.

In recent times DL techniques have been shown to be very useful for solving many complex tasks, mainly 
related to the classification of images, video sequences and text data, see as an example two selected  works10,11. 
A lot of papers have also been published in which the authors present the results of numerous automated seizure 
detection algorithms (SDA) for EEG signals. In three review  works12–14, the authors have compiled most of these 
results. Different DL models have been used in SDA such as classical sequential CNNs but also its variants like 
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Convolutional Autoencoders (CNN-AEs), Convolutional Recurrent Reural Networks (CNN-RNNs), Long Short-
Term Memory (LSTM)15. Our work can be considered as another proposal in this area of research.

It should also be mentioned that there are quite a few non-EEG-based methods for epileptic seizures detec-
tion like near-infrared spectroscopy (NIRS), functional MRI (fMRI), positron emission tomography (PET), 
magnetoencephalography (MEG) or electrocorticography (ECoG)16.

Main contributions of the paper. The main contributions of this paper can be listed as follows: 

1. We have proposed a DL-like framework based on CNN for detecting seizure activities and test its usability 
on a real neonatal EEG dataset.

2. We have proposed a sliding window design to generate fully balanced training data. The design can greatly 
increase the amount of data which is then fed to the neural network. This can be seen as a kind of data 
augmentation and this process is crucial for CNNs which typically require large amounts of data to operate 
effectively and produce useful results.

3. We have developed a solution for reading raw EDF and annotation files with seizure indications made by 
human experts. Based on these data a training dataset for CNN network is generated and saved in HDF5 
format. This work was programmed in R programming environment and shared to the user as ready-to-use 
R scripts.

4. We have developed a CNN model which can be successfully trained to detect seizure episodes. The obtained 
results of the classification (at the level of 96–97%) should be considered almost perfect. This work was 
programmed in Python programming environment and shared to the user as a ready-to-use Python Jupyter 
notebook.

5. We have made it our priority to ensure that all the presented results are fully reproducible by other research-
ers. Therefore, all the source codes as well as all the output results obtained by the authors have been included 
in the Supplementary Information files. Detailed instructions on how to do this have been also included.

  We consider this point particularly important. To cite a very extensive review  work14, we have that “...
the great majority of papers did not make their code available. Many papers reviewed are thus more difficult 
to reproduce: the data is not available, the code has not been shared, and the baseline models that were used to 
compare the performances of the models are either nonexistent or not available.”.

6. The study will also help readers to analyze their own EEG datasets with only minor modifications to our R 
and Python codes (adjusting them to possible differences in the EEG data used and in the way seizures are 
annotated).

The overall workflow of the proposed system, schematically depicted in Fig. 1, is decomposed into 4 main 
phases: (1) preprocessing of the raw EEG recordings and annotation files, (2) building CNN model, (3) training 
CNN model, (4) generating final classification results. The preprocessing stage is designed to load the input data 
(raw EDF and annotation files) and convert it to a format that can be submitted to the CNN model. This step has 
been implemented in the R software version 4.1.217. Building a CNN model, training it and finally generating all 
the results has been implemented in TesnorFlow version 2.8.018 and delivered as a Python Jupyter  notebook19.

Methods
Cohort. The study was conducted on a carefully selected 79 neonatal EEG recordings dataset. The neonates 
were admitted to the neonatal intensive care unit (NICU) at the Helsinki University Hospital between 2010 and 
2014. The cohort is described in detail  in5, please refer to the source text. Moreover, the relevant ethics approval 
has been included therein. All experiments were performed in accordance with the relevant guidelines and 
regulations.

A neonatal seizure is a seizure in a baby younger than 4 weeks old. Such seizures differ from those of older 
children and adults, mainly due to brain  immaturity20. The most frequent neonatal seizures are described as 
subtle because the clinical manifestations are frequently  overlooked21.

Input data. The neonatal EEG dataset consists of (a) 79 raw EDF files, (b) 3 annotation files in CSV and 
Matlab MAT formats. EDF files contain EEG referential signals recorded with 19 electrodes positioned as per 
the international 10-20 standard (Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, P3, P4, Pz, T3, T4, T5, T6, O1, O2). 
Sampling frequency was set to 256 Hz and the signals were recorded in microvolts. The complete dataset is avail-
able at https:// zenodo. org/ record/ 49402 67.
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Figure 1.  The overall workflow of the of the proposed system.
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The raw signals are not used directly. Instead, the so-called bipolar montage was generated known by the slang 
’double banana’ (Fp2-F4, F4-C4, C4-P4, P4-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fp2-F8, F8-T4, T4-T6, T6-O2, 
Fp1-F7, F7-T3, T3-T5, T5-O1, Fz-Cz, Cz-Pz), see Fig. 2. This bipolar EEG montage was used by 3 independent 
experts to annotate the presence of seizures.

The annotation files are sampled with one second resolution. The detailed structure of these files is described 
 in5. Since reading this data directly from CSV or MAT files is quite inconvenient, we have collected basic quan-
titative data on seizures and included them in two tables. Table 6 shows how many seizures were annotated for 
each infant by each of the three experts. Note that we have 40 neonates with seizures annotated by 3 experts and 
17 neonates had seizures annotated by 1 or 2 experts. 22 neonates were seizure free. The experts are marked as A, 
B or C. Table 7 shows a complete list of lengths of seizures annotated by 3 experts (in whole seconds). The total 
number of seizures is 1,379, which is obviously the same as shown in the last lines of Table 6. Tables 6 and 7 are 
very long but the authors decided to include them in its entirety, as obtaining this data from CSV files manu-
ally would be very time consuming. The use of an appropriate software here is basically essential. An additional 
summary of the annotations is provided in Table 8.

Let us note here that in many cases there is a discrepancy in the annotations of individual experts. For 
example, for infant number 41, experts A and C indicated significantly more seizures than expert B. The lengths 
of individual seizures also very often vary between experts. Such a variety of end results (no consensus among 
experts) is rather quite natural in the field of EEG signal  analysis4.

Software. The raw EEG recordings were preprocessed (reading and saving in Hierarchical Data Format 
(HDF5)) using the R software, version 4.1.217. HDF5 format was chosen because it is an ideal choice for storing 
and organizing large amounts of data.

In our research Keras DL library was used to develop the CNN  model22. It is also worth to note that Keras is 
a wrapper to TensorFlow’s  framework18. Keras was adopted and integrated into TensorFlow in mid-2017. Users 
can access it via the tf.keras module. TensorFlow, on the other hand, is an open-source DL framework devel-
oped by Google and released in 2015. Typically, one can define a model with Keras’ interface, which is easier to 
use, then drop down into TensorFlow if you need to use a feature that Keras doesn’t have, or you’re looking for 
a specific TensorFlow functionality.

Due to the required great computing power, our code was run in the Colaboratory cloud service hosted by 
 Google23, where fast GPU graphics cards are available (https:// colab. resea rch. google. com). The Google Colabo-
ratory service allows users to write and run Python code directly in the WWW browser, which is an extremely 
convenient solution. A similar functionality is offered by the Kaggle service (https:// www. kaggle. com/).

Data preprocessing. This chapter describes in detail how to prepare datasets for further analysis. This is a 
very important issue that, if not done properly, may have an impact on the final results of EEG signals classifica-
tion. Unfortunately, in many papers the authors omit a more detailed description of this stage. We would like to 
fill this gap here. There are several steps involved in this process, as described below.

• Step 1. Selection of EEG recordings: The data is analyzed separately for each expert (A, B or C). We are dealing 
here with a binary classification (seizure / non-seizure). Therefore, it is necessary to select from the available 
EEG signals those that were assessed by experts as seizures and those assessed as seizure free.

Figure 2.  Electrode locations of International 10–20 system for EEG recording (figure taken  from30).

https://colab.research.google.com
https://www.kaggle.com/
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  40 neonates had a seizure annotated by all 3 experts (infants No. 1, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17, 19, 20, 
21, 22, 25, 31, 34, 36, 38, 39, 40, 41, 44, 47, 50, 51, 52, 62, 63, 66, 67, 69, 71, 73, 75, 76, 77, 78, 79). We mark this 
subset as EXP3. 22 neonates were seizure free (infants No. 3, 10, 18, 27, 28, 29, 30, 32, 35, 37, 42, 45, 48, 49, 
53, 55, 57, 58, 59, 60, 70, 72). We mark this subset as EXP0. Finally, the remaining 17 neonates had a seizure 
annotated by only 1 or 2 experts (infants No. 2, 6, 8, 12, 23, 24, 26, 33, 43, 46, 54, 56, 61, 64, 65, 68, 74). We 
mark this subset as EXP12. Due to the ambiguity in the expert opinion this subset was excluded from the 
analysis. Table 6 summarises the three subsets.

• Step 2. Bipolar montage: In the next step the bipolar montage was generated as described in “Input data” 
section. At this point, it should be noted that the order of signals in individual EDF files is different, so it is 
required to always set them in the same order. It is a small but very important part of data preprocessing. For 
example in the EDF file of the infant No. 1 the order of raw signals is Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, 
O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz while in the file of the infant No. 2 the order is Fp1, Fp2, F3, F4, F7, F8, 
Fz, C3, C4, Cz, T3, T5, T4, T6, P3, P4, Pz, O1, O2. This step has been implemented in R.

• Step 3. Down-sampling: Sampling frequency of the EEG recordings was set to 256 Hz. In the case of analyzes 
using neural networks, this frequency is too high and unnecessarily increases the size of the input data 
(already quite large). Therefore, the data is down-sampled. After performing various experiments, the authors 
concluded that the optimal down-sampling coefficient should be 4. This means that signals with a frequency 
of 64Hz are fed to the input of the neural network. Reducing the frequency can, in a sense, be treated as a 
form of data smoothing. Figure 3 shows two fragments of EEG recordings, each 3 seconds long. In the upper 
figure, the signal frequency is 256 Hz and in the lower figure it is down-sampled to 64Hz. The aforementioned 
smoothing effect is clearly visible. Down-sampling has been implemented in R.

• Step 4. Sliding window design: From Table 6 one can calculate that an average of 460 seizures were anno-
tated per expert in the EEG dataset. This number is definitely too small to effectively train neural networks 
(especially when training convolutional neural networks). Therefore, we used a sliding window technique to 
increase the amount of data which is then fed to the neural network. The second important task of the pro-
posed sliding window design is to select a balanced number of seizure and non-seizure chunks. The process 
of preparing training data for CNN consists of two steps: a) selection of positive and b) selection of negative 
samples from all recorded EEG signals. A positive sample is a chunk/fragment with an annotated seizure, a 
negative sample is a seizure-free chunk/fragment. The design is illustrated in Figs. 4, 5 and 6.

  In all three figures the F3-C3 channel of infant # 1 is depicted (arbitrary selected by the authors). At the 
top panel there are two EEG signals with seizures annotated by expert A. The first one begins at the 104th 
second and ends at the 121st second, the second seizure begins at the 6847th second and ends at the 6863rd 

Figure 3.  Two exemplary EEG signals. At the top, the original signal sampled at 256 Hz is depicted, at the 
bottom one can see the signal after reducing the frequency to 64 Hz.
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second (see Table 7). At the bottom panel there is the F3-C3 channel of infant # 10 which is seizure free with 
randomly selected appropriate number of chunks (5, 4 and 10, respectively).

  We have two parameters at our disposal (window and chunks). Using them, we can define what the 
resulted data samples will look like. In Fig. 4 we have given window=6 and chunks=3. This means that 
we want to choose 3 chunks from every annotated seizure, each 6 seconds long. Note that the second seizure 
is 17 seconds long, so actually it is possible to select only 2 and not 3 chunks (otherwise, we will fall into a 

Figure 4.  Sliding window design. (a) Channel F3-C3 of infant # 1. (b) Channel F3-C3 of infant # 10 which is 
seizures free. Red and blue signals are the real ones. The top signal has 2 seizures annotated by expert A. The 
first one starts at 104th second and ends at 121st second and is 18 seconds long. The second one starts at 6847th 
second and ends at 6863rd second and is 17 seconds long (see Table 7). By setting the appropriate values for 
the window and chunks variables, we can control the length of the samples (window variable) and their 
total number ( chunks variable). The window length was set to 6 seconds and the number of chunks was set 
to 3. Note, that the length of the second seizure fragment is 17 seconds. Consequently, it is possible to select 
only two chunks from the second seizure (although we assumed that we are selecting 3 chunks). From the first 
seizure one can safely get 3 chunks. The bottom EEG signal has no seizures annotated. We select randomly the 
same number of chunks (i.e. 5) as we have selected from the top EEG signal. Thanks to this method of selecting 
chunks, the number of seizure and non-seizure chunks is well balanced. The starting and ending seconds were 
chosen randomly (form example form 44 to 49 etc.).

Figure 5.  An analogous example to the one shown in Fig. 4. The EEG signals are the same. The figures differ in 
that window and chunks parameters have different values. Note also that now the window length was set to 5 
and 2 chunks from each of the two seizure fragments were selected, see top picture (a). Consequently, 4 chunks 
were selected form the non-seizure signal, see bottom picture (b).

Figure 6.  An analogous example to the one shown in Fig. 4. The EEG signals are the same. The figures differ 
in that window and chunks parameters have different values. Note also that now window length was set to 2 
and 5 chunks from each of the two seizure fragments were selected, see top picture (a). Consequently, 10 chunks 
were selected form the non-seizure signal, see bottom picture (b).
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non-seizure area). The first seizure is 18 seconds long, so it is possible to select 3 chunks. In Fig. 5 we have 
given window=5 and chunks=2 and now the lengths of both seizures allow you to select 2 chunks. In 
Fig. 6 the window size is set to 2 and the desired number of chunks is 5.

  Next, we need to select a relevant number of seizure-free chunks. The binary classification (seizure/non-
seizure) requires that the dataset is well balanced. In the context of classification task, this means that the sizes 
of seizure and non-seizure samples should be more or less the same. The non-seizure chunks are randomly 
selected from non-seizure EEG signals (bottom panels in Figs. 4, 5 and 6, patients in the group EXP0, see 
Table 6). As the result, there is no danger that both subsets will be unbalanced. The total number of non-
seizure chunks is 5, 4 and 10 respectively in our examples. window and chunks parameters can of course 
be set to any integer values, according to your needs.

  The above-described method of selecting windows and chunks has been implemented in R.
  Note also that there are studies in which the authors propose methods that allow for the effective detection 

of epileptic seizures for imbalanced EEG  recordings24,25. However, our solution based on the CNN approach 
requires that the data be fully balanced, hence we use sliding windows design described above. Our design, 
by definition, guarantees the generation of a fully balanced data set. If unbalanced data were fed to the CNN 
network, the obtained results (binary classification: seizure / non-seizure) would be less reliable and accurate.

  We also point out a subtle difference. In the field of EEG signal analysis, the term epoch is used. EEG 
epoching is a procedure in which specific time-windows are extracted from the continuous EEG signal. In 
our approach we use the term window and not the epoch to emphasize a slightly different meaning. We do 
not divide the entire EEG signal into epochs, but select only the fragments that interest us, which we call 
windows, please see Figs. 4, 5 and 6 for explanation. Because CNN networks require large amounts of data 
to function properly (mainly we mean reducing the phenomenon known as overfitting), we also introduce 
the concept of chunks, which allows us to increase the amount of training data we have in our disposal. Let 
us also mention that the concept of chunks is somewhat similar to the commonly used data augmentation, a 
powerful technique for mitigating overfitting in computer vision. Note also that some authors propose epoch 
reduction approach for better accuracy of the  model26,27 but in our case, this technique is not applicable.

• Step 5. Saving data in HDF5 format: After completing all the above steps, we obtain the final matrix where 
fragments with and without seizures are present. For the case shown in Fig. 4, the size of the matrix will be 
19× 20 , see illustrative Fig. 8 (the last row is the class indicator, 1 means seizure, 0 means non-seizure). Note 
also that all 18 channels are analyzed simultaneously. The data in this form is then saved in HDF5 format 
which is very convenient for storing large files of numeric data in an efficient binary format. The saved HDF5 
files are passed as input to the appropriate Python routines that implement CNN learning.

  Note that in reality matrices generated from our real EDF files will be much bigger. After down-sampling 
our EEG dataset every second is represented by 64 datapoints (see Step 3 above). Therefore, the matrix for the 

Figure 7.  The CNN sequential model used by the authors in all numerical experiments. The Python codes 
where the model is implemented is available for download in Electronic Supplements.
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data schematically depicted in Fig. 4 would be 19× 3840 . Moreover, when working with real data, matrices 
will be even many times larger since multiple seizures are marked in EDF files and EEG recordings are often 
longer than 20 seconds (unlike those shown in the Figs. 4, 5 and 6). Additionally, the seizures annotated last 
for many seconds (see Table 7) and the window and chunks parameters can actually take values greater 
than those in the toy example shown above. For example from Table 6 we read that expert A annotated 385 
seizures in the subset EXP3. If the parameters have the following values: window=2, chunks=3 and 
f=64Hz the matrix will have 385× 64× 2× 3 = 147, 840 rows.

Deep learning CNN architecture. The CNN model used in our research has the structure shown sche-
matically in Fig. 7 using summary function implemented in Keras. Its structure is the result of many experi-
ments and tests aimed at developing the most optimal structure possible. Summary of the most important ele-
ments of the CNN architecture is depicted in Table 1.

Input data format for CNN. The data stored in the form of two-dimensional matrix shown in Fig. 8 can-
not become directly the input for the CNN network implemented in Keras system. It is required to transform it 
(in other words: rearranging) into the so-called tensors form. Tensor is nothing but a generalization of the con-
cept of a vector or matrix. Only in this form the data can be used in CNN. For those interested, we recommend 
a very clearly written  book15. Details of the rearranged matrix are shown in Fig. 9. A tensor of size 10× 384× 18 
and a vector of size 10× 1 are created. The rearranging has been implemented in Python. Looking at the tensor 
it is easy to notice how the individual chunks are organized.

In Fig. 10 four randomly chosen pairs of seizure/non-saizure chunks are depicted. The individual EEG signal 
values are represented as colormaps. It is easy to notice that the analysis of EEG signals, in the form of time series, 
de facto leads to the analysis of two-dimensional images. Upper plots show seizure chunks and the lower ones 
show non-seizure chunks. A certain pattern can be seen in Fig. 10a,b. Top drawings appear more blurry. However, 
in Fig. 10c,d the human eye cannot see any clear differences. However, very good results of the classification with 
the use of the CNN approach prove (not for the first time anyway) that deep neural networks learning is able to 
successfully solve the seemingly unsolvable tasks.

Training, validation and test data. In order to make CNN working correctly, it is necessary to split 
the data into three parts: a) training, b) validation and c) test. The model is trained on the training data and 
its accuracy is constantly checking using the validation data. Once the model is trained, it is tested on the test 
data. The test set is not involved in the process of building and tuning the model. This is the basic principle that 
guarantees the objectivity of the obtained results. The splitting data into test and validation sets is usually done 
randomly. The result of the validation stage will therefore depend on which elements of the dataset will be used 
during validation and which during the training stages. In this case, the validation result will not be reliable. The 
best practice in such situations is to use K-fold cross-validation. It is based on splitting the available data into K 
folds (see Fig. 10), creating K identical models and training each of them on K-1 folds. The model is evaluat-
ing on the remaining fold. The final validation score is the average of the K validation scores obtained. In our 
implementation the training and validation subset contains 80% of all data and the test subset contains 20%. The 
K parameter was set to 5.

The input data for CNN are in the form of tensors and vectors, as shown in Fig. 9. Tensors contain both posi-
tive and negative samples and every sample is basically treated completely independently. This is in line with 
the neural networks principles: the neural network should be provided with as much training data as possible 
without making any assumptions about the relationship between the training samples. In other words, we do not 
make any additional assumptions about the acceptance or rejection of a given sample. Each of them is treated 
the same and it does not matter which patient it comes from.

As an example please refer to Table 6. We can see that expert A annotated 385 seizures in the set named 
EXP3. Using our sliding design methodology, let’s assume that window=2 and chunks=2. So, we obtain 

Table 1.  A summary of the most important parameters of our CNN architecture.

Parameter/Note Value

CNN network
Sequential,
Three Conv2D layers,
Two dense layers with L2 regularizers (l2=0.001)

Optimization algorithm
SGD with the parameters:
Learning_rate = 0.01,
Momentum = 0.5,
Nestrrov = False

Activation function Sigmoid

Loss function Binary_crossentropy

Batch size 16

Number of epochs 300
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385× 2× 3 = 1540 positive samples in total that will go to the input of the CNN network. Consequently, all 
available seizure signals are used and no one is left-out.

Because neural networks work best when the training data is balanced, therefore, in the next step, we select 
the same number of negative samples. To make data fully balanced, we select exactly 1540 negative chunks, each 
with a length of 2 seconds. The negative samples are taken from the patients marked as EXP0 (i.e. without any 
annotated seizures). Consequently, our CNN network receives 3080 samples. This set is then randomly split 
into the training-validation part and test part (80% vs. 20%, i.e. 2464 vs. 616 samples). Finally, the training and 
validation subset is randomly split according to the cross-validation methodology as visualized in Fig. 11. For 
K = 5 in every fold 2464× 4/5 = 1970 samples is used for training and 2464× 1/5 = 494 samples is used for 
validation. The remaining 616 samples are used to evaluate the accuracy of the trained CNN models. The results 
are summarised in Tables 3, 4 and 5.

Results
The seizure annotations presented  in5 are shared in a specific non-standard format. Therefore, in the first place, 
we have developed software that allows one to easily load this data and, on the basis of it, prepare batches that 
can be used as input data for CNN. This part of the software was implemented in the R system. The data gener-
ated have the structure shown in Fig. 8. In our experiments we decided to choose the following values for the 
window and chunks variables: window=[1,2,5,10,20] and chunks=[1,2,5,10,20,10000]. 
10000 means that the maximum possible set of contiguous chunks was selected. We can safely set chunks to 10000 
and this way we are sure that the maximum possible set of chunks will be selected. Our dataset simply doesn’t 
have seizures as long as 10,000 seconds. Using these values 30 different datasets were generated for annotations 
prepared by each of the experts A, B and C. This makes a total of 90 different datasets saved as HDF5 files, see 
“Replicate the results” section for detailed explanation how to generate these files, how and where they are stored 
and what their naming convention is.

The CNN learning results are collected in Tables 3, 4 and 5. The best obtained test-set accuracy, the longest 
computation time and the biggest data size in chunks are printed in bold. We would like to point out here that the 
obtained results of the classification (at the level of 96%-97%) should be considered very good, almost perfect. It 
should be emphasized, however, that in order to obtain such results, large amounts of training data are required. 
For this reason, in principle, a sliding window design was developed and implemented.

It is worth noting that the learning process of CNNs is not deterministic. This means that, in principle, we are 
not able to obtain exactly the same results by performing the same calculations again and again. Each time the 
results will be slightly different. Nevertheless, the differences will not be too great. All calculations are performed 
5 times (fivefold cross validation scheme) and then the average of all partial results is calculated. In Tables 3, 4 
and 5 these average results are shown. Nevertheless, all the partial results are included in Electronic Supplements 
(in the results directory, see the directory structure in “Replication of the results” section).

In the tables we also show average computation time (rounded to full minutes). These results should be treated 
with a certain distance. A lot depends on the type of GPU card and its temporary load. We worked in the Google 
Colaboratory and Kaggle cloud environments, where shared resources vary over time and they can vary quickly.

Replication of the results. In this section, we provide various details that will help one to replicate all the 
results of our numerical experiments. We would also like to point out that in some places the source codes are 
hard-coded with certain elements related to the specificity of the source data used. These are mainly: a) EDF file 
names, b) number and names of channels stored in EDF files, c) a coding system of seizures annotations. If the 
provided codes were to be used in the future to analyze a different data set of EEG signals, minor changes would 
have to be made. The authors declare the necessary help for potential researchers.

The overall workflow to reproduce the results obtained by the authors can be summarised in 7 steps which 
are shown schematically in Fig. 12.

• Step 1. Download the dataset of neonatal EEG recordings: These are available at https:// zenodo. org/ record/ 
49402 67. There are 79 EDF files and 3 CSV annotations files. The EDF files are approximately 4GB in size.

• Step 2. Download the repository from the Electronic Supplements: (see “Data and code availability” section). 
Upload 79 EDF files and 3 CSV files which you downloded in Step 1 to the edf and annotations direc-
tories. In the acc_loss, best_models, hists, logs, results, ROC and waveforms directories 
we have downloaded all our output results. However, you can regenerate these results yourself by running 
appropriate R and Python scripts, see the next steps below. The complete directory structure is given below 
and a short description of the content of individual  working subdirectories is given in Table 2.

https://zenodo.org/record/4940267
https://zenodo.org/record/4940267
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Table 2.  Description of the content of working subdirectories in the repository attached to the paper.

Directory name Description

acc_loss Stores training and validation loss curves side by side, as well as the training and validation accuracy curves

best_models

Stores the best CNN models obtained during training (in terms of model weights, i.e. trainable parameters). The data is 
saved in the binary HDF5 format. Best models can be loaded later and thus there is no need to train the neural network 
every time when you want to run a classifier for test data. An example of how to load a best model is shown in the 
enclosed Jupyter notebook (the load_weights function)

hists

Stores models’ training and validation accuracy and loss values. This data allows you to prepare visualizations of net-
work training, similarly to those depicted in Figs. 13 and 14. The data is saved in the PCKL format (implemented in the 
Python’s pickle module) and as CSV text files. An example of how to use these files is shown in the enclosed Jupyter 
notebook (the pickle.load function)

inputs

Stores HDF5 files which are inputs for our CNN model. These files are created in R (EEG_neonatal.R script) using 
the raw EDF files which are stored in edf directory. To find out exactly which fragments of the original raw EDF files 
were used in HDF5 files (i.e. the exact samples numbers), files with names beginning with non_seizures_ and 
seizures_ are additionally generated

logs Stores log files to be parsed by TensorBoard (TensorBoard is a tool for providing the measurements and visualizations 
needed during the machine learning workflow).

results
Stores CNN classification results of the validation and test datasets (given in %). The classification results presented in 
Tables 3, 4 and 5 are the average of the K = 5 validation scores obtained using K-fold validation scheme. Additionally, 
execution times for every fold and GPU card types are given

ROC Stores ROC curves along with the AUC metrics

waveforms

Stores all EEG seizure waveforms annotated by 3 experts. There are 1379 waveforms in total, as depicted in Table 6. The 
lengths of the waveforms were arbitrarily set at 10 seconds. However, the user can generate waveforms with different 
lengths by running the generate_eeg_waveforms function in R. See the Supplementary Information files for 
details how to do this

Figure 8.  After selecting the desired number of chunks in Fig. 4 one must combine them in a matrix form. 
In this example the matrix has 18+1 rows (the last row is a class indicator) and 10 columns. Every single cell 
represents a 6 seconds long EEG signal.
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• Step 3. Install R and RStudio software: In R install two required packages: edf and rhdf5. Please note that the 
latter is installed from the  Bioconductor28 and not from the primary R package repository.

• Step 4. Setup a computing environment for Python: At the beginning, it will probably be most convenient to use 
cloud-based environment. We may recommend Google Colaboratory (https:// colab. resea rch. google. com) or 
Kaggle (https:// www. kaggle. com/). Both environments offer the possibility of using high-performance GPU 
cards for free. GPU cards are basically necessary to perform the required calculations using CNN. Comput-
ing without the use of GPU cards takes many times longer and, in fact, it is unlikely to be completed within 
a reasonable time.

• Step 5. Generate required HDF5 files: To do this run EEG_neonatal.R script (this can take a few hour). 
Make sure that the current working directory is R. Set also the dir variable to the one indicating the appro-
priate directory structure in your local computer. The parameters of the generate_samples() function 
can be changed depending on your actual needs. Those that are saved in the EEG_neonatal.R script will 
generate exactly the same HDF5 files that were included in the Electronic Supplements. After generating 

Figure 9.  The two-dimensional matrix shown in Fig. 8 cannot be fed into the neural network in this form. In 
Keras a 3D tensor is required. The figure shows how the 2D matrix must be divided into a tensor and a vector 
with seizure indicators.

https://colab.research.google.com
https://www.kaggle.com/
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copy all the HDF5 files to the inputs directory. The directory should contain 90 data files ready to fed to 
the neural network and additionally 184 auxiliary files (these files contain some details about the generated 

Figure 10.  Four exemplary seizure (top) and non-seizure (bottom) fragments of 2 seconds where the sampling 
frequency is 64 Hz. This gives 128 individual datapoins. The EEG signals are represented as colormaps. It is 
easy to notice that the analysis of EEG signals, in the form of time series, de facto leads to the analysis of two-
dimensional images.
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Table 3.  Evaluation results for dataset based on annotations given by expert A. Evaluation was performed 
on the test set using fivefold cross-validation scheme (see Fig. 11). Three values are given for every window 
size and every number of contiguous chunks: (a) the test-set accuracy in %, (b) average computation time 
for fivefolds (see Fig. 11) rounded to full minutes, (c) total number of chunks (see tensor in Fig. 9). The given 
computation times should be treated as indicative as they are very dependent on the instantaneous loads in the 
Colab system used. 10,000 means that the maximum possible set of contiguous chunks was selected. We can 
safely set chunks to 10000 and this way we are sure that the maximum possible set of chunks will be selected. 
Our dataset simply doesn’t have seizures as long as 10,000 seconds.

Window size

Number of contiguous chunks

1 2 5 10 20 10000

Test-set accuracy in %

1 58.9 70.6 81.2 84.1 86.7 92.7

2 61.5 78.4 83.8 89.5 91.1 95.9

5 68.2 81.4 90.3 92.9 94.7 96.2

10 74.0 79.0 90.0 93.9 96.1 95.6

20 75.4 78.8 88.5 93.1 92.7 94.1

Average computation time for fivefolds
rounded to full minutes

1 2 4 9 17 42 52

2 3 5 9 10 17 83

5 5 10 27 37 58 51

10 8 16 32 62 73 57

20 13 22 39 55 65 44

Total number of chunks

1 781 1,540 3,861 7,699 14,828 90,805

2 781 1,540 3,860 7,386 12,619 45,214

5 781 1,539 3,471 5,833 9,181 17,820

10 780 1,408 2,840 4,474 6,139 8,742

20 650 1,129 2,104 2,897 3,510 4,174

Table 4.  Evaluation results for dataset based on annotations given by expert B. The rest of the caption is 
identical as in Table 3.

Window size

Number of contiguous chunks

1 2 5 10 20 10000

Test-set accuracy in %

1 63.3 73.0 80.6 82.9 86.2 90.8

2 63.5 75.6 83.8 87.8 91.5 94.3

5 66.7 79.8 88.5 92.3 95.2 96.7

10 66.6 78.9 90.1 94.1 95.7 94.9

20 71.6 78.5 88.5 90.2 93.6 96.0

Average computation time for fivefolds
rounded to full minutes

1 2 6 14 26 42 67

2 3 6 14 29 46 86

5 6 11 24 42 65 72

10 8 16 32 62 72 56

20 13 24 47 63 80 88

Total number of chunks

1 790 1580 3950 7871 15,081 121,393

2 790 1580 3945 7519 13,580 60,526

5 790 1576 3634 6420 10,472 23,979

10 786 1476 3149 5129 6976 11,787

20 690 1257 2419 3325 4256 5701



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13010  | https://doi.org/10.1038/s41598-022-15830-2

www.nature.com/scientificreports/

HDF5 file data but you do not need to use them). The data files have the same logical structure as in Fig. 9 
and use a uniform naming convention. For example, the file expert_C_5sec_2chunk_64Hz.hdf5 
means that data was generated according the annotations made by expert C, the windows size was set to 5 
seconds and the number of contiguous chunks was set to 2 (see Figs. 4 and 5). The similar naming convention 
was used for all other files in the working subdirectories.

  Note: we do not put HDF5 files in the regular Electronic Supplements, as their total size is about 16.6GB. 
However, for your convenience, we included them in separate zip archives, see “Data and code availability” 
section.

• Step 6. CNN processing: Open the EEG_neonatal.ipynb Jupyter notebook in your favourite Python 
3 environment, local or cloud-based. Before the script is run, two global variables, namely WRK_DIR and 
INPUT_DIR, should be set, indicating the appropriate directories for your runtime environment. Leave 
the other global variables unchanged if you use input data provided by the authors (i.e. HDF5 files in the 
working/inputs directory).

  The calculation results will be saved in the subdirectories of the working  directory. The 
files share the same naming convention described above. For example the file: best_model_
expert_A_1sec_1chunk_64Hz_fold_0.h5 stores the best model obtained during training of 
the neural network using the input file expert_A_1sec_1chunk_64Hz.hdf5 during the first fold 
(fold_0, see Fig. 11. We start counting folds from 0 according to Python convention). To get the complete 
results presented in the paper, in the __Run__ block set the following values:

– which_expert=np.array(["A","B","C"]),
– windows=[1,2,5,10,20],
– chunks=[1,2,5,10,20,10000].

   In this place, we clearly point out that the calculations will take several days in total. It must be realized 
that calculations performed in the CNN environment, unfortunately, require enormous computing power. 
The computation time can be reduced five times, but at the cost of leaving the k-fold scheme. Then, in the 
Global variables block set COMPLETE_CALCULATIONS=False. However, the results obtained will be 
somewhat less objective.

• Step 7. Inspecting final results: All final results are stored in the individual subdirectories of the working 
directory. These are: a) confusion matrices, b) accuracy, precision, recall and F-measure metrics, c) CNN 
processing accuracy and loss metrics as well as appropriate plots, d) ROC curves.

Table 5.  Evaluation results for dataset based on annotations given by expert C. The rest of the caption is 
identical as in Table 3.

Window size

Number of contiguous chunks

1 2 5 10 20 10000

Test-set accuracy in %

1 64.2 73.3 82.9 85.6 89.6 93.1

2 61.5 75.8 87.9 90.4 93.2 94.8

5 69.3 84.2 90.9 93.7 96.0 97.0

10 78.5 85.0 91.6 95.4 96.6 96.5

20 80.5 85.0 89.5 93.2 94.7 94.9

Average computation time for fivefolds
rounded to full minutes

1 3 6 15 30 52 103

2 4 7 17 31 50 65

5 6 12 26 40 87 65

10 10 17 33 61 69 59

20 15 25 45 70 72 46

Total number of chunks

1 954 1886 4704 9397 17,541 95,645

2 954 1886 4695 8707 14,738 47,589

5 954 1878 4091 6761 10,452 18,773

10 924 1667 3281 5060 6898 9147

20 743 1272 2362 3236 3812 4312
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Table 6.  Numbers of seizures for every infant annotated by 3 experts (marked as A, B and C). Cells marked 
with a hyphen (-) means that no seizure was annotated for a given infant by a given expert. 40 neonates had a 
seizure annotated by all 3 experts (EXP3 subset), 22 neonates were seizure free (EXP0 subset) and 17 neonates 
had a seizure annotated by 1 or 2 experts (EXP12 subset).
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Discussion
A very thoroughly developed data set was used for our research, although it is a quite specific data set, as it 
concerns  neonates5. This dataset have been annotated for neonatal seizures by three independent experts having 
over 10 years of experience in the visual interpretation of neonatal EEG. So it can be assumed that these results 
are very reliable. The dataset consists of 79 raw EDF files and 3 CSV files containing the annotations of 3 experts 
for all the 79 neonates. Times of seizure occurrence are marked by experts with a resolution of one second, i.e. 
experts indicated in which second a seizure activity started and ended.

A variety of approaches have been proposed to diagnose seizures using EEG recordings. In the days before DL 
a variety of conventional machine learning algorithms were performed using statistical, time, frequency or time-
frequency domains. A comprehensive overview of such methods can be found, among others in the  book29. The 
results were better or worse, but the complexity of the EEG signals made it difficult to achieve truly spectacular 

Figure 11.  The fivefold cross-validation scheme used in our numerical experiments.

Figure 12.  The overall workflow to reproduce the same results that the authors obtained.
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Infant A B C

1 18, 135, 59, 29, 31, 49, 57, 23, 87, 23, 31, 93, 104, 34, 25, 
24, 78, 122, 74, 333, 19, 23, 99, 15, 17

17, 27, 17, 158, 36, 57, 26, 50, 29, 115, 10, 12, 80, 119, 
106, 99, 134, 30, 8, 42, 140, 61, 160, 35, 47, 25, 42, 96, 
76, 51, 159, 52, 11, 148, 168, 43, 23, 28, 228, 249, 39, 88

26, 120, 16, 19, 9, 9, 105, 16, 12, 13, 35, 11, 17, 21, 34, 
14, 12, 12, 7, 14, 14, 43, 73, 15, 14, 10, 11, 27, 9, 25, 71, 
27, 12, 14, 12, 98

2 47, 18 - -

4 882, 43 48, 30, 33, 931, 42, 52, 25 102, 35, 850

5 127, 631, 534, 853, 1180 107, 621, 454, 825, 1182 147, 620, 457, 571, 245, 419, 725

6 - - 16, 98, 69, 308

7 16, 18, 133, 141, 168, 149 15, 10, 12, 11, 23, 165, 25, 45, 26, 45, 27, 16, 26, 10, 9, 
10, 27, 141, 12, 167, 148 15, 12, 131, 138, 164, 148

8 32 12, 61 -

9 708, 158, 16 12, 715, 26, 157, 37, 52, 17, 25 705, 148, 9

11 21,33, 45 14, 36, 28, 49 40

12 - - 31

13 292, 496, 112, 233, 138 315, 495, 138, 240, 125, 108 292, 495, 98, 237, 119, 105

14
24, 17, 273, 21, 49, 25, 19, 16, 14, 113, 19, 20, 19, 19, 16, 
344, 110, 20, 16, 18, 55, 17, 29, 28, 463, 49, 24, 10, 31, 
23, 16, 21, 18, 14, 29, 14, 14, 13, 15, 13, 12, 20, 14, 11, 17

29, 338, 48, 26, 19, 16, 16, 113, 19, 23, 18, 545, 16, 108, 
779, 25, 15, 36, 14, 12, 13, 62, 15, 14, 21, 73

61, 24, 337, 48, 25, 18, 16, 15, 26, 85, 19, 20, 17, 16, 378, 
136, 15, 114, 29, 29, 461, 52, 24, 9, 65, 15, 19, 14, 11, 20, 
13, 11, 12, 45, 13, 13, 19, 70

15 23, 53, 133, 133, 20, 29, 167, 39, 41, 51, 38, 154, 61, 155, 
54, 41, 164, 52, 63 164, 64, 51, 155, 93, 46 20, 41, 78, 35, 115, 158, 40, 43, 64, 37, 23, 10, 142, 64, 

149, 55, 36, 10, 131, 57

16 45, 14, 19, 18, 42, 29, 14, 21, 18, 17, 14, 13, 16, 24, 12, 
15, 22, 11, 17, 25, 13, 32, 17, 26, 24, 25, 22, 23, 23, 9

42, 64, 39, 96, 13, 70, 32, 78, 96, 96, 123, 88, 77, 88, 95, 
97, 105, 105, 111, 306, 119, 115, 119, 122, 78, 207, 95, 
100, 25, 109, 73, 37, 112, 118, 97, 119, 115, 103, 79, 102, 
109, 87, 22, 100, 64

25, 32, 23, 22, 13, 11, 15, 15, 29, 11, 22, 22, 26, 21, 21, 
21, 21, 21, 26, 16, 18, 32, 30, 37, 37, 12, 31, 36, 17, 26, 
11, 27, 26, 12, 31, 14, 17, 22, 11, 22, 20, 13, 14, 24, 24, 
26, 26, 19, 28, 14, 23, 18, 27, 31, 27, 23, 29, 16, 27, 15, 29

17 55, 52, 42, 22 213, 92, 278 40, 9, 11

19 89, 57, 103, 156, 102, 64, 686, 899, 48 81, 112, 92, 18, 108, 155, 163, 79, 686, 15, 1002, 92, 76 63, 46, 61, 158, 140, 63, 674, 901, 30, 46

20 48, 132, 42, 28, 30, 45, 74, 23, 29, 27, 31, 38, 17, 97, 59, 
12, 19

193, 225, 22, 59, 219, 103, 81, 167, 140, 75, 58, 66, 92, 
116, 17, 41, 10, 76, 34

27, 73, 137, 14, 14, 21, 29, 44, 101, 44, 32, 75, 29, 28, 71, 
32, 35, 13, 11, 20, 114, 14, 60, 16

21 43 42 39

22 71, 88, 187, 58, 77, 26, 52, 138 113, 353, 173, 72, 303, 365 57, 83, 150, 66, 97, 53, 134

23 67, 444, 28, 27 - 10, 13, 13, 24, 10, 11, 11, 15, 20

24 - 295 -

25 15, 20, 24, 18, 51, 17, 29, 13, 41, 11, 23, 22 200, 14, 21, 7, 26, 54, 35, 99, 71, 18, 10, 63, 142, 38 13, 23, 20, 17

26 - - 12, 10, 11, 12, 15, 14, 22

31 80, 102 80, 101 68, 100

33 582 - 13, 11, 9, 15, 14, 27

34 455 452 452

36 147, 345 532 110, 341

38 239, 132, 63, 571, 267, 408, 73, 197, 241, 63, 55, 294, 86, 
38, 97, 78, 29, 22, 30

302, 138, 96, 577, 52, 376, 818, 451, 622, 552, 227, 94, 
78, 47, 50, 25

235, 100, 53, 269, 159, 91, 49, 292, 396, 73, 197, 38, 236, 
56, 88, 228, 53, 34, 70, 70, 20, 15, 27, 15

39 1479, 180, 92, 223, 96, 189 1477, 27, 165, 88, 312, 216, 232 1477, 171, 109, 189, 104, 179

40 29, 19, 22, 20, 17, 29, 100, 21, 26, 33, 135, 150 14, 20, 28, 12, 19, 22, 14, 16, 29, 101, 21, 16, 16, 90, 40, 
135, 20, 14 26, 25, 24, 137, 15, 127, 28, 131

41
158, 166, 350, 219, 215, 156, 200, 193, 14, 157, 471, 148, 
322, 201, 121, 130, 177, 119, 41, 162, 153, 59, 63, 117, 
159, 104, 158, 167, 25, 38, 90, 238, 140, 173, 107, 69, 98, 
144, 263, 174, 63, 85, 606, 868, 200

951, 602, 436, 2708, 864, 364, 536, 1232, 1491, 266

159, 167, 131, 197, 213, 211, 85, 83, 211, 187, 11, 58, 
130, 169, 94, 138, 147, 172, 164, 216, 153, 134, 38, 51, 
79, 145, 51, 163, 152, 168, 160, 158, 117, 171, 170, 43, 
41, 14, 83, 243, 148, 195, 140, 145, 47, 93, 154, 210, 45, 
189, 59, 74, 32, 633, 380, 479, 206, 36

43 - - 23, 12, 12, 9

44 20, 82, 18, 102, 15, 19, 85 21, 82, 20, 33, 102, 11, 9, 14, 19, 86 17, 79, 17, 17, 98, 10, 16, 81

46 - - 36, 25, 10, 12

47 61, 58, 92 63, 67, 35, 58, 89 56, 56, 89

50 89, 98, 91, 97, 94, 104, 97, 102, 70, 88 91, 83, 84, 74, 108, 91, 104, 86, 80, 97 88, 86, 87, 73, 88, 97, 102, 115, 77, 89

51 16, 16, 24, 329 320 56, 20, 12, 29, 11, 33, 23, 307

52 119 53, 47 46, 40

54 167, 238, 136, 55, 114, 371, 110, 76 - 28, 31, 87, 40, 46, 38, 152, 172, 84, 47, 20, 112, 21, 91, 
57, 153, 973

56 - - 814

61 - - 95, 17, 16

62 382 390 380

63 74, 108, 104, 44, 43 88, 124, 98, 10, 11, 141, 16, 180, 41, 96, 111, 125 49, 339, 204, 56, 13, 101, 106, 68, 36, 172, 169, 68, 123, 
82, 25, 102, 27, 17, 24, 13, 11, 117, 11, 20, 87

64 - 35, 27, 58, 43, 62, 48, 47, 48, 75, 97, 80, 83, 86, 50, 40, 
59, 88, 131, 75, 128, 56, 81, 71, 57, 80 26, 25, 27, 17, 24, 36, 19, 28, 36, 16, 26, 28

Continued
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results. However, it was only the development of DL techniques that resulted in really noticeable progress in 
the field of automatic seizure detection. We mainly mean DL with the use of convolutional neural networks.

We used sequential CNN model with such regularization techniques as dropout, max-pooling, batch nor-
malization and L2 regularizers. It is important to note that we have developed a fairly flexible method of select-
ing the number of training samples (through the chunks parameter) and the length of individual samples 
(in seconds, through the window parameter). The user can thus very easily generate training data having the 
desired characteristics.

Our research basically confirms that deep neural networks, in order to perform their task well, must be 
provided with a sufficient amount of training data. The results presented in Tables 3, 4 and 5 show that the total 
number of training samples is not as important as the length of the individual samples (window parameter). 
The value window=5 seems to be optimal value. Increasing it does not bring much improvement. As for the 
chunks parameter, basically the higher its value, the better the results will be. However, keep in mind that the 
training time of the neural network learning process increases very quickly. The value chunks=20 gives quite 
good results.

In Fig. 13 we show an example of CNN training and validation accuracy (upper curves), as well as the training 
and validation loss (lower curves). The dataset was created on the basis of annotations made by expert B with 
the following parameters: window=5 and chunks=10000. In the context of learning CNNs, these curves can 
be considered almost ideal: accuracy is almost 1, loss is almost 0 and there is no very disadvantageous phenom-
enon called overfitting. Note also that in this example the input dataset size is large enough (23,979, see Table 4) 
that this unfavorable phenomenon does not occur. If, on the other hand, CNN receives too little training data 
(expert B, window=1 and chunks=1, see Fig. 14), overfitting occurs very quickly, in our example around 
the 50th epoch.

Notes on using the framework to analyze datasets other than those used in the article. In our 
study, we used the neonatal EEG data set, which is basically quite specific. Nevertheless, the proposed framework 

Table 7.  Lengths (in whole seconds) of seizures for every infant annotated by 3 experts (marked as A, B and 
C). When a given expert did not mark any seizures for a given infant, it was marked with a hyphen (-).

Infant A B C

65 - - 15, 20, 16, 43

66 857, 881 881, 997 823, 725

67 43, 90, 30, 278, 45, 29, 242, 48, 21, 60, 51, 224, 124, 37, 
35, 67

43, 137, 29, 307, 60, 46, 252, 54, 28, 59, 63, 216, 137, 
62, 81, 74

43, 158, 36, 269, 44, 44, 246, 58, 23, 59, 56, 222, 127, 8, 
31, 12, 30, 85, 25

68 33 44, 32 -

69 141, 149, 183, 141, 140, 316, 70, 102, 265, 127, 124, 212, 
117, 181 39, 163, 18, 154, 996, 936, 269, 565, 315 40, 149, 13, 146, 183, 232, 142, 309, 71, 150, 148, 265, 

571, 121, 176

71 55, 24, 33, 12 72, 48, 82, 117 71, 36

73 25, 235, 26, 266, 24, 292 450, 51, 271, 368 204, 217, 26, 34, 216, 44, 306

74 - 17, 18, 79, 44, 280 11, 89, 52, 16, 20, 15

75 920 925 918

76 46, 431 105, 50, 445 40, 190, 199

77 258 154, 257, 51 108, 256, 156

78 128, 147, 118, 81, 76, 88, 60, 61, 163, 83, 79, 81, 54, 111, 
74, 184, 26, 101, 184, 90, 22, 205

124, 143, 119, 23, 82, 75, 75, 45, 84, 160, 86, 52, 78, 183, 
141, 89, 184, 116, 190, 124, 152, 188

95, 137, 82, 75, 52, 72, 34, 51, 153, 58, 28, 78, 87, 48, 
109, 72, 184, 15, 92, 80, 92, 84, 17, 216

79 43, 19, 56, 26, 54 68, 51, 81, 43, 96, 47, 75, 14 40, 17, 55, 61, 19, 50

Table 8.  A summary of the seizures annotations by each human expert.

Feature Expert A Expert B Expert C

Number of neonates with seizures annotated 46 45 53

Total seizures annotated 402 429 548

Min, max, mean and median of seizures duration
9
1479
119.3
59.5

7
2708
147,5
79

7
1477
95,8
43

Neonates with seizures annotated by experts A, B, C (consensus annotations) 40

Neonates with seizures annotated by only one exert 10

Neonates with seizures annotated by two experts 7

Neonates where no expert annotated any seizure 22
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can also be successfully applied to studies with EEG data from older patients (larger children, adults). In other 
words, our solution places no restrictions on what kind of patients the EEG data come from. We can consider 
two cases: 

1. Building a new CNN model (or models) based on completely new data.
2. Classification of new data using CNN network already trained by us.

In the first case the main requirement is that seizure annotations be in the same specific format (non-standard 
in fact) as our data. The annotations must be stored in a CSV file where each column corresponds to a subject 
(patient) and each row is the annotation of one second of the EEG recording (1 for seizure and 0 for nonseizure. 
Please study the 3 files in the annotations directory for better understanding the files structure). As for raw 
EDF files, please note that they may have a slightly different structure (different number of channels, different 
channel names, etc.). So if someone would like to use our codes to analyze their own EDF datasets, they must 
meet the following requirements. See also the Electronic Supplements for more information.

• EDF files must be readable by the read.edf() function (edf R package).
• We assume that EDF file names have the format like: eeg phrase and consecutive numbers of subjects, like 

eeg1.edf, eeg2.edf etc. Otherwise, some minor changes are required in the generate_samples() 
function.

• The EEG channel names are hard-codded in the function generate_montage(). Depending on the 
current structure of your raw EDF files, this function must be appropriately adapted to this structure.

In the second case one must be aware that our CNN network has been trained on a certain dataset (quite specific) 
and is ready to recognize a certain type of seizures (i.e. neonatals ones). Therefore, it should not be expected that 
when we provide completely different data to our pre-trained CNN network (e.g. based on elderly patients), 

Figure 13.  An example of CNN training and validation accuracy (upper curves), as well as the training and 
validation loss (lower curves). These curves can be considered almost ideal: accuracy is almost 1, loss is almost 0 
and there is no very disadvantageous phenomenon called overfitting.
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the network will correctly classify the data. Also some technical details on EEG recordings must be considered 
carefully. In our case, signals from 18 EEG channels connected according to the ’double banana’ montage were 
fed to the CNN network. When the new data is not analogous, the classification results can be very questionable. 
Nevertheless, when the new data is compatible (in the sense as stated above), there are no major contraindica-
tions to feed them to our pre-trained CNN network. In the Electronic Supplements one can find some examples.

The Python codes are quite universal and the only requirement is to set a few variables in the Global variables 
block in the Jupyter notebok included. We also assume that the input data filenames (given as HDF5 files) are in 
the format expert_XXX_YYYsec_ZZZchunk_VVVHz.hdf5 where: XXX - any string indicating for exam-
ple a human expert who annotated seizures, YYY  - window size in seconds, ZZZ - number of contiguous chunks, 
VVV - base frequency in the HDF5 file. Data stored in HDF5 files must conform to the format shown in Fig. 9.

Data and code availibility
All data generated and analysed during this study, as well as R and Python source codes, are included in Sup-
plementary Information files.
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