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Lossy and noisy channel simulation 
in computational ghost imaging 
by using noise‑induced pattern
Jaesung Heo1,2, Junghyun Kim1,2, Taek Jeong1, Sangkyung Lee1, Yong Sup Ihn1, Zaeill Kim1 & 
Yonggi Jo1*

We provide a method to evaluate effects of a lossy and noisy optical channel in computational ghost 
imaging (CGI) technique. Instead of preparing an external noise source, we simulate the optical 
channel with a basic CGI experiment using programmatically generated noise‑induced patterns. By 
using our method, we show that CGI can reject a noise of which intensity is similar with an imaging 
signal intensity at a target. The results with our method are well matched with experimental 
ones including external noise source. This method would provide useful knowledge to analyze 
environmental effects in CGI without realization of the environment.

Ghost imaging (GI) is a novel imaging technique which exploits a correlation between two beams to obtain an 
image. Although its first demonstration was based on  entanglement1, GI using classical light was demonstrated 
as  well2,3, and theoretical studies revealed that it is not a quantum-originated  phenomena4–7. Based on these stud-
ies, a computational GI (CGI) which makes use of only a single classical beam was  proposed8. In CGI, a spatial 
light modulator (SLM) generates a spatial pattern-encoded beam instead of spatially correlated twin-beam. After 
the first proposal of CGI, there have been many extended studies such as compressive-sensing-enabled  CGI9–15, 
three-dimensional imaging  methods16,17, and light detection and ranging (LIDAR) systems based on  CGI18–22.

In CGI, a spatial pattern encoded beam illuminates a target, and an intensity of a reflected beam from the 
target is measured. A target image can be constructed by averaging the signal light patterns weighted by the 
measured intensities. The outcome of CGI highly depends on spatial light patterns, and so far various studies to 
manipulate efficient patterns have been  conducted15,23–27.

The robustness of GI against environmental effects, such as background  noise27–35 and atmospheric 
 turbulence36–38, has been theoretically studied and experimentally demonstrated. To observe the environmental 
effects, these demonstrations require large scale experimental settings such as an outdoor experiment, or an 
auxiliary implementation to generate artificial environmental effects. Here, we propose a method to simulate the 
environmental effects on CGI experiment without the use of auxiliary implementations. Because spatial patterns 
in CGI are generated and manipulated by software, it is possible to simulate an optical channel by programmati-
cally including the channel effects into the patterns. In this paper, we investigate a simple optical channel, a lossy 
and noisy channel, where the noise energy is larger than the signal energy. This optical channel corresponds to 
an image-jamming attack against CGI system where strong thermal light illuminates the object or detector to 
disrupt the system. We compare the results of our method with the images obtained under the corresponding 
actual optical channel, and the validity of our method is discussed. This method would be exploited for simulat-
ing the effects of environment in CGI which is hard to be realized in a laboratory.

Computational ghost imaging with noise‑induced pattern
Experimental setup. CGI exploits a beam, of which intensity is spatially modulated by using an SLM, and 
a single-pixel bucket detector. The beam illuminates a target, and the intensity of a transmitted or reflected beam 
is measured by the detector. After several repetitions with various spatial patterns and corresponding intensity 
outcomes, an image can be constructed based on a correlation G calculated as  follows8:
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where N is the number of total trials, I is a measured intensity, P denotes a spatial pattern matrix, �x is a posi-
tion (x, y), and the superscript (n) denotes n-th trial. By subtracting the uncorrelated term, only the correlation 
between the intensity and pattern is left.

To enhance the image quality with a restricted number of shots, we exploit the Hadamard intensity 
 patterns9,15,39,40. A 22n × 22n Hadamard matrix is written in the following equation:

where

and ⊗ denotes tensor product. Hadamard patterns are obtained by reshaping each row of H22n into a 2n × 2n 
square matrix. Because the intensity of light cannot be negative, we need two shots to represent one reshaped 
 matrix41. In the first spatial pattern, the element value + 1 of the reshaped matrix corresponds to bright pixels of 
the Hadamard pattern and − 1 corresponds to dark pixels, while the second pattern is made by corresponding 
+ 1 to dark pixels and − 1 to bright pixels.

Figure 1 shows a schematic diagram of our channel-simulated CGI experiment setup with two targets used 
for imaging, 3 bars and alphabet A. An 810 nm CW laser beam is horizontally polarized (H-polarized) by using 
a polarizing beam splitter (PBS), half and quarter wave plates (HWP and QWP), and it illuminates a phase-
controlling SLM (Thorlabs, EXULUS-HD1). In our CGI experiment, 1024× 1024 SLM pixels are used to display 
32× 32 resolution Hadamard patterns, i.e., a unit area of the Hadamard patterns consists of 32× 32 SLM pixels. 
The Hadamard patterns are obtained from H1024 , and the total number of shots is therefore 2048. We place a PBS 
in front of the SLM to change the phase modulated beam into the intensity modulated beam. The SLM induces a 
�/2 phase shift if the pattern is dark, which converts an H-polarized beam into V-polarized. The beam reflected at 
the bright part of patterns does not undergo any phase shift and remains H-polarized. Therefore, only a portion 
reflected from the bright part of the pattern passes through the PBS, resulting in an intensity-modulation. After 
the PBS, the modulated beam illuminates the target object, and the intensity of the reflected beam is measured 
by using a bucket photodiode. The channel simulation is conducted by displaying the noise-induced Hadamard 
patterns on the SLM.

(2)H22n = H22n−1 ⊗H2,

(3)H2 =

[

1 1
1 − 1

]

,

Figure 1.  Experimental setup for CGI with two targets used for imaging, 3 bars and alphabet A. An 
H-polarized laser beam is reflected at the phase-controlling SLM. The phase-modulated beam becomes an 
intensity-modulated beam after the PBS. The modulated beam illuminates a target object and the intensity 
of received light from the target is measured by using a single-pixel bucket detector. For channel-simulated 
imaging, noise source is turned-off and noise-added patterns are displayed on the SLM. For the verification of 
our channel simulation, we turn on the thermal noise source consists of a laser and a rotating ground glass disk, 
and we conduct the imaging with the original Hadamard patterns. HWP half-wave plate, QWP quarter-wave 
plate, PBS polarizing beam splitter, SLM spatial light modulator, BD bucket detector.
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A pseudo-thermal light source is exploited for the comparison which consists of an additional laser beam 
impinging on a rotating ground glass disk. The pseudo-thermal light is combined with the pattern encoded 
beam and illuminates the target.

Lossy and noisy channel. Figure 2a shows a schematic diagram of CGI under a lossy and noisy channel 
that we try to simulate. The intensity of the signal illuminating the target is IS when all the elements of P(�x) is 
one. For n-th pattern, the intensity becomes I(n)P =

∫

A
IS
A P

(n)(�x)d�x , where A is the area of the pattern. Due to 
the lossy channel, the signal intensity decreases by a factor of κ , where κ is the channel transmissivity. This can 
be modeled by using a beam splitter whose reflectivity is κ . At the beam splitter, environmental noise is mixed 
with the signal. To make constant noise of which average intensity is IB at the target, the intensity of noise before 
the beam splitter is set to IB/(1− κ) . Then, the intensity of the combined light at the target becomes κI(n)P + I

(n)
B  , 

which implies that the light pattern has changed from the original Hadamard pattern due to the noise. Figure 2b 
shows our methodology, CGI with noise-induced patterns. We combine the effect of the loss and noise into the 
spatial pattern by a program, so the spatial profile of beam illuminating target has a dimmed Hadamard pattern 
with noise. For the image calculation in Eq. (1), the original Hadamard pattern P(n) is exploited.

The correlation for the image calculation is written in the following  equation8:

where the subscripts D, S, and B denote the detected light, signal, and background noise, respectively, and r(�x) 
is the reflectivity of the target object. For simplicity, we assume that there is no loss except the lossy channel of 
which transmissivity is κ . GS(�x)(GB(�x) ) denote the correlations when there exists only signal(noise). If κ = 1 
and I(n)B = ĪB for all n, i.e., there is no loss and noise is constant without variance, GD(�x) = GS(�x) satisfies, and 
therefore, the ideal computational ghost imaging is performed.

Let us analyze the case that κI(n)P < ĪB i.e., the signal intensity at the target is weak compared to noise. This 
corresponds to the case that there is an enemy who tries to interrupt our imaging by illuminating the target with 
strong jamming light. For maximum disruption of the imaging system, i.e., in order to maximize intensity fluc-
tuation in the light detection, the jamming light is chosen as thermal light. An intensity distribution of thermal 
light is shown in the following  equation42:
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Figure 2.  (a) A schematic diagram of CGI under a lossy and noisy channel. Starting from a light source with 
intensity IS , the intensity of the initially patterned light is IP =

∫

A

IS
A
PS(�x)d�x , and that of environmental noise is 

IB/(1− κ) . The two beams are mixed at a beam splitter whose reflectivity is κ , and the mixed beam illuminates 
the target. The reflected beam intensity is measured at the detector. (b) A schematic diagram of CGI with noise-
induced patterns. The beam modulated by a noise-induced pattern ( PT ) illuminates the target, while the original 
pattern ( PS ) is used for the image calculation. PT is programmatically generated to have the same effects of noise 
and losses.
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This intensity distribution is super-Poissonian, so the intensity variance of the thermal light is larger than ĪB . 
If ĪB is sufficiently large, the variance of the noise intensity can be comparable or larger than the differences in 
∫

A κISP
(n)
S (�x)d�x/A for different n, and then, GB(�x) is no longer negligible compared to κGS(�x)

34,35.

Noise‑induced patterns. In experiment, ID is determined by averaging M samples of intensity detec-
tion. That is, for each n-th pattern, light intensity is measured for M times, I(n)(1)D , I

(n)(2)
D , . . . , I

(n)(M)
D  , and we 

take I(n)D = 1
M

∑M
m=1 I

(n)(m)
D  . To analyze the effect of noise on ID only, consider the signal is off and I(n)D  is only 

dependent of noise, i.e., I(n)D = I
(n)
B =

∑M
m=1

1
M I

(n)(m)
B  . Since each sample is recorded from light emerged by 

an identical source, statistical characteristics of M samples are identical. If sampling period is greater than the 
coherence time of light, we can assume M samples as independent and identically distributed random variables. 
Denoting this random variable as I ′B , mean and variance of each sample follow

for m = 1, 2, . . . ,M , and thus,

where var(X) denotes a variance of X. For light modulated by pattern to imitate this noise behavior, mean and 
variance of such light detected must be equal to Eq. (7).

To simulate this noise behavior, we introduce noise-induced patterns PT (�x) , which consist of Hadamard pat-
terns PS with a loss rate κ and noise-imitating patterns(NIP) PB , i.e., P(n)T (�x) = κP

(n)
S (�x)+ P

(n)
B  for n-th Hadamard 

pattern. Then, the correlation is calculated as follows:

Then, Eqs. (4) and  (8) are the same if the following condition is true:

Thus, ISPB is necessary to have the same average and variance with those of IB under Eq. (7).
To analyze the effect of NIP only, let us consider the case P(n)T (�x) = P

(n)
B  and assume r(�x) = 1 for all �x for 

simplicity. Suppose that the detected intensity of n-th NIP-modulated light, I(n)D = ISP
(n)
B  , is given by averaging M ′ 

intensity samples, i.e., ISP(n)B =
∑M ′

m′=1
1
M ′ ISP
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B  . Since the source light intensity IS is assumed to be constant, 

statistics of NIP-modulated light is determined by NIP only. With random variable that follows the statistics of 
NIP as P′B , statistics of independent and identically distributed M ′ samples can be represented by the following:

Thus, statistics of detected intensity becomes
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If we choose the statistics of NIP that gives var[P′B] =
(

E[P′B]
)2 , then we can obtain the following conditions 

from Eqs. (7) and  (11):

so

The first condition in Eq. (12) implies matching of mean intensity, and the second condition in Eq. (12) gives 
the value of M ′ in terms of measurable quantities of jamming noise. This implies that any noise can be simulated 
by NIP with given statistics.

Such NIP statistics can be realized by the combination of two binary patterns, fully bright or fully dark pat-
tern satisfying ISPbright = IS or ISPdark = 0 , respectively. For each M ′ samplings, Pbright or Pdark are randomly 
chosen with probability 0.5, which results in Bernoulli distribution. Mean and variance of NIP are following:

for m′ = 1, 2, . . . ,M ′.
To generate P(n)B  programmatically, effective P(n)B  which is equivalent to averaging the results of M ′ NIP samples 

is required. Let the weighting constants determined by the sum of M ′ Bernoulli processes with probability 0.5 
be C = B(M ′, 0.5) . Then, P(n)B  is calculated as:

With NIP to imaging patterns PS , any lossy and noisy channel can be simulated with proper M ′ combinations 
of the two binary patterns.

In our experiment, thermal light is used for jamming. That is, I ′B follows the Bose–Einstein distribution 
described by Eq. (5). In this case, var[I ′B] = E[I ′B]

(

E[I ′B] + 1
)

≈
(

E[I ′B]
)2 , where the last approximation is valid 

when E[I ′B] ≫ 1 , which is the case of classical light. Then, Eq. (12) becomes as follows:

and these two conditions give M = M ′.

Noise‑induced pattern for channel simulation. In this section, we consider how to realize noised-
induced patterns PT experimentally. Intuitively, it is expected that combination of the original Hadamard pat-
terns and spatially speckled patterns of thermal light is enough to construct noise-induced patterns. However, 
an SLM consists of a limited number of pixels, and it can display only a discrete intensity which can be described 
with an unsigned 8-bit integer. Due to these imperfection, a spatial pattern of thermal light cannot be perfectly 
mimicked with an SLM. If we perform the combination, we can check that measured intensity in the photodiode 
cannot follows a thermal light distribution. Therefore, we need another method to simulate a lossy and noisy 
optical channel. By displaying noise-induced patterns P(n)T (�x) on the SLM, we can simulate the imaging under 
lossy and noisy channels. However, the SLM cannot display a pattern that has elements exceeding the maximum 
available pixel value. Therefore, the noise-induced pattern should be normalized to P(n)T (�x)/IN , where IN is a 
normalization factor determined by the pixel value limit given by the SLM. To compensate this, the incident 
beam intensity should be IN IS rather than the original intensity IS.

The range of pixel values of our SLM(Thorlabs, EXULUS-HD1) is from 0 to 255. However, our SLM was 
unstable displaying pixel value which is not binary(0 or 255). We thus separately display the Hadamard patterns 
and NIP so that both have pixel values either 0 or 255: Pbright and Pdark for NIP, and PS for Hadamard patterns. 
For our purpose, we reformulate PTIS in terms of PSISS + PbrightIS,bright + PdarkIS,dark as follows:

Then, we can obtain the following conditions:
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The experimental step for this separation is as follows: first, we display PS on the SLM and reduce the intensity by 
a factor of κ by HWP and PBS, measuring the intensity of ISS . Next, we display Pbright on the SLM and sample the 
intensity for C times without applying κ . After summing up the measured intensities and dividing it by M ′ results 
in IS,bright , the same step can be performed to obtain IS,dark by displaying Pdark with M ′ − C times sampling. By 
this method, imaging under a lossy and noisy channel can be simulated using only binary pixel values, making 
not only SLM but also digital micromirror device (DMD) to be able to perform this simulation.

Results
To quantify a quality of result images, we exploit contrast-to-noise ratio (CNR) shown in Eq. (19):

where µj and σj denote mean value and standard deviation of image pixel values, respectively, and they are cal-
culated for the target image ( j = 1 ) and for the background noise ( j = 0)43.

Figures 3 and  4 show the results of CGI under the real thermal noise injection and those with noise-induced 
patterns. The noise-induced patterns are also shown with the simulated images. Ratios of the signal and noise 
intensity IB/κIS ranging from 0 to 5 are exploited to compare the two methods. For each condition, imaging is 
performed for 4 times, and mean and standard deviation of CNRs of each condition are given below the cor-
responding images. Figure 3 is the result of imaging three bars. The mean and variance of detected real thermal 
noise are 0.2151 V and 2.610× 10−4 , respectively, giving M ′ = 177 according to Eq. (13). With this sampling 
number, NIP-modulated light gives 0.2146 V for mean and 2.586× 10−4 for variance. Figure 4 is the result 
with object alphabet A. The mean and variance of real noise are 0.2150 V and 2.563× 10−4 , respectively, giving 
M ′ = 180 . The mean of NIP-modulated light is 0.2149 V and the variance is 2.412× 10−4.

The CNRs of CGI with noise-induced patterns and real noisy channel imaging agree well with error less than 
7% when the noise-to-signal intensity ratio is less than 5, but error increases to maximum 16% when the ratio 
is 5. As the noise increases, randomness affects large part of imaging. To converge CNR with such randomness, 
imaging for 4 times is not enough. This results in huge error for ratio 5. Overall, our method predicts the actual 
result image within 16% error.

Conclusion and discussion
In this paper, we proposed a method to simulate an optical channel in CGI. To predict the degradation arose 
from a lossy and noisy channel, we first calculated the effect of a thermal noise from its statistics and included 
them in spatially modulated patterns. We compared the image obtained by our method with the image obtained 

(18)ISS = κIS , IS,bright =
C

M ′
IS, and IS,dark =

M ′ − C

M ′
IS .

(19)CNR =
|µ1 − µ0|

√

(σ 2
1 + σ 2

0 )/2
,

Figure 3.  Three bar images obtained by using CGI with an external thermal noise source and those of CGI with 
noise-induced patterns. The small pictures show examples of the noise-induced patterns. We calculate contrast-
to-noise ratio (CNR) and its standard deviation (std).
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by the actual noise-embedded imaging. The comparison of two result images under various noise conditions 
showed that our method can predict the effects of noisy channel within a 7% error when the noise is up to 2 times 
brighter than the signal. We expect this method would be extended to an optical channel simulation of CGI 
when the environments are hard to be implemented in a laboratory such as atmospheric turbulence  channel36–38.

An accuracy of our method can be improved with an advanced SLM. For example, there are commercial 
SLMs that can display a 10-bit grayscaled image such as SENTEC SLM-200, and there was the research to display 
12-bit grayscaled image on Hamamatsu X10468-0144. By increasing SLM grayscale levels, an approximation of 
the thermal noise becomes more accurate, and therefore, we expect that simulation results should be closer to 
the realistic ones.

One may wonder what the difference is between our method and a fully-programmed CGI simulation without 
any experiment. For the fully-programmed simulation, it is necessary to include experimental parameters of the 
devices in the program such as a photodetection efficiency. Unlike this approach, in our method, characteristics 
of devices are naturally included in a result image, and therefore, an analysis of device parameters is not neces-
sary except the SLM.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the security 
policy of the Ministry of National Defense of South Korea but are available from the corresponding author on 
reasonable request.
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