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Rayleigh–Taylor instability 
in strongly coupled plasma
Rauoof Wani1,2, Ajaz Mir1,2, Farida Batool1 & Sanat Tiwari1*

Rayleigh–Taylor instability (RTI) is the prominent energy mixing mechanism when heavy fluid lies on 
top of light fluid under the gravity. In this work, the RTI is studied in strongly coupled plasmas using 
two-dimensional molecular dynamics simulations. The motivation is to understand the evolution of 
the instability with the increasing correlation (Coulomb coupling) that happens when the average 
Coulombic potential energy becomes comparable to the average thermal energy. We report the 
suppression of the RTI due to a decrease in growth rate with increasing coupling strength. The caging 
effect is expected a physical mechanism for the growth suppression observed in both the exponential 
and the quadratic growth regimes. We also report that the increase in shielding due to background 
charges increases the growth rate of the instability. Moreover, the increase in the Atwood number, 
an entity to quantify the density gradient, shows the enhancement of the growth of the instability. 
The dispersion relation obtained from the molecular dynamics simulation of strongly coupled plasma 
shows a slight growth enhancement compared to the hydrodynamic viscous fluid. The RTI and its 
eventual impact on turbulent mixing can be significant in energy dumping mechanisms in inertial 
confinement fusion where, during the compressed phases, the coupling strength approaches unity.

Rayleigh–Taylor instability (RTI)1,2 occurs in a fluid system in which a heavier fluid (density, ρh ) lies on top of a 
lighter fluid (density, ρl ) under the effect of the  gravity3,4. As it evolves, the modes at the fluid interface grow in 
amplitude, forming bubbles that rise due to buoyancy and spikes, which fall due to the gravity, eventually leading 
to turbulent  mixing5. The instability is a primary mixing mechanism in supernovae  explosions6,7, solar  corona8, 
volcanic  eruptions9,  tokamaks10, Bose–Einstein condensate (BEC)11,12, paramagnetic  fluids13,14, laser generated 
high-energy-density (HED)  plasmas15,16, and inertial confinement fusion (ICF)17,18 covering multiple orders of 
length scales. Usually, hydrodynamic models explain the RTI for fluids, whether neutral or charged, using the 
Navier–Stokes (NS) model without or with Maxwell’s set of equations. This paper focuses on RTI growth and its 
nonlinear evolution in strongly coupled plasmas (SCP). Under strong inter-particle correlations, these plasmas 
reflect visco-elastic nature that can not appropriately be represented using the standard hydrodynamic model. 
Also, kinetic effects become significant enough to influence the continuum effects in such scenarios. We employ 
a classical two-dimensional (2D) molecular dynamics (MD) model to study the growth and mixing properties 
of RTI. The work highlights the impact of strong inter-particle correlations and includes contributions from all 
scales, including thermal fluctuations.

In the recent past, MD simulations have been carried out at a microscopic level to study several hydrodynamic 
instabilities such as Kelvin–Helmholtz instability (KHI)19,20,  RTI21–23, Rayleigh–Bénard  instability24, and bump-
on-tail (BOT)  instability25. Kadau et al.21 first carried out a three-dimensional (3D) MD simulation for RTI in 
Lennard–Jones (LJ) fluids. Their results, in general, matched with linear stability analysis of the Navier–Stokes 
model and paved the way to explore mixing at microscopic scales. Further, Ding et al.23 carried out RTI studies 
for Ar/He interfaces through LJ pairwise interactions. The work suggested the considerable difference in the 
formation and evolution of spikes at the microscopic level to the macroscopic scale. It also showed the detached 
droplet formation due to the thermal fluctuations. In both the works mentioned above, the focus was primarily 
on the role of microscopic fluctuations. Our focus is towards systems comprising a large number of charged 
particles, where dynamics is governed by the Coulomb force. As surrounding charges shield each charged par-
ticle, the effective pairwise potential takes the form of Yukawa/Debye–Hückel interaction potential given  by26

(1)φij =
1

4πǫ0

q2

rij
exp (−rij/�D).
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Here rij is the distance between the ith and jth particles, q is the charge on each particle and �D is the 
Debye screening length. The Yukawa/Debye–Hückel fluids in nature include soft-matter systems e.g., charged 
 colloids27,28 and concentrated protein  systems29, strongly coupled plasmas e.g., quark-gluon  plasma30,31, and dusty 
 plasma32, and many ionic-liquids33,34. Using the potential of the form Eq. (1), we have modelled RTI in SCPs. With 
known appropriate pairwise interaction, the MD provides the most fundamental and comprehensive picture of a 
system’s micro-and macroscopic dynamical process. The advantage of MD is that it is based on the fundamental 
nature of the forces. Physical processes such as shear  thinning26 and negative entropy  production35 having their 
origin at fluctuations in natural fluids are missed in the most hydrodynamic models. The micro-scale fluctuations 
captured by MD allow us to probe the emergence of macroscopic hydrodynamic quantities as the averages of 
these micro-scale fluctuations inherently. Moreover, the purpose of carrying out MD is to overcome one of the 
limitations of hydrodynamic models in incorporating strong inter-particle correlation effects. Correlations let the 
viscous liquids reflect solid-like properties usually characterised as a family of visco-elastic fluids. Electrolytes, 
ionic liquids, and plasmas are the charged liquids that belong to this family, where individual particles interact 
via Yukawa/Debye–Hückel interaction potential. Especially plasmas, in extreme conditions (high charge on 
particles, extremely low temperatures, or at high density), reflect solid-like properties and also show the presence 
of transverse shear waves. Their solid-like reflection can be quantified through the coupling parameter, Ŵ as:

The coupling strength is defined as the ratio of average Coulomb potential energy 
〈

Ep
〉

 and average thermal 
kinetic energy 〈Ek〉 . Here a = (πn)−1/2 is the average inter-particle separation or Wigner-Seitz radius, and n 
is the areal number density. T is the temperature of particles. The Yukawa nature is quantified by screening 
parameter κ = a/�D . The limit κ → 0 represents a pure Coulomb system, while the limit κ → ∞ represents 
the hard-sphere like interactions. Two dimensionless parameters characterize the thermodynamic and transport 
properties of Yukawa one-component plasmas; the Coulomb coupling strength Ŵ and inverse Debye screening 
length κ36,37. We found the enhanced correlations (i.e., the increase in Ŵ ) suppress the RTI in Yukawa fluids. This 
result is supported by the findings of Das et al.38 and Avinash et al.39 that propose the reduced growth of instabil-
ity with increasing coupling strength using a phenomenological generalized hydrodynamic (GHD) visco-elastic 
model. Their results from the GHD model suggest a decrease in growth rate as γ =

√

gkAt − η/τmk2 . Here, η 
and τm are the viscosity and relaxation time, respectively, and both depend on the coupling strength Ŵ . In weakly 
coupled plasma, the growth rate attains the standard incompressible hydrodynamic limit 

√

gkAt
38,39. Also, g is 

the acceleration due to the gravity, At = (ρh − ρl)/(ρh + ρl) is the Atwood number to quantify the density 
gradient and k is the wave vector of the excited mode. The penetration depths of spikes HS(t) into the light fluid 
and bubbles HB(t) into the heavy fluid are usually governed quadratically in time HS,B = γqS ,qBAtgt

2 using the 
inherent inviscid NS model. The quadratic growth rate of spike γqS and bubble γqB is found to be dependent and 
independent of the variation of the Atwood number At respectively using the continuum NS model as well as 
the LJ atomistic  simulations40. It isnoteworthythat the viscosity for suchstrongly correlated mediums acts to sup-
port elasticity rather than playing a viscous damping role. We have also studied the effect of potential shielding 
over the instability explicitly through parameter κ . The shielding was found to increase the diffusive nature of 
the medium and the growth rate of RTI. Both these observations may be seen as a development of RTI on an 
effectively lower value of coupling strength which may be approximated as Ŵ∗ = Ŵ exp (−κ)41.

While results in this paper are generalized and represent any fluid with pairwise Yukawa interactions, our 
terminologies and approach are inclined towards strongly coupled  plasmas42,43. The SCPs include dusty  plasma44, 
ultracold  plasmas45–48 and dense  plasmas49 depending on charge, temperature and density as factors responsible 
for strong correlations. In all three forms of SCPs, the interaction in bulk plasma is represented by shielded 
Coulomb potential. Our results could interest the inertial confinement fusion community as RTI is an unavoid-
able mixing mechanism in the ICF process. During the ICF process, the plasma has been claimed to be reaching 
close to moderate coupling  strengths50,51. In such coupling regimes, the RTI growth should be lower than that 
predicted by hydrodynamics models.

Results
RTI: natural growth through maximally growing mode. We let the equilibrated system evolve natu-
rally after removing the partition between heavy (top) and light (bottom) fluids as in Fig. 1a. Initially, the insta-
bility grows from thermal fluctuations at the interface. The insets in Fig. 1b,c show the early stage growth of 
modes growing from fluctuations. Quickly, the maximally growing mode dominates due to the higher growth 
rate and becomes visible. At later stages of the evolution, the maximally growing mode (of the chosen system) 
typically corresponding to k ≈ 4k0 is visible in subplots Fig. 1d,e at times t = 4000 and t = 5000 ω−1

pl  respec-
tively. Here k0 = (2π)/Lx is the fundamental mode at the interface in x-dimension. We observe the growth of 
mushroom clouds over the interface, a characteristic feature of RTI. The bubbles of lighter fluid (in blue) can be 
seen moving upwards against the gravity, and the spike of the heavier fluid (in green) penetrates, the lighter fluid 
downwards along the direction of gravity. A slight compression of the light fluid layer due to the early-stage free 
fall-like motion of the heavy fluid is visible during evolution from 0 to 500 ω−1

pl  . But the same has no significant 
impact on characteristic RTI features. We have brought this effect to a negligible level in the rest of the simula-
tions by adjusting the system dimension as Ly = 10Lx . We will remain confined to the same system configura-
tion throughout the manuscript.

As the focus of present studies is to compare the growth rate dependence on various physical parameters of 
the strongly coupled plasma, RTI growing via natural modes is not suitable. Individual modes cannot be tackled 
precisely as they grow simultaneously in a naturally evolving system. As the prime motive is to observe the effect 

(2)Ŵ =

〈

Ep
〉

�Ek�
=

1

4πǫ0

q2

akBT
.
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of Ŵ , κ and At on the growth, it is useful to fix the initial perturbation on individual mode dominantly. It also helps 
in capturing the early exponential dynamical regime. The early exponential growth (in linear regime) is hard to 
analyse. Moreover, it takes longer to explicitly see the maximally growing mode if the system evolves naturally. 
Thus, we will artificially perturb the system at the interface for the rest of the paper.

RTI: growth through single-mode perturbation. To observe single-mode evolution, we perturb the 
interface with the mode k0 = (2π)/Lx that fit the system along x-direction. The sinusoidal perturbation added 
to the velocity of particles in a region of a few average inter-particle thicknesses at the interface as shown in 
Fig. 8b (“Methods”). The form of the velocity perturbation is vy = vthermal

y + ξ0 cos (kxx) with ξ0 = 1.5vthermal
y  

and kx = k0 . It takes about 10 ω−1
pl  for velocity perturbation to reflect in particle positions and hence in the den-

sity profile. Figure 2 shows the excitation of single-mode through perturbation and its evolution due to the RTI. 
Subplot Fig. 2b clearly shows a growing sinusoidal perturbation with wavelength corresponding to system width 
Lx . In time, as shown in subplots Fig. 2b–i, the sinusoidal perturbation grows with heavy fluid penetrating within 
the light fluid as a spike that eventually forms the mushroom structure at later stages. Simultaneously, the bubble 
of the light fluid grows upward into the heavy fluid. Though, the growth of the bubble is usually slow compared 
to the spike growth and attributed to the At . For larger values of At , the free-fall of the spike is expected, leading 
to higher growth of spike compared to the bubble.

Figure 3A shows the spike penetration ( Hs = Hs(0)−Hs(t) ) within the light fluid for the system at coupling 
strength Ŵ = 10 . Here Hs(0) is the position of unperturbed interface i.e., Ly/2 and Hs(t) is the position of the tip 
of spike in time. We have recorded the spike amplitude evolution for 6000 ω−1

pl  s as shown in blue line with square 
marker. It broadly passes through the three dynamical stages, (1) exponential growth (green-colored), (2) spike 
and bubble formation with secondary KHI (red-colored) and (3) the nonlinear saturation leading to the turbulent 
mixing (black-colored) of RTI. In the first region (inset plots from (a) to (d)), the amplitude of the spike grows 
exponentially as per the linear stability analysis. An incompressible, inviscid hydrodynamic  model3 suggests the 
RTI growth rate as γe =

√

gAtkx  . Though in the present scenario, the viscosity and solid-like properties also 
play a significant role in deciding the growth rate. In the second region (inset plots (e) to (h)), the sinusoidal 

Figure 1.  Time evolution of the RTI in a naturally evolved square system ( Lx = Ly ) through maximally 
growing modes. (a) The step density profile of the system, at time t = 0 ω−1

pl  , is unstable towards the RTI under 
gravity. (b–e) reflect growing modes at interface at times t = 500 , 1000, 4000 and t = 5000 ω−1

pl  , respectively. 
Inset in subplots (b,c) are magnified views showing early growth of modes in thermal fluctuations at the 
interface.

Figure 2.  Time evolution of single-mode RTI. (a) The initial step density profile with Ly = 10Lx . (b–i) are 
snapshots of growth of RTI at time intervals of 200 ω−1

pl  each. The rise of bubbles (blue-coloured) of light fluid 
due to buoyancy and fall of the spike (green-coloured) of heavy fluid due to gravity is observed. From (e) 
onward, the nonlinear mushroom cloud formation due to secondary KHI is visible.
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perturbation evolves nonlinearly into bubbles and spikes of lighter and heavier fluids, respectively. The second-
ary KHI that develops due to the shear velocity between two penetrating fluids gives rise to the formation of 
mushroom clouds. Finally, in the third region (inset plots (i) to (l)), the nonlinear saturation of the instability is 
observed as the spike amplitude almost stops growing. During this stage, turbulent mixing occurs, distributing 
the energy associated with excited/perturbed mode to smaller scales up to kinetic levels.

We understand that being a kinetic simulation, there will be statistical fluctuations in the growth of RTI 
for different replicas of the same ensemble. It is computationally expensive to carry out multiple simulations 
with different initial particle configurations. Though, to provide an idea of the possible statistical error, we have 
attempted multiple simulations for a single case as in Fig. 3B,C. Each simulation starts with a different arrange-
ment of position and velocity but the same Ŵ = 10 , κ = 0.1 and At = 0.7 . They all follow the same trend in 
growth, suggesting statistical error to be very small and have the least impact on RTI growth. This suggests that 
the statistically different replicas of systems do not impact the growth rate of the RTI. We have also plotted the 
error bar over the average growth rate obtained in each replica and finally best fitted to get the growth rate in each 
regime. Further, kinetic simulations make it challenging to demarcate a clear separation of linear growth, quad-
ratic growth, and full nonlinear evolution. Though our best fits are a good representation in giving the message 
that the growth rate decreases with the increase in coupling strength Ŵ without any ambiguity, as shown in Fig. 4.

Figure 3.  (A) Spike amplitude in single-mode RTI covering exponential and quadratic growth regimes and the 
nonlinear saturation stage. In subplot (A), the insets (a–d) show linear growth of modes, insets (e–h) shows the 
formation of spikes of heavy fluid and bubbles of light fluid and insets (i–l) show the nonlinear saturation that 
finally leads towards the turbulent mixing. (B) The exponential growth regime at the early-evolution stage, and 
(C) the quadratic growth regime during later evolution. The error bars in subplots (B,C) reflect the statistical 
error associated with the mean spike amplitude. An error has been calculated as the statistical variation in spike 
amplitude from its mean value for multiple simulation replicas for the same ensemble.
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Determination of growth rate in exponential regime γe and quadratic regime γq for single‑mode RTI. The growth 
rate of instability is calculated by following the change in the fall (rise) of the spike (bubble) from the interface 
position. The growth rates of spike and bubble are typically different depending on the choice of the At . Our 
focus is limited to the growth rate of spikes only. The growth in spike amplitude is categorized in two regimes, 
namely (1) the exponential growth and (2) the quadratic  growth21. The exponential growth ( HS(t) = HS(0)e

γet ) 
observed during very early-time evolution of the unstable mode within first 100 ω−1

pl  s. As the perturbation 
grows from fluctuations, HS(0) is the amplitude of spike at 10 ω−1

pl  s when the single-mode starts visualizing. Fig-
ure 3B shows a linear slope as the growth rate of logarithmic spike amplitude changes. Further, during the late-
time dynamics typically from 400–2000 ω−1

pl  s, we observed the spike amplitude growth following the quadratic 
dependence over the time HS(t) = γqAtgt

2 in Fig. 3C. The exponential regime has a higher growth rate due to 
the abundance of free energy available at the early evolution stage in the system. During the quadratic evolution 
stage, the growth rate decreases because the instability is heading towards the nonlinear saturation stage due to 
the exhaustion of free energy available in the system. Though we have not explicitly calculated the free energy 
changes in the simulation, we understand that due to complex nature of nonlinearity not all the available free 
energy might get exhausted at the saturation stage.

Effect of Coulomb coupling strength (Ŵ) on the growth of single-mode RTI. Here, we estimate 
the growth rate of RTI at three different values of coupling strengths Ŵ = 10 , 50 and Ŵ = 100 . Figure 4 shows 
the time evolution of instability in single-mode from subplots (a) to (i). Each row represents a different value of 
Ŵ increasing from top to bottom. The snapshots of spike amplitude at different times clearly show the decrease in 
the growth rate of RTI as Ŵ increases from 10 to 100. The exponential γe and quadratic γq growth rates for differ-
ent coupling strengths have been calculated. We found the exponential growth rate γe and the quadratic growth 

Figure 4.  Effect of coupling strength Ŵ on single-mode RTI. The top to bottom rows shows the evolution of 
single-mode RTI in systems with increasing coupling (Coulomb) strength. The suppression of growth of the 
spike amplitude in single-mode RTI is clearly visible with increase in the coupling strength. (a) In each row at 
t = 0 ω−1

pl  , shows the initial step density profile. The snapshots in each row are shown at t = 100 ω−1
pl  (b) and 

rest all (c–i) with an interval of t = 200 ω−1
pl  , from t = 200 ω−1

pl  onward upto t = 1400 ω−1
pl  s. The related movie 

is provided in Supplementary Material.
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rate γq both decreasing with the increase in coupling strength. Figure 5a shows the exponential growth rate for 
single-mode RTI at the early evolution stage that indicates a reduction in the growth rate with increasing Ŵ . Fig-
ure 5b shows the quadratic growth of single-mode RTI at a later evolution stage that also indicates a decrease in 
growth with an increase in Ŵ . The solid traits get prominent with increasing coupling strength Ŵ . Thus, the RTI 
growth rate reduces as the medium attains more and more solid-like properties. Figure 5c shows the RTI growth 
rate variations with coupling strength for single-mode perturbation. The exponential growth rate reduction with 
Ŵ is significant compared to the quadratic growth rate.

Effect of screening parameter (κ) on the growth of single-mode RTI. In plasmas and electrolytes, 
the Coulombic interaction between charges is shielded by surrounding charged particles leading to effective 
Debye–Hückel interaction among themselves. The shielding parameter κ reflects the effective range over which a 
single charge’s electric field is felt. Hence, the change in κ also impacts the effective coupling strength of medium 
that has been quantified as Ŵ⋆ = Ŵ exp (−κ)41 and later was improvised to Ŵ⋆ = Ŵ(1+ κ + κ2/2) exp (−κ)52. 
In both interpretations of Ŵ⋆ , the correlation gets weak with the increase in κ . We observe the increase in the 
growth rate of instability as κ increases in molecular dynamics simulation of RTI. Figure 6a shows the evolution 
of RTI for three different values of screening parameter κ = 0.1, 1 and κ = 2 . It is visible at early times, in the 
exponential growth regime, the growth rate γe shows a slight enhancement with increasing κ . The differences in 
growth rate are small and well within the statistical error range. At later times, in the quadratic growth regime, 
the spike amplitude shows a significant increase in height ( HS ) with the increasing κ . Table 1(left) lists out the 
calculated values γe and γq for three κ values. As κ varies 0.1 → 2 , the growth rate significantly increase from 
0.105 → 0.127 in the quadratic regime. We also observe the reduced and diffused mushroom-cloud formation 
at the tip of the spike with increasing shielding. This can be interpreted as the decrease in the effective coupling, 
leading to increased diffusivity.

Effect of Atwood number (A
t
) on the growth of single-mode RTI. The Atwood number At reflects 

the density contrast of heavy and light fluids. In the standard hydrodynamics, linear analysis suggests square-
root dependence between the exponential regime growth rate and the Atwood number. Also, at higher values 
of At , spike penetration is significantly larger compared to the bubble rise due to the free fall. For SCPs, Fig. 6b 
shows the RTI growth for three values of At = 0.3, 0.5 and At = 0.7 from top to bottom rows. Corresponding 
growth rates in exponential, γe and quadratic regime, γq are shown in Table 1(right). We found the growth rate 
increasing with At in both growth regimes. We also observe that the mushroom-cloud vortices are prominent 

Figure 5.  Effect of coupling strength Ŵ on the growth rate of single-mode RTI. (a) Growth rate in exponential 
regime γe and (b) growth rate in quadratic regime γq . Both show the same trend in the growth rate i.e., the 
decrease in growth with an increase in Coulomb coupling strength. (c) The exponential γe and quadratic γq 
growth rate dependence on coupling strength Ŵ.
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for low At values. This can result from more vertical resistance for the pair of less density-contrast fluids, causing 
the increased possibility of horizontal shear and, hence, prominent vortices.

Discussion
With the increase in coupling strength Ŵ , the plasma shows traits of solid. It remains in an intermediate state 
with coexisting features of fluid and solid before reaching a critical value Ŵc at which the complete crystallization 
occurs. We have focused on this intermediate paradigm for a one-component shielded plasma, keeping the range 
of Ŵ between 10 and 100. The main result is the suppression of the RTI growth rate with increasing coupling 
strength Ŵ and may have many physical explanations. A possible physical mechanism is that the charged particles 
experience an increasing caging  effect53. Now, any collective mode or dynamics has to invest more energy in 
taking particles out of their inertia under the confining potential. One may also expect the slow down against 
the increase in viscosity with coupling strength in the kinetic regime. We have validated our explanation based 
on this approach by calculating the hydrodynamic and kinetic viscosity domains’ growth rate and observed a 
consistent growth reduction from Ŵ = 1 to Ŵ = 100 values. To further support our explanation indirectly is to 
look into the effect of κ on the growth rate. With increase in κ (i.e., with decrease in effective coupling Ŵ⋆ ), the 
growth rate increase. Our results regarding the suppression of RTI growth rate are also supported by the GHD 
 model38,54. The visco-elastic GHD fluid model and molecular dynamics are the two useful approaches to analyze 
the collective dynamics in the intermediate coupling regime. For SCPs, the GHD model is useful in explaining the 

Figure 6.  Effect of screening parameter κ [sub-figure (a)] and Atwood number At [sub-figure (b)] on single-
mode RTI. In both sub-figures, subplots (i)–(v) show the time evolution of instability from linear ( t = 100ω−1

pl  s) 
to nonlinear stages t = 1500 ω−1

pl  s. Sub-figure (a): first to third rows represent growth of RTI for κ = 0.1, 1 and 
κ = 2 . Sub-figure (b): first to third rows represent growth of RTI for At = 0.3, 0.5 and At = 0.7.

Table 1.  The exponential growth rate γe and quadratic growth rate γq of single-mode RTI (spike) at different 
shielding parameter κ and Atwood number At.

Shielding parameter, κ 0.1 1.0 2.0 Atwood number, At 0.3 0.5 0.7

Exponential growth rate, γe 0.567 0.622 0.633 Exponential growth rate, γe 0.478 0.533 0.611

Quadratic growth rate, γq 0.105 0.124 0.127 Quadratic growth rate, γq 0.049 0.097 0.105
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coexistence of longitudinal and transverse  waves55. The description though qualitative, it has predicted convinc-
ing results related to the suppression of growth rate of instabilities like  RTI38,39,  KHI56, low-frequency modes in 
dusty  plasmas55,57, coherent structures in strongly coupled  plasmas58, and dynamic properties of  SCPs59 in the 
linear dynamical regime. In nonlinear regime the phenomenological GHD model has also predicted the recur-
rences of  KHI20,56, elastic-turbulence60,61 and cusp like  structures62, which need a quantitative experimental and 
other simulation support. However, this model relies on MD simulations for transport coefficients for nonlinear 
dynamical studies. On the other hand, we attempt a realistic SCP model that includes all transport properties 
using a molecular dynamics simulation approach. MD also covers physics involvement through all possible 
scales from fluctuations to system size. The MD has been a realistic representative of  SCPs42–49 for providing a 
better insight into collective processes when computation power is no more a restriction. Our MD simulations 
suggest that the strongly coupled plasma under intermediate states supports the fluid instability. This indicates 
that a quantitative fluid model, different from hydrodynamics and inline to GHD models, may be developed. 
Our results support the findings of the GHD model on the suppression of RTI in the linear regime. We further 
found that the suppression of growth rate with Ŵ is also visible in the quadratic nonlinear dynamic regime. The 
MD results on suppression of RTI growth rate with Ŵ is qualitatively supported by the GHD model predictions 
in the linear growth regime as in Das et al.38 and Avinash et al.39. We have not made any growth rate comparison 
in the nonlinear growth regime of dynamics.

We study the growth of modes at different scales in the system through the dispersion relation. Once we 
established a way to calculate growth for single-mode, we extended our studies up to six modes in the system. 
We have given six perturbations each individually with kx = nk0 , where n = 1, 2, . . . , 6 is the mode number (see 
Supplementary 2 for kx = 2 and 3 modes). Each time, we have calculated the growth rate in the exponential 
and the quadratic regimes. Using the exponential growth rate data for different k values we draw the dispersion 
relation as shown in Fig. 7. We also plotted the dispersion relation of inviscid and viscous fluid for the com-
parison study. For the latter case, the value of viscosity is taken from MD simulation results in the  literature26. 
As in our system configuration, the viscosity value is different from top to bottom region, and a mean value 
is used for fluid dispersion relation calculation. Figure 7 suggests that the hydrodynamic inviscid growth rate 
is higher compared to both the viscous as well as SCP. This is due to the lack of a damping mechanism in an 
inviscid fluid. However, the growth rate for the SCP is obtained to be higher than the pure viscous fluid. We do 
not have any definite understanding of the possible physical reason behind such difference. One possible reason 
can be thought of that some part of the viscous contribution is now being used towards the solid-like nature. 
We provide a probable qualitative explanation of why the RTI growth rate falls within the limits of inviscid and 
viscous fluids in the strong coupling. The explanation is based on the phenomenological GHD model. For the 
limit, τm → 0 , the GHD model represents a viscous fluid. In the opposite limit of τm → ∞ , the growth rate 
from Das et al.38 and Avinash et al.39 can be referred as γ =

√

gkxAt − η/τmk2x  . We see the growth rate will 
lead towards the inviscid hydrodynamic limit as τm → ∞ . Thus, we may consider the growth rate values within 
viscous and inviscid limits for any strong coupling intermediate parameter regime. A similar result has earlier 
been reported for KHI using the GHD  model63. For a given set of Ŵ, κ , the growth dispersion relation for MD 
seems first to increase, reach an optimal value and then decrease. For Ŵ = 10, κ = 0.1 , this optimal value reaches 
at kxa ∼ 0.75 . The possible reason may be that the viscous effect is dominant over the growth of RTI compared 
to the low wavenumber regime for high wavenumbers. The GHD model does not quantitatively predict this 
optimal wavenumber. Though, qualitatively, the GHD model-based RTI growth rate γ =

√

gkxAt − η/τmk2x  

Figure 7.  Comparison of dispersion relation of RTI for inviscid (blue stars), viscous (red squares) and Yukawa 
(black circles) fluids. Inviscid-hydrodynamic growth  rate3 is γe =

√

gAtkx  and viscous-hydrodynamic growth 
rate (Eq. (8) in Ding et al.23) is γe =

√

ν2k4x + gAtkx − νk2x , with shear viscosity ν taken from Donkó et al.26. 
Yukawa fluid growth rate is obtained from MD simulations for Ŵ = 10 , κ = 0.1 , and At = 0.7.
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does predict an optimal growth rate as we increase the wavenumber. Brown et al.50 and Lyon et al.51 suggest that 
the plasma accesses the moderate coupling regime during the ICF process, a stage appears when density is large 
enough, the temperature has not raised  enough64–66. Also, during the ICF process, the strong density gradient at 
the spherical capsule interface is prone to RTI when lasers squeeze the capsule from all directions. Suppression 
of RTI can be advantageous in such a parameter regime. This scenario is represented as strongly coupled and 
shielded ions in the present model. However, we must caution that our results include only electrostatic physics. 
Perturbations on specific modes at the interface in our studies can be visualized in line with the askew interface 
created by finite laser beam assembly. While present results guide the importance of strong coupling over the ICF 
process, full-scale modelling with spherical geometry, appropriate density difference, and acceleration caused 
by the laser assembly can provide a qualitative picture. Present studies can be an excellent test-bed to explore 
turbulent characteristics with RTI as a seed for nonlinear mixing. Direct particle-based modelling eliminates any 
grid-dependent scaling associated with fluid models. It is also a generalized approach that helps understand linear 
and nonlinear fluid processes lacking a quantitative fluid representation. Most rheological fluids fall under this 
category where fluid behaviour is far from Navier–Stokes governing dynamics. It would be interesting to know 
if Kolmogorov scales get altered for SCPs or how closely the turbulent scaling follows elastic turbulence features 
at low Reynolds number flows. Further, the kinetic simulations will help check the heating rate of the medium 
during the mixing as the energy eventually gets lost in the form of temperature. Finally, it will be worth compar-
ing the computational cost incurred for kinetic and fluid models to visualize equivalent turbulence features. In 
the present work, we explicitly observe the development and progress of RTI in SCPs (or other representative 
Yukawa fluids) at different coupling strengths. A few open questions such as the effect of compressibility, roles 
of surface tension, and Reynolds number are under exploration and will be reported elsewhere. Compressibility 
could be a possible cause of sedimentation at high acceleration values. For now, we have significantly minimized 
it by reducing the acceleration due to gravity. We have tested the RTI for different gravity values to establish the 
elimination of sedimentation before choosing a value. A comprehensive study of sedimentation in Yukawa fluids 
is carried out by Charan et al.22 who reported asymmetry effect arising due to gravitation in the lighter fluid. We 
also studied the effect of dimensionality on presented growth rate values. We found that the effect of the coupling 
strength on the RTI growth in 3D simulations is also of a suppressing nature and is qualitatively similar to what 
we reported in 2D simulation results. To get an idea of how different can be the effect of strong coupling in a 
3D system compared to the present 2D system, we have carried out a few 3D simulations keeping most of the 
features of plasma the same and only changing the 2D slab ( Ly = 10Lx ) to a 3D beam with ( Ly = 10Lx = 10Lz ). 
We changed the initial perturbation from a line sinusoidal perturbation to a similar form of sheet perturbation 
in 3D simulations. While the growth rates for the 2D and 3D cases are different, the impact of coupling strength 
is the same, i.e., the growth of instability decreases with the increase in the coupling strength (Figure  S1 in the 
Supplementary). Being molecular dynamics studies governed by electrostatic Coulomb potential and classical 
equation of motion, electromagnetic effects can’t be incorporated into our model. Such plasma modelling with 
the significant role of the self-consistently generated magnetic field and kinetic model is required and is done 
using Particle-In-Cell (PIC) simulations. However, PIC simulations are not suitable for explicitly looking into 
the strong coupling effects due to the small-angle collision approximation. Thus for motives of understanding 
strong coupling effects, molecular dynamics is an excellent simulation tool at the expense of heavy computa-
tion. Further, while our results represent all classical strongly coupled plasmas, the choice of the parameters is 
specific to dusty plasmas. For such systems, the time scales are very slow, and the velocity of heavy dust particles 
is slow enough that a self-generated magnetic field is insignificant for such a physical scenario. Also, to externally 
magnetize such a medium, an enormous magnetic field of about 4–10 Tesla is required, available only at a few 
facilities worldwide. The external magnetic field can be modelled in MD simulations by modifying the Velocity-
Verlet algorithm. The same we will extend as future scope of our work.

Methods
The classical molecular dynamics simulation is carried out using open-source Large-scale Atomic/Molecular 
Massively Parallel Simulator (LAMMPS)  package67 for a system in which particles interact through repulsive 
Debye-Hückel/Yukawa potential as given by Eq. (1). The particle trajectories ri(t) are obtained by integrating 
the equation of motion mr̈i = −∇

∑

φij . The form of interaction potential and the charge on particle is same 
for all particles in the system.

A two-dimensional rectangular system in the x–y plane is configured, keeping periodic and reflecting bounda-
ries in x and y directions, respectively. Throughout the paper, we have followed one particular system dimension 
(i.e., rectangular system except in Fig. 1) to keep the wave-number associated with single-mode perturbation 
identical. Thus, while comparing growth rates, we could focus on the effect on one parameter from Ŵ , At and 
κ at a time. Though the results are generalized and can be produced for any system dimension that can reflect 
collective dynamics. The system is divided into two regions top (high-density fluid ρh ) and bottom (low-density 
fluid ρl ), separated by a reflecting interface at the middle in the y-direction. The ρh and ρl can be expressed 
in terms of number density and mass through the relation ρs = msns with s = h, l . In this work, the number 
density of both species is kept the same i.e., nh = nl = n and the mass density has been changed through vary-
ing the mass of top and bottom fluids. The advantage of keeping number densities the same for heavy and light 
fluids is that the complete system remains at one Ŵ value in the initial configuration. This configuration helps us 
understand the effect of coupling strength on instability growth. Thus, the Atwood number, At depends on the 
difference of masses of both species. In simulations, we choose a value of At , fix the mass ( ml ) of the light fluid 
and then calculate the mass of the heavy fluid using mh = ml(1+ At)/(1− At) . At ranges from 0 ( ρh = ρl ) to 1 
( ρh >> ρl ). The parameters used for the simulation are tabulated in Table 2. While the simulation parameters 
look unusual for hydrodynamic fluids and plasmas, they are a typical for any laboratory dusty plasma experiment. 
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Our simulation parameter values are taken from the dusty plasma  experiments68,69 where each heavy dust grain 
acquires large charge. Also, such dusty plasma experiments are often carried out in microgravity conditions and 
zero-gravity flight experiments where gravity values are close to what has been adopted in the present work. The 
system lengths and timescales have been normalized in terms of average inter-particle separation a = (nπ)−1/2 
and plasma period ω−1

pl  of light species. While the simulation results apply to any liquid with Yukawa form of 
inter-particle interaction potential, the normalization of timescales is motivated by its plasma representation 
where ωpl =

√

(nlq2/ǫ0ml2a) is the characteristic plasma frequency of the light fluid.
Figure 8a shows the initial two-fluid system configuration with step mass density profile at the interface in the 

y-direction. The gravity is in the negative y-direction. Particles of heavy and light masses are created randomly 
and homogeneously in top and bottom regions, respectively. Both density regions (i.e., top and bottom in Fig. 8) 
have been independently equilibrated using Nosé–Hoover70,71 thermostat for 400 ω−1

pl  , enough time for both 
regions to attain the required temperature hence the coupling strength. Further, we detached the thermostats and 
let the system evolve under an NVE ensemble condition for the next 400 ω−1

pl  . During this phase, we observed no 
heating, a reflection of a naturally equilibrated system. At this stage, the system is ready for RTI studies. Under 
the NVE conditions, we remove the interface between heavy and light fluids under gravity and let the instability 
evolve. A maximally growing mode will appear unstable from natural perturbations. To study the single mode 
or double mode instability growth specifically, we apply weak artificial perturbation as shown in Fig. 8b,c.

Received: 4 April 2022; Accepted: 28 June 2022

Figure 8.  Schematic diagram used to study RTI in 2D ((0, Lx), (0, Ly)) MD simulations using LAMMPS. (a) 
Initial system configuration with heavy fluid (density, ρh ) on top of the light fluid (density, ρl ). Single (b) and 
double (c) mode perturbation excitation at the interface between the heavy-light fluid (width = 100 a). The 
magnified view of the interface at the rightmost end shows the growth of the spike amplitude Hs(t) of the single-
mode initial sinusoidal perturbation.

Table 2.  Simulation parameters for RTI.

 Particle parameters  Rectangular configuration (Ly = 10Lx)  Square configuration Fig. 1 (Lx = Ly)

No. of particles, N 2× 105 5× 105

Number density, n 2.923× 106 m −2 2.923× 106 m −2

Charge on particle, q 15× 103 e ; e = Electron charge = −1.6× 10−19C 15× 103 e ; e = Electron charge = −1.6× 10−19C

Mass of lighter species, ml 6.9× 10−13 kg 6.9× 10−13 kg

Acceleration due to gravity, g 10−4gEarth ; gEarth = 9.81m/s2 10−4gEarth ; gEarth = 9.81m/s2
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