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Deep multi‑modal learning for joint 
linear representation of nonlinear 
dynamical systems
Shaodi Qian1, Chun‑An Chou1* & Jr‑Shin Li2

Dynamical systems pervasively seen in most real‑life applications are complex and behave by 
following certain evolution rules or dynamical patterns, which are linear, non‑linear, or stochastic. 
The underlying dynamics (or evolution rule) of such complex systems, if found, can be used for 
understanding the system behavior, and furthermore for system prediction and control. It is 
common to analyze the system’s dynamics through observations in different modality approaches. 
For instance, to recognize patient deterioration in acute care, it usually relies on monitoring and 
analyzing vital signs and other observations, such as blood pressure, heart rate, respiration, and 
electroencephalography. These observations convey the information describing the same target 
system, but the dynamics is not able to be directly characterized due to high complexity of individual 
modality and maybe time‑delay interactions among modalities. In this work, we suppose that the 
state behavior of a dynamical system follows an intrinsic dynamics shared among these modalities. 
We specifically propose a new deep auto‑encoder framework using the Koopman operator theory to 
derive the joint linear dynamics for a target system in a space spanned by the intrinsic coordinates. 
The proposed method aims to reconstruct the original system states by learning the information 
provided among multiple modalities. Furthermore, with the derived intrinsic dynamics, our method 
is capable of restoring the missing observations within and across modalities, and used for predicting 
the future states of the system that follows the same evolution rule.

Dynamical systems are pervasively seen in a wide range of real-life applications such as neuroscience, healthcare, 
biology, and  engineering1–4. These systems are oftentimes complex and behave by following certain evolution 
rules or dynamical patterns (called dynamics), which are linear, non-linear, or stochastic. Discovering the evo-
lution rule of a target system can be beneficial for understanding the system’s behavior, and furthermore for 
prediction and control of the future system state.

It is common to analyze the system’s dynamics through observations in different modality approaches. Dif-
ferent modalities from different sources in different dimensions are used depending on systems to be studied. 
For example of emotion recognition, emotional states are recognized/differentiated based on simultaneously 
physiological reactions (such as brain’s electrical activity, heart’s electrical activity, muscle’s electrical activity, 
etc.), facial expression, and/or gestures of the human body  system5. These observations generally are defined 
as multi-modal data in data analysis and modeling, and convey specific information to represent the system’s 
behaviors or dynamics. These modalities have somehow correlations with each other as they measure the same 
dynamical system from different perspectives. It is reasonable to hypothesize that they share certain information 
of the system. However, the shared information may be very limited and not directly discernible. In addition, 
there may be time-delay correlations existing among different modalities. Lastly, the quality of multi-modal 
and/or multi-variate data suffer from noisy background and missing/corrupted observations. Therefore, finding 
the underlying dynamics from these high-dimensional multi-modal data is not straightforward and remains a 
challenging task in data analysis of dynamical system. In this study, we propose a deep auto-encoder network to 
discover the shared dynamics of the dynamical system from multi-modal observations based on dynamical sys-
tems theory. Moreover, our method is designed to reconstruct and predict the trajectories of different modalities 
based on the shared intrinsic dynamics even when part of modalities are corrupted or contaminated with noises.

In general, multi-modal learning and prediction models can be categorized into two main classes: feature-level 
fusion and data-level fusion. For feature-level fusion, it is popular to extract features from multiple modalities 
separately and further concatenate uni-modality features into a single feature set. For each modality, state-of-the-
art feature engineering methods, such as time-frequency based, nonlinear, spectral, wavelet, and decomposition 
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techniques can be applied to extract  features6. The size of this fused feature set increases dramatically with the 
number of modality dimensions. This typically causes an ill-posed problem in machine learning. Then, it is 
suggested to implement a separate selection task to select important features and form a refined feature set as 
the input to machine learning algorithms, including support vector machine (SVM)7, decision  tree8, random 
 forest9, gradient boosting  algorithms10 and clustering  algorithms11. Such feature-level fusion methods rarely take 
into consideration the joint or shared information across multiple modalities, which make it difficult to discover 
‘true’ dynamical representations or patterns. On the contrary, data-level fusion methods focus on extracting the 
shared information (i.e., dynamics) across multiple modalities at the same time. This shared pattern is expected 
to extract and reveal the joint information that explains the dynamical patterns of the target system. For example, 
Suk proposed a modified multi-modal Deep Boltzmann Machine to discover the complex shared information 
inherent in both magnetic resonance imaging (MRI) and positron emission tomography (PET) to identify the 
subjects with Alzheimer’s  Disease12. The result showed that their data-level fusion deep learning model can learn 
high-level latent features across multiple modalities, and outperform other state-of-the-art feature-level fusion 
methods. However, the latent patterns extracted from above-mentioned methods do not show a connection to 
certain evolution rules. It is difficult to project/predict the future system states based on these latent patterns.

To make predictions of the future system state, directly modeling the target dynamical system by the means 
of discovering its joint intrinsic dynamics from all kinds of observations is preferable. However, such intrinsic 
dynamics are very complex and nonlinear, making them impossible to be analyzed directly. From the perspec-
tive of dynamic systems theory, local or global linearization is a common way to model and simplify nonlinear 
dynamics. The Koopman operator theory provides a linear but infinite-dimensional operator to globally linearize 
the nonlinear  dynamics13. Since it is hard to represent an infinite-dimensional operator, a finite approxima-
tion is necessary for modeling and calculations. Then, the nonlinear dynamics can be represented by a linear 
model in the Koopman intrinsic space. A mathematical example of a simple linear time-invariant model is 
x(k + 1) = Ax(k) , where x(k) is the system state at discrete time k and A is the linear approximation of the 
nonlinear dynamics. Dynamic mode decomposition (DMD) is a popular tool to find the finite approximation 
of the Koopman intrinsic  space14–16. The new observables are projected onto proper orthogonal decomposition 
modes (POD) as singular value decomposition (SVD); however, the performance can be improved by intro-
ducing a proper dictionary as a projection basis, which is proposed as extended dynamic mode decomposition 
(EDMD)17–19. Further, researchers study the connections between mode decomposition and tensor component 
 analysis20. These methods investigated decomposition methods to obtain the intrinsic space and the observations/
variables in such a space; however, the project/mapping functions can be highly complex and nonlinear. While 
deep learning has demonstrated its capacity to fit complex functions, auto-encoder-based frameworks could be 
modified to learn the observation functions.  Lusch21 proposed a framework to use an auto-encoder with an aux-
iliary network to discover the representations of Koopman functions from nonlinear simulation data. Similarly, 
 Morton22 trained an auto-encoder-based network to find probability observations and probabilistic dynamics 
instead of regular observations and dynamics. However, the above methods are designed for uni-variate time 
series cases. In a multi-modal case, an invariant pattern without dynamics is widely studied, i.e., spatial pattern 
or compressed information. For example, individual auto-encoder can be constructed to deal with different data 
 sources23.  Jaques24 developed a multi-modal auto-encoder model to extract features from different data sources, 
including surveys, physiology signals, location, weather, SMS, and so on to predict the stress level. This model 
can restore missing modalities based on the patterns learnt from training data. However, this study did not 
focus on finding shared/joint dynamical patterns; instead, they concatenated hidden layers into a feature vector 
to predict the stress level.  Du25 developed a multi-modal auto-encoder with a polynomial fusion layer to obtain 
the joint pattern by introducing a polynomial fusion layer. However, a common problem for deep learning net-
works is low interpretability, where the variables in the hidden layer do not have physical meanings. To discover 
joint dynamics from multi-modal time series, in this study, we develop a multi-modal deep learning network 
to discover the joint dynamics, which can explain the evolution of all modalities simultaneously. The nodes in 
the joint hidden layer, which fuse the information from all modalities, are the observations in the Koopman 
linear space. The evolution rule for these variables has the same dynamical properties as the Koopman operator.

It is worth mentioning several challenges to be considered when finding a joint linear dynamics to explain 
the evolution of all modalities: (1) different modalities may have opposite dynamical behaviors although sharing 
the same underlying dynamics; (2) time-delay may exist across different modalities; and (3) the joint dynamics 
should have physical properties that can be recognized as a linear dynamical system. Most prior studies have 
attempted to address one of these issues; however, it is difficult to overcome all difficulties with a single model.

In this study, we assume that a joint dynamics exists across modalities used to monitor and measure the same 
dynamical system. Our framework, as illustrated in Fig. 1 will learn a shared dynamical system to reconstruct 
and predict the dynamics of all modalities. Even if parts of the modalities are missing, the missing modalities 
can be restored and predicted based on other well-preserved modalities and the intrinsic dynamical model. After 
obtaining the intrinsic dynamical model, tools from linear dynamical systems can be applied to the hidden layer. 
To validate our method, we consider real-life applications, where human body system is modeled as a dynami-
cal system of multiple physiological modalities. We aim to assess and further predict the human physiological 
reactions under different driving stimuli in a driving simulation  environment26.

Results
Koopman operator theory. First, let us consider a dynamical system as:

(1)
d

dt
y(t) = h(y(t), t),
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where h is the dynamics for a target system, and y(t) is the system state at time t. However, in most real-life cases, 
h and y can not be obtained or observed directly. In our study, we analyze the target system in a relatively short 
time window, therefore, we assume that the intrinsic dynamics h does not change in this short time window, 
which means h can be treated as an autonomous system. We then simplify the dynamical system as:

The system is usually analyzed by observations xl from different sources, which can be represented by:

where gl is the observation function corresponding to modality l, and xl(t) is the system state of the modality l 
at time t. Instead of analyzing the observations xl separately as most standard studies, our model is designed to 
uncover the intrinsic dynamics h, which can reconstruct and predict the state of all modalities. The reconstruction 
and prediction for the missing modalities are not possible for most of the previous studies, since they analyze 
the modalities separately. In our model, we utilize the Koopman operator theory to capture the evolution rule 
of the system.

(2)
d

dt
y(t) = h(y(t)),

(3)xl(t) = gl(y(t)),

Figure 1.  An illustration of the proposed Koopman-operator based multi-modal deep auto-encoder network 
for the joint intrinsic dynamics of a dynamical system.
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The basic idea of the Koopman operator K is to use a finite-dimensional matrix A to approximate the evolu-
tion of the nonlinear dynamics h from all modalities. First, consider a dynamical system for multiple modalities 
( l ∈ L ) as follows:

where xl(t) is the state of modality l at time t, fl is the corresponding dynamics. The data are often collected in 
discrete time k as follows:

Based on the Koopman theory, we can find a measurement function ĝl for modality l in a function space ĝ 
satisfying Eq. (6):

where ◦ is the composition operator. In this representation, we can write the evolution of the system state x at 
time point k as:

This function ĝl can be treated as an inverse-observation function for modality l, which projects the observa-
tion/modality l back to the same intrinsic variables ŷ separately. We further simplify the linear dynamics as 
follows ŷ(k + 1) = Aŷ(k) , where ŷ(k) is the approximation of system state at discrete time k and A is the linear 
approximation of the Koopman operator. The future system states will be predicted based on the initial states 
and the learned linear dynamics.

Multi‑modal deep learning via Koopman operator. The observation functions for different modali-
ties can be highly complex and nonlinear, which makes it hard to uncover the shared information. Since deep 
learning is a powerful tool to fit complex nonlinear functions, we designed a modified multi-modal auto-encoder 
to uncover the shared dynamics from multiple modalities. auto-encoder is a neural network consisting of two 
parts: an encoder which maps the input into the hidden representation and a decoder which maps the hidden 
representation back to a reconstructed input. For each modality l ∈ L , an encoder will learn a mapping function, 
inverse-observation function, ϕl from the input variables to a shared hidden layer; at the same time, a decoder will 
learn to reconstruct the input variables from the variables in the hidden layer via an approximation of observa-
tion function ϕ−1

l  . The shared layer ŷ(k) is defined as: ŷ(k) = 1
L

∑

l∈L(not missing) ŷl(k) , where ŷl(k) is the encoded 
observation for modality l at time k. The shared layer contains the variables of a linear dynamics, which is a finite 
approximation of the Koopman operator, and the dimension of this shared layer is a pre-determined hyper-
parameter. In our studies, the dimension of the intrinsic linear dynamics is set to 20. The basic reconstruction 
error of an auto-encoder can be written as: Lrecon = L(xl , x

′
l ) = �xl − x′l�

2 , where xl(k) and x′l (k) are the original 
input vector and reconstructed vector respectively and x′l (k) = ϕ−1

l (ϕl(xl(k))) . Through the encoder, the input 
data is first transformed into the middle embedding layer  Y . We embed the idea of the Koopman theory into 
the middle layer to make the variables have linear dynamics in the intrinsic space. To do that, we introduce three 
more custom loss functions to control the dynamical behavior of the variables in the hidden layer. The first one is 
prediction loss for prediction states across m time points: Lpredict = 1

m

∑

l

∑m
j=1 �xl(k + j)− ϕ−1

l (Kjϕl(xl(k)))� , 
the second loss is linear dynamics loss defined as: LLinear = 1

m

∑

l

∑m
j=1 �ϕl(xl(k + j)))− Kjϕl(xl(k))� , the third 

loss is modality loss defined as: Lmodality =
1
L

∑

l∈L(not missing) ||y(k)− yl(k)||
2 , which is similar to the center loss 

defined  in27. The prediction loss will measure the difference between the original states and the predictions 
through the evolution of the hidden linear dynamics. For linear dynamic loss, given a set of input modalities 
x , the auto-encoder will find a corresponding observation y (in the embedding layer) such that the evolution 
rule for the observation y is linear. Since all modalities are connecting with a shared layer ŷ(k) through separate 
encoders, we construct center loss to minimize the difference between the hidden observations ŷl(k) across 
modalities and obtain a center as our joint hidden layer. Since the linear and the original nonlinear dynamics 
share the same dynamical behavior under the Koopman transformation, the evolution of the input calculated by 
mapping the hidden variable to the nonlinear space can be reconstructed. By combining these three loss func-
tions, we can constrain the variables in the hidden layer to evolve as linearly as possible. Our model will learn to 
minimize the loss by combining all three types of losses as follows:

where the last term is a l2 regularization on the weights W to avoid a potential overfitting situation and �recon is 
the penalty term associated with both reconstruction and prediction loss. To be noticed, the scale of different 
modalities could be different, we can standardize the input data or consider relative loss weights for each modality 
to improve the performance of the auto-encoder.

(4)
d

dt
xl(t) = fl(xl(t)),

(5)xl(k + 1) = Fl(xl(k)) = xl(k)+

∫ k+�t

k
fl(xl(τ ))dτ .

(6)Kĝl = ĝl ◦ Fl ,

(7)Kĝl(xk) = ĝl(Fl(xk)) = ĝl(xk+1).

(8)Loss = �recon(Lrecon + Lpredict)+ �linearLlinear + �modalityLmodality + �reg�W�22,
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Time delay observation. When the assumption of invariance does not hold or time-delay exists between 
modalities, which means modalities do not follow the same intrinsic dynamics at time k, the previous basic 
model will have trouble in capturing the joint dynamics. The joint dynamics may converge to a stable state to 
minimize the loss functions, i.e. the learned pattern is no longer a valid dynamic. Therefore, we rewrite the 
model to obtain a time-delay observation of the system instead of a regular observation at time k.  Researchers28,29 
study the linear dynamics of time-delay embedded system from a Hankel matrix of the signal.  Pan30 studies the 
relations between the number of time-delays and the linearity of dynamics. To do that, we can apply time-delay 
embedding on the time series xl = [xl(0), xl(1), . . . , xl(t)] as follows:

replace the input xl(k) with [xl(k), xl(k − τ), . . . , xl(k − (d − 1)τ )] , where d and τ are the dimension and delay 
setup for time delay embedding. The observation function y(k) = ϕ(xl(k)) can be reformed as:

We add white Gaussian noise with custom signal-to-noise (SNR) to the inputs and randomly mask one 
modality/variable with a specific value (-1 in our case) to train our model to deal with noisy and missing data in 
multi-modal and/or multi-variate time series.

Experimental tests. In this work, to validate the effectiveness of the proposed KMMDL method, we 
employ two publicly available databases that contain multiple physiological modalities for investigating physi-
ological responses to various driving conditions in the virtual reality  environment31,26. Our Koopman-based 
auto-encoder approach is used to capture the overall response pattern of multi-modal physiological system by 
reconstructing and predicting the joint dynamics.

In the two applications, observations were taken to describe physiological reactions in different circum-
stances and stimuli. In the first case study, we aim to test the joint linear dynamics extracted from multiple 
modalities. Theoretically speaking, after the joint dynamical system is obtained, we can reconstruct and predict 
every modality, even when we only have one available modality. Therefore, we evaluate the reconstruction and 
prediction accuracy and assess the model performance while one or more modalities are missing. Since our 
model tends to capture a general dynamical behavior in a certain time range, the error will increase when the 
dynamics change or unexpected stimuli occur. In the second case study, we used our model to identify the time 
point when unexpected events occur or dynamics change. We applied our model to capture the joint dynamics 
from electroencephalogram (EEG) and electromyography (EMG) to predict the upcoming reaction towards 
stimuli during driving simulation. Through this task, we identify the reaction time from both brain and muscle.

Case study 1: responses to distracted conditions. This study aims to study the different physiological patterns 
under different driving conditions. There are 68 subjects that drove the same highway under eight different 
conditions: (1) relaxation without driving, (2) practice, (3) free driving on a straight road, (4) driving on straight 
with surprise unintended acceleration event, (5) normal drive without distraction, (6) cognitive distraction (tak-
ing analytical or mathematical questions), (7) emotional distraction (taking emotional questions), and (8) senso-
rimotor distraction (texting and/or talking). There is a 2-min break between driving tasks. Driving performance, 
physiological signals, and videos were collected continuously for each driving condition. In particular, physi-
ological signals including palm electrodermal activity (EDA), perinasal perspiration, heart rate, and breathing 
rate are used in our methodology verification. The original sampling rate for physiological data is 60 Hz and 
down-sampled to 1 Hz. We want to fuse the information from all physiological signals and try to find whether 
the physical reaction under different tasks is significantly different. Therefore, we select the subjects with all four 
loaded driving, including normal drive without distraction, cognitive distraction, emotional distraction, and 
sensorimotor distraction. Part of the data is corrupted due to invalid data and missing modalities. Therefore, we 
only keep the sessions with valid data for training. At last, we keep 21 subjects in total. Before feeding into our 
training model, we add white Gaussian noise with a 10dB signal-to-noise (SNR) ratio.

From these four modalities, our model extracts a joint dynamics which can explain the changes of all modali-
ties as shown in Fig. 2. The prediction is based on the shared linear dynamics by the system time-delay obser-
vation 5 seconds ago. The root mean square errors (RMSE) for reconstruction and prediction are both lower 
to around 1e−2 . Through this application, our model captures an objective dynamics to explain the intrinsic 
dynamics for all four modalities from all subjects. Comparing to other modalities, EDA has the worst result in 
terms of RMSE for reconstruction and prediction. The shared linear dynamics may not be able to predict the 
future states of the EDA, as the prediction of EDA will tend to converge to stable states. However, the predictions 
of other modalities are still accurate. This low accuracy of EDA could result from the scale of time-dependency 
of EDA larger than our time-delay embedding setting.

Theoretically, after training the model and learning the joint dynamics, one modality can be enough to obtain 
the information to reconstruct and predict the states of other modalities. In Fig. 3, every modality is masked 

(9)x̂l = [xl(k), xl(k − τ), . . . , xl(k − (d − 1)τ )] =
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Figure 2.  Reconstruction and future prediction made by our model for all nine testing sessions.

Figure 3.  Estimations for missing modalities based on other modalities for all nine testing sessions.

Figure 4.  Estimations for missing modalities (2 missing modalities at the same time) based on other modalities 
for all nine testing sessions. (a) Masking breathing rate and perspiration, (b) masking heart rate and breathing 
rate.
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and restored by other modalities in our framework. To be noted, the modality loss Lmodality is lower to around 
1e−4 after training. In Fig. 4, two modalities are missing and restored by other available modalities. These results 
indicate that even if one or more modalities are corrupted with missing values, the missing modalities can be 
restored or estimated accurately by the other three modalities and the joint linear dynamics is still able to explain 
the evolution of modalities. The reconstruction and prediction results show the great advantages of our intrinsic 
model over other models with union information since it is hard and nearly impossible for previous models to 
reconstruct and predict all possible modalities based on a single model.

Case study 2: responses to emergency braking. In this case study, the goal is to detect the upcoming emergency 
brakings based on real-time EEG and  EMG26. We extract joint dynamics from high frequency (200 Hz) EEG 
and EMG data for predicting the upcoming emergency event. Since we expect a spike in the reconstruction 
and prediction loss when an emergency event happens, we calculate the reaction time based on the change of 
dynamics after a stimulus (emergence brake) occurs during a car following task. This dataset collected EEG by 
a 32-electrode-cap and 25 EEG electrodes (F3, Fz, F4, P7, P8, T8, FC3, FC4, C3, Cz, C4, T7, CP3, CP4, FC5, 
P3, Pz, P4, FC6, O1, O2, Oz, CPz, PO4, PO3) were placed based on the international 10-20 system, and muscle 
activity was collected by two electrodes placed on the right musculus tibialis anterior and right thigh. Since pre-
vious  studies32,33 indicated that ‘Pz’ EEG channel is a good source to differentiate between sharp braking and no 
braking event, we trained our model based on EMG and ‘Pz’ channel from EEG. We segmented the EMG and 
EEG signals from pre-stimulus 340 ms to post-stimulus 240 ms for all stimuli. We trained separate models for 
each of them, and further analyze their reaction time based on the reconstruction and prediction by our model.

In Fig. 5, we plot the reconstruction and prediction losses through time from four distinct subjects. When 
the stimulus occurs, it is clear to see that the brain area covered by ‘Pz’ channel reacts faster than muscle. Then, 
we used the mean value before stimulus as baseline, and recorded the reaction time, which is defined as the first 
time when all the losses in a given consecutive time length are larger than a ratio of baseline. In our research, 
we set the required consecutive time length as 3, the ratio for EEG to 1.5, and the ratio for EMG to 4. In Fig. 6, 
the mean reaction time from ‘Pz’ channel is also faster than muscle activity as suggested in Fig. 5. It is clear that 
time-delay between EEG and EMG is well preserved by our framework, and reflects the fact that the brain is 
controlling the movement of muscle.

Discussion
Figures 2, 3 and 4 indicate that the joint dynamics can reconstruct current system states and predict future system 
states efficiently even when part of the modalities are corrupted by noise and missing value. Among four different 
modalities, the performance of EDA is the worst in terms of reconstruction and prediction results, especially 
when part of the modalities are missing. The potential reasons could be: (1). the variant of EDA is much lower 
than other modalities, i.e. the EDA does not change much over time; (2). the time-delay of EDA could be larger 
than the time-delay embedding setup. This makes the linear dynamics fail to present the changes in EDA. This 
problem can be further studied by using a smaller auto-encoder or setting a larger time-delay parameter. On the 
contrary, heart rate has a relatively larger variant, therefore, our denoised model will tend to capture a general 
pattern by ignoring peaks or spikes, which are potentially caused by different kinds of noises. On the other hand, 
our model gets rid of irrelevant information, and is robust enough to deal with noisy inputs.

Figure 5 demonstrates that when emergency occurs, the brain is the first to respond, followed by the muscles. 
The reaction time based on EEG as shown in Fig. 6 has more outliers and larger variance than those from EMG, 

Figure 5.  An illustration of reconstruction (loss1) and prediction (loss2) loss corresponding to stimulus/
emergency (locate at time 340 ms), which is marked as a pink vertical line.

Figure 6.  Box plots of reaction time based on both losses from EEG and EMG.
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because EEG signal usually contains more noise. However, the reaction is calculated by a naive approach, which 
could potentially bring errors to the reaction time and the outliers. A sophisticated method can reduce the error 
brought by uncertainty and improve the reliability of the reaction time. Our current result indicates it is clear 
that the unexpected event can be reflected by the increasing loss of our model. The reaction time based on the 
loss is consistent with the results of previous studies.

In summary, we design a powerful multi-modal deep learning network to fuse information from multiple 
modalities and identify the joint dynamics to explain the evolution of every modality based on the Koopman 
theory, if such joints dynamics exists. Our framework is designed to linearize multi-modal nonlinear dynamical 
systems and capture the general dynamical pattern in an intrinsic linear space obtained by a customized multi-
modal auto-encoder network if such joint dynamical pattern exists. We add custom loss functions to control 
the dynamical properties of the nodes in the hidden layer. The framework is optimized to handle corrupted 
data, including noise and missing value. Our deep learning network can make reconstruction and prediction 
while maintaining interpretability and physical insight from the perspective of dynamical systems by Koopman 
operator.

Once a joint linear dynamical system representation is obtained, several directions can be further investigated 
to utilize the property of linear dynamical system. First, since our mode intend to capture a general invariant 
dynamics, more work will be required to capture the time-variant dynamics. It may be difficult to pinpoint 
the cause of the change in dynamics because unexpected changes in dynamics can occur as a result of changes 
in dynamics or unexpected stimuli. Further, our intrinsic dynamical model can be reformulated by adding 
control vector and control matrix to control the dynamics and modalities evolving towards desirable system 
states. After the training the general dynamical pattern is captured, the network can be further connected to a 
classification framework to determine the states of system through backpropagation. Furthermore, a switched 
dynamical model can be applied to learn several intrinsic dynamics to simplify different dynamics under dif-
ferent conditions. This multi-modal framework provides a new tool to simplify the system by fusing different 
kinds of observations (modalities).

Methods
Training, validation and testing data. For the distracted driving database in case study 1, the data 
can be downloaded at https:// osf. io/ c42cn/ files/. The R-Friendly Study Data is preprocessed by R language, the 
physiological and performance signals are concatenated into a single file and down-sampled at 1 Hz. We only 
keep the subjects with all four driving tasks including normal driving (ND), Emotional Drive (ED), Cognitive 
Drive (CD), and Sensorimotor Drive (MD). Then, the database is randomly split into training, validation and 
testing data sets with a ratio 0.8, 0.1, and 0.1, and all three data sets contain at least one session from four differ-
ent driving tasks.

In second study, we first segment the original EEG and EMG signals based on the stimulus marker (sampled 
at 200 Hz). Each segment is a time window from 340 ms pre-stimulus to 240 ms post-stimulus. The data sets 
is split by time order for each subject: first 70% of data is training data, the next 10% is validation data, and the 
rest (20%) of data is testing data.

Deep learning network. For each modality, an auto-encoder is constructed to map from input to shared 
observations, every auto-encoder contains two fully connected hidden layer, first layer has 20 nodes and second 
one has 15 nodes and the joint layer contains 20 nodes. Each layer in encoder has the form:

where We and be are encoder weight and bias, respectively. In decoding, the formula becomes

We use the rectified linear unit (ReLU) function as an activation function with the form: ϕ(x) = max(0, x) . The 
linear dynamics or Koopman dynamics is simulated by a fully connected layer without any activation functions 
with the form: y(k + 1) = Ay(k) , where the weights of network A is the finite approximation of the Koopman 
operator.

Parameter setting. Since multiple modalities have different scales, input time series is standardized before 
time-delay embedding, so that the distribution of every input modality has mean 0 and standard deviation 1.

Time-delay embedding. The parameter for embedding, dimension d can be estimated by the false nearest-
neighbor method (FNN)34 and the time delay τ is estimated as the first local minimum in the mutual informa-
tion  function35. For case study 1, dimension d is set to 10 and time delay τ is set to 0. For case study 2, dimension 
d is set to 5 and time delay τ is set to 2.

Penalty terms for loss function. For both cases, penalty terms in Eq. (8), �recon , �predict , �linear , and �modality are 
set to 1, and �reg for l2 regularization is set to 1e−8.

Number of time to calculating prediction and linear loss. As we discussed in previous section, prediction loss for 
prediction states across m time points in defined as: Lpredict = 1

m

∑

l

∑m
j=1 �xl(k + j)− ϕ−1

l (Kjϕl(xl(k)))� , and 
linear dynamics loss is defined as: LLinear = 1

m

∑

l

∑m
j=1 �ϕl(xl(k + j)))− Kjϕl(xl(k))� . For case study 1, m is 

set to 5. For case study 2, m is set to 10.

Y = ϕ(Wev + be),

v
′ = ϕ(WdY + bd).

https://osf.io/c42cn/files/
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Training. For both case study, the weights for each layer are initialized by xavier  initialization36, and the bias 
is initialized to 0. The models are trained for 7 h on an NVIDIA P100 GPU. The optimizer is Adam  optimizer37, 
and learning rate is set to 1e−3.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available since the 
authors have no ownership of the two databases validated in this research, but precessed data are available from 
the corresponding author on reasonable request.
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