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Integrating a dynamic central 
metabolism model of cancer 
cells with a hybrid 3D multiscale 
model for vascular hepatocellular 
carcinoma growth
Alexey Lapin1,3, Holger Perfahl1, Harsh Vardhan Jain2 & Matthias Reuss1*

We develop here a novel modelling approach with the aim of closing the conceptual gap between 
tumour-level metabolic processes and the metabolic processes occurring in individual cancer cells. In 
particular, the metabolism in hepatocellular carcinoma derived cell lines (HEPG2 cells) has been well 
characterized but implementations of multiscale models integrating this known metabolism have not 
been previously reported. We therefore extend a previously published multiscale model of vascular 
tumour growth, and integrate it with an experimentally verified network of central metabolism in 
HEPG2 cells. This resultant combined model links spatially heterogeneous vascular tumour growth 
with known metabolic networks within tumour cells and accounts for blood flow, angiogenesis, 
vascular remodelling and nutrient/growth factor transport within a growing tumour, as well as the 
movement of, and interactions between normal and cancer cells. Model simulations report for the 
first time, predictions of spatially resolved time courses of core metabolites in HEPG2 cells. These 
simulations can be performed at a sufficient scale to incorporate clinically relevant features of different 
tumour systems using reasonable computational resources. Our results predict larger than expected 
temporal and spatial heterogeneity in the intracellular concentrations of glucose, oxygen, lactate 
pyruvate, f16bp and Acetyl-CoA. The integrated multiscale model developed here provides an ideal 
quantitative framework in which to study the relationship between dosage, timing, and scheduling of 
anti-neoplastic agents and the physiological effects of tumour metabolism at the cellular level. Such 
models, therefore, have the potential to inform treatment decisions when drug response is dependent 
on the metabolic state of individual cancer cells.

Cellular metabolism has long been recognized to play an important role in cancer progression and response 
to treatment1–3; however, it has only been promoted to an emerging hallmark in the most recent revision of 
the Hallmarks of Cancer4. The attribute “emerging” reflects some ambiguity, being neither core, nor enabling. 
Nonetheless, the unique metabolic features of cancer have been a driving force for many important and thought-
provoking research in cancer therapeutics in recent years5–9. Unfortunately, translating much of this knowledge 
into a major therapeutic breakthrough remains a critical challenge. Mathematical modelling is now recognized 
as a valuable tool with which to elucidate the various mechanisms that underlie a growing tumour’s response to 
treatment10, and is therefore in a unique position to identify novel therapeutic targets that exploit our knowledge 
of cancer metabolism. Indeed, there exists a vast body of literature on mathematical and systems biology models 
of cancer growth and response to treatment (for recent reviews, see11–24).

In particular, a commonly used framework for mathematical modelling of cancer cell metabolism is based 
on flux balance analysis25–31. In this top-down approach, the results of “omic” investigations (genome, transcrip-
tome, proteome, metabolome and sometimes flux measurements) inform flux-balanced metabolic pathways. 
Although these models have contributed greatly to our understanding of metabolic pathways within cancer 
cells, they suffer from some limitations. For instance, this approach does not adequately capture the effects of 
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cellular heterogeneity within a tumour, or of interactions between cells and the tumour microenvironment. 
Furthermore, these models are static and fail to capture key system dynamics such as temporal and spatial het-
erogeneities that arise due to environmental fluctuations. Finally, flux balance analysis (FBA) requires not only 
the stoichiometry of the network, but also an appropriate objective function and, possibly, further constraints. 
For instance, in the growth of microorganisms, the most consistent optimal criteria are maximising biomass 
yield per flux unit or maximising ATP yield per flux unit. However, in the case of cancer growth, the objective 
functions are typically more complex, including multi-objective optimization problems (optimization involving 
more than one objective function). We remark that some of these constraints may be overcome by application 
of 13C metabolic flux analysis32–36.

Equally, bottom-up approaches based on the kinetics of individual reactions have been used to generate test-
able predictions at the macro-scale from dynamic models of pathways and networks37–48 in microorganisms and 
cell cultures. Experimental methods essential for identifying the in vivo kinetics that inform these models, follow 
a stimulus–response methodology wherein cells grown in culture are disturbed by fast changes in extracellular 
glucose concentration. The resultant dynamic responses of intra- and extracellular metabolites are then measured. 
Two different approaches have been used to infer dynamic models from this data. In the modular approach, 
the metabolic network is decomposed into manageable subunits, and experimental measurements determine 
the functional forms and parameters of the kinetic equations37,38. The second approach utilizes optimal control 
methods for model simplification, such as lin-log approximations49–51. Examples of the application of lin-log 
kinetics for the simultaneous estimation of model parameters include the whole cell metabolic network dynamics 
of E. coli52 and a dynamic model for the central metabolism of HEPG2 liver cancer cells53.

Our objective here is to better understand how known metabolic processes occurring in individual cancer 
cells inform tumour-level metabolic dynamics. Specifically, we propose integrating experimentally validated 
dynamic models of the central metabolism of HEPG2 cancer cells within spatially resolved multiscale models 
of hepatocellular cancer growth. This will allow us to predict the spatio-temporal dynamics of key metabolites 
within a growing vascular tumour. Such models can, in the future, inform treatment decisions when drug 
response is dependent on the metabolic state of individual cancer cells. Indeed, specialized articles on cancer 
cell metabolism often acknowledge the need for such an integrated approach54,55, but attempts to develop the 
necessary quantitative framework have not been previously reported.

We begin by extending previously published hybrid, multiscale models of vascular tumour growth (see Owen 
et al.56 and Perfahl et al.57). These model couple blood vessel formation or angiogenesis in response to a growing 
tumour’s nutritional demands with blood flow, nutrient transport, and the nutrient-dependent processes of cel-
lular proliferation, quiescence and apoptosis. We supplement this 3D framework with external glucose balance, 
including the transport of glucose from the blood vessels, its diffusion through the interstitium, and its uptake 
by cancer and healthy cells. The metabolism of internalized glucose is explicitly included by integrating within 
this framework, a dynamical model of the central metabolism in HEPG2 cells, developed by Maier et al.53. This 
model has been experimentally validated by quantitative measurements of metabolite concentrations under 
dynamic conditions (stimulus–response experiments) and metabolic flux distributions obtained from transient 
13C flux analysis32,33. Additionally, we propose a new functional form for the probability of successful anasto-
moses during angiogenesis in 3D, which is based on actual experimental observations58–61. Specifically, we allow 
this probability to be a function of distance between sprout tips, rather than simulating anastomosis in a more 
phenomenological fashion where it occurs when two sprout tips (or a sprout tip and an existing vessel) meet 
simply due to motion on the grids of the cellular automaton model.

Simulations of the integrated multiscale model predict for the first-time, 3-dimensional concentration pro-
files of metabolites within a growing vascular tumour. Longitudinal sampling from the simulated time-series of 
tumour development allows us to create images of the spatial–temporal distributions of these metabolites. These 
results illustrate the response of tumour and normal cells to various glucose and oxygen uptakes rates, including 
the extreme situations of normoxic, hypoxic and anaerobic conditions.

The remainder of this paper is organized as follows. In the “Methods” section, we present our mathematical 
model and the underlying computational framework. In “Results” we present simulation results and conclude 
with a discussion on the significance of our findings in “Conclusions”.

Methods
3D multiscale hybrid model of vascular tumour growth.  The 3-dimensional model of vascular hepa-
tocellular carcinoma growth is based on the multiscale hybrid models of tumour growth proposed by Owen 
et al.56 and Perfahl et al.57. The model integrates four distinct scales: sub-cellular, cellular, diffusible species, and 
a vascular layer, as shown in Fig. 1. Model species interact with each other according to predefined rules and 
coupling mechanisms as described in56,57. Here, we briefly summarize how this hybrid framework works. We 
refer the reader to56,57 for further details.

The sub-cellular scale is deterministic and considers three different cell types (normal cells, cancer cells and 
endothelial cells). Intracellular behaviour is described by ordinary differential equations (ODEs) for intracellular 
VEGF production, p53-, CDH-, p27-activity, and progression through the cell cycle. These, in turn, govern rule-
based cellular behaviour such as division, quiescence and apoptosis. In our formulation, each cell is a stochastic 
agent whose behaviour is simulated via a cellular automaton model, which describes cell–cell interactions and cell 
movement. The extracellular concentrations of diffusible species—VEGF and oxygen—are determined by partial 
differential equations (PDEs) of the reaction–diffusion type, solved to quasi steady-state. In62 this modelling-layer 
has been further extended for the description of distributions of drugs. The vascular network comprises vessel 
segments connecting adjacent nodes on the simulation lattice, with defined inflow and outflow nodes, and pre-
scribed pressures. The vascular network evolves as follows. Vessel sprouts form with a probability that increases 
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with local VEGF concentration. Each sprout is an individual agent in our model whose movements are described 
by a biased random walk. As sprout tips migrate up concentration gradients of VEGF, they lay down behind 
them microvessels contiguous with the parent vessel. These new vessels become functional when a circulation 
loop is completed. This is realised when the guiding sprout tip anastomoses with other sprouts tips or vessels.

Challenges in extending the 2D framework to three dimensions were examined by Perfahl et al.57. A crucial 
observation was that successful anastomoses during angiogenesis are less probable in 3D, since the moving 
sprout tips have an additional degree of freedom. Without anastomoses, circulation loops in new vasculature 
cannot be completed, and blood supply cannot be established. One limitation of the 2D/3D model is that the 
frequency of anastomoses is a function of grid size. This simplistic assumption permitted enough successful 
anastomosis encounters in two dimensions. However, the corresponding probability of successful encounters in 
three dimensions is reduced, leading to less efficient angiogenesis and inhibited tumour growth. We remark that 
reducing the grid size in three dimensions, or assuming a higher initial vessel density did not entirely ameliorate 
this limitation.

In contrast to the aforementioned approach, we instead propose the following formulation wherein the 
probability of anastomosis is taken to be a function of the distance �x between two sprout tips or a sprout tip 
and an existing functional vessel.

where �xmax = 100µm is a constant representing the maximum distance of possible anastomosis. We remark 
that the above equation is underpinned by biological observations. Though a pivotal step in angiogenesis, the 
mechanisms driving vessel anastomosis are poorly understood. Much research has focused on elucidating how a 
sprout is guided in the direction of other vessels. There is emerging evidence that when sprout tips are separated 
by short distances, signal transduction in sprout tip cells guides them towards each other, increasing the prob-
ability of anastomosis58–60. Further, Moreira-Soares et al.61 demonstrated how vessel sprouts are guided towards 
each other even at larger scales of distance. These authors argued that such mechanisms are particularly relevant 
in three-dimensional space where “without it the network has a reduced number of anastomosis”. Practically, a 
successful anastomosis event is implemented as follows. A random number ξ is generated uniformly from [0, 1], 
and if ξ ≤ Panastomosis , anastomosis occurs, while if ξ > Panastomosis , anastomosis does not occur. Consequently, 
the new random number approach for anastomosis leads to a greater velocity of migration of the vessel cells 
and increases the probability of anastomosis compared to the original model57. The algorithm for the random 
number generator is based on63.

In order to integrate the dynamic metabolic model of HEPG2 cells within this framework, we need to explic-
itly include glucose as the primary metabolite. Extracellular glucose is taken as a diffusible species, that is supplied 

(1)Panastomosis = 1−�x/�xmax, for �x < �xmax; 0, otherwise

Figure 1.   Multiscale model overview57. Metabolic network model reprinted from53 under a CC BY license, with 
permission from BMC Systems Biology, original copyright 2010.
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by the vasculature and taken up by tumour and healthy cells. The PDE governing the spatial distribution of 
extracellular glucose concentration ( cGlu ) at quasi steady-state is taken to be:

where: DGlu is the diffusion coefficient for glucose in the interstitium (2.0 × 10–6 cm2/s, see64); PGlu is the permea-
tion coefficient for transport of glucose from the blood vessel into the interstitium; cbloodGlu  is the concentration 
of glucose in blood; and I(t, x) is an indicator function that returns the number of cells on the corresponding 
lattice-site with position vector x , and 2πR(t, x) is an indicator-function that returns the vessel radius if a vessel 
is present at position x , otherwise it returns zero. The rate of glucose uptake ( ruptake ) is represented by the fol-
lowing Michaelis–Menten kinetic function:

where rmax is the maximum rate of glucose uptake rmax = 3.3 (mmol/l h for cancer cells), this is an estimate from 
measurements in mmol/(106 cells min) with hepatic cells carried out with standard six-well tissue culture plates32. 
For normal cells rmax = 0.66 (mmol/l h). For cancer cells as well as normal cells KM = 0.2 mmol/l65.

The model of intracellular glucose metabolism is described below.

Dynamic model for the central carbon metabolism in liver cancer cells.  We now summarize the 
model of central metabolism in HEPG2 cells, which is included at the subcellular scale for each cell in our simu-
lation domain. This model was proposed by Maier et al.53 (also see Fig. 2), and includes reactions representing 
glycolysis, the pentose-phosphate shunt, the citric acid cycle, and respiration. Briefly, the following generic mass 
balance equation describes the time-dependent behaviour of the metabolites:

where: N denotes the stoichiometric matrix; r is the vector of rate constants; c0 is a square diagonal matrix with 
steady-state concentrations of metabolites along its main diagonal; and c/c0 is a vector of normalized metabolite 
concentrations. The following general equation represents a typical kinetic equation of the lin-log model:

Here, subscripts denote participating species in the reaction, that is, substrates (S), products (P), activators 
(A) and inhibitors (I). Superscripts (0) in Eqs. (4) and (5) denote the reference state (for instance, steady state or 
initial condition). J0 is the reference flux through this reaction, cE is the concentration of the enzyme catalysing 
the reaction, and the elasticity coefficients are defined as

(2)DGlu�cGlu + 2πR(t, x)PGlu
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Figure 2.   Metabolic network model (HepG2 liver cancer cells). The figure shows the model that is implemented 
in our multiscale framework within this study. Reprinted from53 under a CC BY license, with permission from 
BMC Systems Biology, original copyright 2010.
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where M ∈
{

(S, i),
(

P, j
)

, (A, k), (I , l)
}

 . The quantitative information about the steady-state metabolic flux analy-
sis was derived with the aid of an instationary C-13 metabolic flux analysis32,33. The dynamic model was experi-
mentally validated with quantitative measurements of 25 extracellular and intracellular intermediates during 
stimulus response experiments. For more details we refer to the original publications32,33,53.

Coupling of intracellular and extracellular scales.  The intracellular models are coupled to the extra-
cellular environment through the concentration of the diffusible substances. Extracellular oxygen acts directly 
on the cell-cycle and the intracellular VEGF/p53 model. The feedback from the intracellular to the diffusible 
scale is implemented via secretion of VEGF (as the source term for the VEGF-PDE). Glucose is coupled to the 
metabolic network via a frozen steady-state and a one-way coupling (from extracellular to intracellular). There-
fore, the local concentration values of glucose at the cell position are used to update the intracellular ODE model 
and to proceed in time. The coupling is also visualized in Fig. 1.

Computational framework.  The computational framework used to simulate the hybrid multiscale model 
of vascularized tumour growth is described in detail in56,57. In57 the model was extended from 2D to 3D and 
it was necessary to adapt the computational algorithm to the additional degree of freedom. Simulating large 
tumours is challenging due to the added computational demands created by the third dimension. Issues of 
memory allocation arise due an increase in the number of agents (cells) in model simulations. The inherent sto-
chasticity of our hybrid model would require averaging over multiple realizations to extract robust conclusions. 
The latter aspects were neglected in the simulation results presented below, due to the large computational effort. 
The results presented are therefore representative results that show the underlying mechanisms of our model.

To master the remaining challenges regarding computer demand we follow the strategy of structural consist-
ency between the multiscale structure of the model and the architecture of the computer hardware66,67, thereby 
utilizing the strengths of diverse computational hardware. A closer look at the structure of the model (Fig. 1) 
suggests the choice of a hybrid parallelized CPU (Central Processor Unit)—GPU (Graphical Processor Unit) 
system. After detailed investigations of the required computer demand of the individual modules shown in Fig. 1, 
we arrive at an optimal distribution of various tasks, as illustrated in Fig. 3.

The system of ODEs describing cell-cycle dynamics at the subcellular level was solved using the modified 
Bulirsch-Stoer method68. Since these ODEs decouple between agents and are only influenced by extracellular 

(6)εM =
cM0

r0

(

∂rM

∂cM

)

0

,

Figure 3.   CPU-GPU systems for simulation. Strategy with parallelized CPU-GPU systems for simulation of the 
hybrid multiscale models for vascularized tumour growth. The extracellular concentrations (glucose/oxygen) are 
used to update the intracellular network and therefore the synchronization of both models takes place after the 
update of diffusible substances.
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diffusible species such as oxygen (solved to quasi steady state), GPU-based methods are optimal. An adaptation 
of CUDA-FORTRAN was required to implement the modified Bulirsch-Stoer method on parallelized GPUs.

PDEs governing the diffusive transport and reactions governing extracellular oxygen, VEGF and glucose 
concentrations were discretized using the second order Alternating Direction Implicit method69, and solved on 
parallelized CPUs. The force-balance equations describing blood flow in the vascular network were solved on 
the CPU using the Liebmann successive displacement method70. The biased random walk of sprout tips resulting 
in angiogenesis was also implemented on a single CPU. Model simulations were visualized using the Coin3D 
implementation of the Open Inventor Application Programming Interface (API) and OpenGL71.

The dynamic model for the central metabolism in HEPG2 cells was numerically integrated using the LIMEX 
solver72. Since the time constants of the reactions in the metabolic network model (Eqs. (4) and (5)) are much 
shorter than cell division times, we assume that the simulations of the metabolic network can be based upon a 
frozen steady state of the vascularized tumour growth.

All simulation parameters, applied here, are given in Perfahl et al.57 and Meier et al.33.

Results
3D vascular tumour growth.  We first simulated the growth of a vascular tumour in three dimensions, 
to illustrate the effect of the new approach for capturing anastomosis. A typical model simulation is shown 
in Fig. 4. Simulations were performed on a 64/64/64 lattice with a spacing of 20 µm, which corresponds to a 
1.28 mm × 1.28 mm × 1.28 mm cube of tissue. In these simulations, each lattice site can only be occupied by 
at most one cell (healthy or cancerous). Prior to tumour initiation, we assumed that the simulation domain 
was perfused by two parent vessels with countercurrent flow, that is, flows are in opposite directions. We then 
allowed healthy tissue and its associated vascular network—fed by the parent vessels—to grow into and finally 
occupy this domain (Fig. 4A). At time t = 0, a small tumour was implanted within the healthy tissue (Fig. 4B). As 
the tumour cells proliferated, they became hypoxic, resulting in VEGF secretion, a high degree of angiogenesis, 
and further tumour growth (Fig. 4C–E). We remark that our choice of the distance-dependent functional form 
of anastomosis probability results in a highly efficient process of functional vascular network formation in three 
dimensions.

Integration of the dynamic model for central metabolism in individual cells with the vascular 
tumour growth model.  The central metabolism model was integrated into the 3D model of vascular-
ized tumour growth as described in the methods section. Since reaction rates in the metabolic network model 
(Eqs. (4) and (5)) are much larger than cell division times, we assume that on the timescale of tumour growth, 
metabolite concentrations are at quasi steady state. This allowed us to capture the spatial distribution of key 
metabolites within the tumour, in three dimensions, and at each time point. The results of these simulations 
are shown in Fig. 5. The first row indicates vascular tumour growth showing proliferating (blue) and quiescent 
(yellow) tumour cells and intra-tumoural blood vessels (red). Equatorial cross-sections taken from the corre-
sponding 3D concentration fields of metabolites (glucose, oxygen, lactate, fructose-1,6-bisphosphate, pyruvate, 
Acetyl-CoA) are shown in the remaining rows.

The spatio-temporal distributions of 2 nutrients, glucose and oxygen, mirror the increase in vessel density 
caused by tumour-induced angiogenesis. Briefly, hypoxia and hypoglycemia in poorly vascularized areas of the 
tumour induced VEGF secretion by tumour cells. The resulting angiogenesis largely restored nutrient supply, 
leaving only a smaller outer region that was nutrient deficient, as reflected by a thin layer of quiescent tumour 
cells. Visual validation of our model comes from the predicted concentration profiles of lactate within the tumour. 
Elevated lactate levels closely mirror high glucose levels (Fig. 5 rows 2 and 4), demonstrating the well-established 
Warburg effect, wherein cancer cells perform aerobic glycolysis—of which lactate is a by-product—even in the 
presence of oxygen73

In the initial stages of tumour growth, the concentrations of fructose-1,6-bisphosphate (f16bp) and pyruvate 
are predicted to be highly spatially heterogenous. In contrast, the citric acid cycle input, Acetyl-CoA, demon-
strates less variability across the tumour. The relatively uniform Acetyl-CoA concentration is explained by the 
conversion of excess pyruvate (the precursor of Acetyl-CoA) into lactate, so that spatial gradients of lactate vary 
even though those of Acetyl-CoA do not. We remark that a relatively constant Acetyl-CoA concentration will 
lead to a steady rate of flux through the citric acid cycle, assuring ready availability of important precursors e.g. 
for the synthesis of fatty acids, in cancer cells74.

Visual validation for our model comes from comparing predictions of glucose concentration profiles with 
experimental data reported in75. The predicted heterogeneity in glucose concentration in our model simulations 
is in good qualitative agreement with PET scan measurements of 18F-FDG taken from a xenograft model of non-
small cell lung cancer75. 18F-FDG uptake is directly related to glucose metabolism in lung cancer76.

We also plot the spatial distribution of 6-phosphogluconate, an intermediary of the pentose-phosphate path-
way, in Fig. 6. As expected, concentrations of metabolic intermediates associated with high levels of flux through 
the corresponding pathways are higher in rapidly dividing regions of the simulated tumour. The glucose flux 
through the pentose-phosphate pathway is much higher than would be needed to produce ribose 5-phosphate for 
DNA synthesis in support of cancer cell replication32,33,53. Our simulation results reflect this increased flux by the 
6-phosphogluconate concentration, which provides biological support to our model because NADPH produced 
by this pathway is used by cancer cells to scavenge reactive oxidative species (ROS). Additionally, rapidly dividing 
cancer cells require NADPH/reducing potential for anabolic reactions such as lipid and cholesterol synthesis74.

To illustrate the potential of our model in elucidating cancer metabolism, we plot three-dimensional distribu-
tions for selected metabolites in Fig. 7. These distributions illustrate for the first time the unexpected extent of 
spatial heterogeneity in cancer metabolism for different cell types in the local microenvironment.
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Conclusions
Variability in oxygen and glucose concentrations drive heterogeneity in the metabolic phenotype of cancer cells 
during tumour progression. This can significantly impact tumour response to anti-neoplastic agents, especially 

Figure 4.   Three-dimensional growth of the tumour. (A) Healthy tissue embedded between 2 parent vessels 
results in efficient angiogenesis and a sufficient oxygen supply. (B) The initial tumour is implanted in the healthy 
tissue. For ease of visualization, only tumour cells are shown (blue: proliferating tumour cells, yellow: quiescent 
tumour cells) and healthy cells are hidden. (C–E) Further vascular tumour growth. (F,G) Different views of the 
tumour at final time point (E).
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when drug response is dependent on the metabolic state of individual cancer cells54. Therefore, our over-arch-
ing goal is to bridge the conceptual gap between tumour-level metabolic processes, and the known metabolic 
processes occurring within individual cancer cells. To this end, we extended a computational framework here 
wherein a dynamic metabolic model was integrated with a hybrid 3D multiscale model of vascularized tumour 
growth.

We reported here the first three-dimensional model of intracellular metabolism dynamics as they respond to 
microenvironmental cues within a heterogeneous growing tumour. Model simulations predicted a high degree 
of spatial heterogeneity in key metabolites within the growing tumour. Such models, once validated, can be 
employed in the future to optimize targeted metabolism-based therapies.

For instance, the module for the dynamic model of metabolism can be used to carry out a model-based analy-
sis (e.g. with the help of metabolic control analysis (MCA)) to identify suitable targets for drug development53. 
The need for experimentally verified dynamic models of cancer metabolism on which to test novel therapeutics 
has been highlighted in one of the first reviews focused on this topic81. In addition to identifying the main 
controlling steps for targeted drug development, our approach for linking the 3D vascularized tumour model 
with the dynamic metabolic model permits simulation and optimization of different therapeutic application of 

Figure 5.   3D concentration fields. Equatorial cross-sections taken from 3D concentration fields of metabolite 
concentrations within the growing tumour (first row).
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such drugs. The objective of these simulations could be the development of treatment strategies as a function of 
the progression of the tumour, repeating therapies and /or design of combination therapies in the case of treat-
ments that combine more than one therapeutic agent. In spite of problems in clinical trials for treatment with 
metabolic inhibitors there are promising results in the literature for improving the application of mathematical 
tumour models for personalized tumour growth prediction. A recently published review82 focusing at the expert 
opinion on the topic of clinical application of these inhibitors reveals that although there is an increasing number 
of publications on the subject of metabolic inhibitors, the majority of these approaches are restricted to preclini-
cal studies (particularly cell cultures) and only a few of them have been successfully transformed into clinical 
applications of cancer treatment. The important conclusion of the authors: “Toxicity of normal cells and high 
dosage required for the current inhibitors remain the showstopper”. As such, the necessary data from clinical 
trials are not available and we are unable to compensate for this deficit. Our concept for the application of the 
model for clinical application aims at simulations of alternative strategies to solve the above- mentioned problems 
of toxicological effects on healthy cells. A promising possibility for liver tumours would be the application of 
direct injection into the arterial inflow, as is already practiced with TACE therapy. We have previously used the 
tumour model for satisfactorily simulations of this therapy62. To improve the model-based predictions, we are 
currently working on expanding the modeling of the hexagonal blood supply of the liver module. This significant 
improvement in the imaging of vascularization is currently being incorporated in a further manuscript. Finally, 
it is planned to couple these model extensions with the dynamic model of the metabolism and to use them for 
the simulation of clinical therapies for the utilization of the inhibitors.

An important – and yet often overlooked – aspect in cancer models is the huge information gap between 
phenotype and genotype. That is, how gene expression and molecules influence the behaviour of a (cancer) 
cell14. This is a complex problem, not least since the mapping from genes to phenotype is not one-to-one but 
is probably many-to-one or even many-to-many. Sophisticated mathematical modeling could potentially help 
elucidate this “genotype-to-phenotype mapping”. Consequently, planned future work aims to connect the models 
developed here, with additional genetic sources of intra-tumour heterogeneity and extend the model to geneti-
cally and metabolically diverse tumour types. Most experiments and integrated computer models jointly tackling 
metabolism and genetics are carried out in microorganisms where parameter values are easier to acquire83–88. 
However, the results reported here can motivate targeted experiments on metabolism and cancer cell genetics, 
which can in turn be used to refine the model.

Complementing these advances at the cellular level, tissue-level experiments are needed to validate the vas-
cular component of these hybrid models. Yankeelov et al.89,90 have noted the challenges in using clinical imaging 
data for this purpose. Nonetheless, significant advances in experimental methods to image metabolic processes 
in three-dimensions91–93 render validation of the simulation results of the comprehensive model feasible.

Figure 6.   Spatial distribution of 6-phopshogluconate. The inhibition of glucose-6-phosphate dehydrogenase 
strongly influences cancer cell proliferation77–79 and may restore sensitivity of cancer cells to chemotherapy80. 
The figure shows schematically the structure of the spatial distribution of 6-phopshogluconate and the line 
points to its position in the metabolic network. Reprinted from53 under a CC BY license, with permission from 
BMC Systems Biology, original copyright 2010.
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