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Differential chromatin accessibility 
in peripheral blood mononuclear 
cells underlies COVID‑19 disease 
severity prior to seroconversion
Nicholas S. Giroux 1, Shengli Ding 1, Micah T. McClain 2,3,4, Thomas W. Burke 2, 
Elizabeth Petzold 2, Hong A. Chung 1, Grecia O. Rivera 1, Ergang Wang 1, Rui Xi 1, 
Shree Bose 5, Tomer Rotstein 1, Bradly P. Nicholson 6, Tianyi Chen 7, Ricardo Henao 2, 
Gregory D. Sempowski 8, Thomas N. Denny 8, Maria Iglesias De Ussel 2, Lisa L. Satterwhite 9, 
Emily R. Ko 2, Geoffrey S. Ginsburg 2, Bryan D. Kraft 2,3, Ephraim L. Tsalik 2,3,4, Xiling Shen 1 & 
Christopher W. Woods 2,3,4*

SARS‑CoV‑2 infection triggers profound and variable immune responses in human hosts. Chromatin 
remodeling has been observed in individuals severely ill or convalescing with COVID‑19, but chromatin 
remodeling early in disease prior to anti‑spike protein IgG seroconversion has not been defined. We 
performed the Assay for Transposase‑Accessible Chromatin using sequencing (ATAC‑seq) and RNA‑
seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom 
severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, 
modifications in chromatin accessibility associated with mild or moderate symptoms were already 
robust and included severity‑associated changes in accessibility of genes in interleukin signaling, 
regulation of cell differentiation and cell morphology. Furthermore, single‑cell analyses revealed 
evolution of the chromatin accessibility landscape and transcription factor motif accessibility for 
individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, 
where sub‑populations with distinct chromatin accessibility profiles were observed prior to 
seroconversion. Mild symptom severity was marked by upregulation of classical antiviral pathways, 
including those regulating IRF1 and IRF7, whereas in moderate disease, these classical antiviral signals 
diminished, suggesting dysregulated and less effective responses. Together, these observations offer 
novel insight into the epigenome of early mild SARS‑CoV‑2 infection and suggest that detection 
of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for 
COVID‑19.

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), manifests with highly variable symptom  severity1. Infected subjects demonstrate clinical trajectories that 
range from remaining asymptomatic to developing life-threatening illness. A growing body of evidence suggests 
that the range of clinical manifestations is the result of different immune responses, and that analysis of chromatin 
accessibility and gene expression in circulating leukocytes can define underlying molecular  mechanisms2. Stud-
ies have shown suppressed immune responses in subjects with only mild symptoms, as indicated by deficient 
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expression of Type I and III  interferons3. Subjects with more severe disease demonstrated up-regulation of pro-
inflammatory factors, including IL-6 and TNF-alpha4. The number of monocytes and associated IL-6, CCL2, 
and CCL8 production in the peripheral blood also are elevated in subjects with severe COVID-195,6. Regions 
of regulatory chromatin that contain transcription factor motifs become accessible prior to downstream gene 
expression and may offer the potential for even earlier detection of these evolving biological  responses7.

Analyzing time-dependent changes at the epigenetic level is complicated by the variable time course of 
COVID-19 across patients, which even in the outpatient setting can range from a few days of asymptomatic viral 
shedding to prolonged febrile illness. Most studies have used clock time (days since illness onset), a measure 
that is broadly related to immune response stages in many subjects. Another option is to utilize direct measures 
of immune maturation to characterize where during the host response to infection a given subject exists at a 
point in time. The development of specific antibodies (IgG) against SARS-CoV-2 marks an inflection point in a 
COVID-19 patient’s disease progression, indicating a transition from innate immunity to acquired  immunity8,9. 
IgG seroconversion typically occurs within two weeks of symptom onset and roughly coincides with the time 
that patients without critical illness will see clinical  improvement10,11. However, limited data are available exam-
ining the peripheral blood immune responses early in disease progression and prior to seroconversion. To test 
the hypothesis that the landscape of chromatin accessibility contains biomarkers that define early molecular 
mechanisms that underpin divergent immunologic responses in SARS-CoV-2 infection, we performed bulk 
and single-cell Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on 
longitudinal PBMC samples from patients before and after seroconversion.

Results
A clinical cohort to study early COVID‑19 with mild or moderate symptoms. To establish a 
cohort for the longitudinal study of early SARS-CoV-2 infection, subjects were selected from a large ongoing 
community-based prospective cohort, the Molecular Epidemiological Study of Suspected Infection (MESSI) 
in four experimental groups: (1) pre-pandemic healthy controls, (2) subjects exposed to SARS-CoV-2 as close 
contacts but negative for SARS-CoV-2 by qPCR and serology, (3) outpatients positive for SARS-CoV-2 by qPCR 
whose maximal illness was mild and (4) outpatients positive for SARS-CoV-2 by qPCR whose maximal illness 
was moderate. Demographic characteristics of study participants are shown in Table 1. Symptoms associated 
with COVID-19 illness were self-reported to clinic personnel using a COVID-19 symptom survey developed 
by Duke University Medical Center consisting of 38 symptoms. Each subject reported a symptom and per-
ceived severity of that symptom from 0 (none) to 4 (very severe). Subjects with mild symptoms exhibited a 
mean score of 12.8 ± 1.9 and 12.2 ± 2.8 for total PBMC assays (bulk) and assays of individual PBMCs (single-cell 
assays), respectively, which corresponded to the World Health Organization (WHO) Ordinal 8-point scale 1 
(OS1, ambulatory and with no limitation of activities). Subjects with moderate symptoms exhibited a mean 
score of 33.6 ± 2.4 and 36.0 ± 2.3 respectively which corresponded to the WHO Ordinal 8-point scale 2, (OS2, 
ambulatory and with limitation of activities). Interestingly, despite lacking any evidence of infection (negative 
SARS-CoV-2 qPCR and serological testing for at least two months after exposure), close household contacts who 
were exposed to SARS-CoV-2 but remained negative for infection showed broadly similar quantitative symptom 
scores to subjects with mild disease, with a mean score of 9.9 ± 2.9 and 3.3 ± 2.8 respectively (Table 1). The sum 
of symptom severity across all symptoms reported was able to distinguish moderate subjects from mild or close 
contacts but did not distinguish mild from close contacts (Fig. S1A,B). However, the specific symptoms experi-
enced, and their severity, were different between all three groups (Fig. S1C,D). Loss of taste and smell, headache, 
malaise, and fatigue were most common in the moderate group. Coughing was most common in the mild group 
and runny nose was most common in the close contacts.

Transcriptional profiles of PBMCs distinguish mild or moderate COVID‑19 from healthy con‑
trols. To identify underlying molecular mechanisms of disease severity in mild or moderate COVID-19 both 

Table 1.  Demographic characteristics and mean symptom severity scores of study participants.

Characteristics Healthy controls Close contacts Mild disease Moderate disease

A. Bulk assays for ATAC-seq and RNA-seq

Number of subjects 7 7 8 7

Age
Mean (range), years 39.7 (25–61) 42.9 (17–61) 33.0 (27–60) 34.0 (20–52)

Sex (male/female) 3/4 4/3 5/3 3/4

Max severity score (± SE) N/A 9.9 ± 2.9 12.8 ± 1.9 33.6 ± 2.4

Characteristics Healthy controls Close contacts Mild disease Moderate disease

B. Single cell assays for ATAC-seq/RNA-seq

Number of subjects 5 3 5 5

Age
Mean (range), years 45.2 (28–61) 53.2 (43–61) 35.6 (27–60) 37.7 (29–52)

Sex (male/female) 1/4 2/1 5/0 1/4

Max severity score (± SE) N/A 3.3 ± 2.8 12.2 ± 2.8 36.0 ± 2.3
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prior and after seroconversion, PBMCs were isolated and profiled as total PBMCs (bulk assays) or as single 
nuclei isolated from individual PBMCs (single cell assays). Longitudinal sample collection from each subject 
spanned the transition from seronegative (IgG−) to seropositive (IgG+) for SARS-CoV-2 spike protein in the 
mild and moderate symptom groups (Supplementary Table S1 and S2). For all pooled analysis of IgG− or IgG+ 
subjects, the dataset corresponding to the last IgG− timepoint or the first IgG+ timepoint, respectively, was used. 
Differential gene expression analysis of bulk RNA-seq data from mild IgG− COVID-19 subjects compared to 
healthy controls identified a transcriptional signature of 45 genes with p ≤ 0.05; moderate IgG− COVID-19 sub-
jects compared to healthy controls identified 71 genes with p ≤ 0.05 (Fig. 1A). Using principal component analy-
sis (PCA), differential gene expression between healthy controls and subjects with mild symptoms was sufficient 
to distinguish the groups Fig. 1B). Similar comparisons using RNA-seq from mild IgG+ subjects compared to 
healthy controls or moderate IgG+ subjects compared to healthy controls identified 250 and 43 genes, respec-
tively, with p ≤ 0.05 (Fig. 1C). Using PCA, differential gene expression between healthy controls and subjects 
with moderate symptoms (Fig. 1D) was sufficient to distinguish the groups. However, both mild and moderate 
subjects clustered together and could not be easily distinguished. The gene symbols, gene names, fold change and 
p values adjusted for multiple hypothesis testing for the four comparisons are found in Supplemental Table S3. 
Considering the level of gene expression (log fold change, LFC) in mild and moderate subjects compared to 
healthy controls, differentially expressed genes were identified in only mild, only moderate or both symptom 
cohorts (Fig. 1E). Comparing IgG− subjects, we identified 30 genes observed in both mild and moderate cohorts. 
In contrast, we did not identify any genes solely associated with moderate IgG+ subjects and identified a further 
43 genes observed in both IgG+ mild and moderate cohorts. Healthy controls exhibited higher expression of 
the interleukin-8 precursor CXCL8 compared to other groups. Conversely, the interleukin-8 receptor, CXCR1, 
had higher expression in mild and moderate IgG− subjects. Lower expression of chemokine CCL3 and cytokine 
 IL1B12, and higher expression of the myeloid cell plasticity regulator  KLF613 were observed in both IgG− and 
IgG+ COVID-19 subjects.

Chromatin remodeling prior to seroconversion can distinguish mild from moderate 
COVID‑19. To test whether chromatin accessibility can distinguish COVID-19 disease severity in individu-
als early in their disease course (prior to seroconversion) an Assay for Transposase-Accessible Chromatin using 
sequencing (ATAC-seq)14 was used to quantify differential chromatin accessibility in three groups: subjects with 
mild symptoms, subjects with moderate symptoms and pre-pandemic healthy controls. A set of 455 differen-
tially accessible chromatin regions (DARs) was found to distinguish IgG− subjects with mild symptoms from 
those with moderate symptoms at p ≤ 0.05 (Fig. 2A). Of these markers, 73 regions shared differential accessibility 
in mild and moderate IgG− subjects, demonstrating both severity-associated evidence of chromatin remod-
eling and a smaller conserved epigenetic response. Additionally, a set of 375 regions of differentially accessible 
chromatin was identified in IgG+ subjects (Fig. 2B). The effect sizes of each DAR were compared across healthy 
controls, mild, and moderate IgG− subjects to determine the overlap features associated with either cohort. We 
determined that many of the markers that distinguish mild subjects from healthy controls also distinguished 
moderate subjects from healthy controls with little difference in effect size. In contrast, the markers that distin-
guished mild and moderate subjects from each other had higher accessibility in healthy controls and the lowest 
accessibility in moderate subjects. DARs specific to the comparisons in 2A-B as heat map depictions (Fig. 2C,D) 
for prior and post seroconversion shows overlap between mild and moderate symptom subjects compared to 
healthy controls. Functional enrichment was then performed for each set of differentially accessible regions to 
identify an association with transcription factor motifs and downstream pathways. In IgG− subjects with mild 
symptoms, we found an enrichment of transcription factors and pathways related to viral infection (Fig. 2E). 
Fewer enriched pathways were observed in the IgG− subjects with moderate symptoms. Transcription factors 
found to be enriched in accessible chromatin from IgG+ subjects with mild symptoms were associated with 
dysregulation of myeloid development via HOXA3, C/EBP-B and C/EBP-D15 (Fig. 2F).

CD14+ monocytes are the primary cell type differentially activated in IgG− subjects. The chro-
matin accessibility signature detected in the bulk ATAC-seq datasets identified candidate epigenetic biomark-
ers associated with COVID-19 severity and showed that PBMCs undergo extensive chromatin remodeling in 
response to SARS-CoV-2 infection. To understand how each cell type contributed to this signature and to track 
the evolution of the chromatin landscape of each cell type during seroconversion, we performed single-cell (sc)
ATAC-seq profiling of the PBMCs isolated from subjects with mild or moderate symptoms and healthy controls 
(Table 1 and Supplemental Table S2). The relative abundance of cell types collected from each subject cohort 
were similar between IgG− and IgG+ timepoints (Fig. 3A; Supplemental Tables S4 and S5). Additional details on 
how cell type labels were transferred from paired scRNA-seq datasets for each sample are available in the sup-
plemental methods (Fig. S2A–D; Supplemental Table S6). Analysis of transcription factor motif accessibility was 
applied to PBMCs from IgG− mild or moderate subjects to identify shared regulatory mechanisms. Transcrip-
tion factors with highly accessible motifs and low gene expression were identified, consistent with epigenetically 
primed chromatin remodeling without corresponding transcriptional activity (Fig. 3B). These motifs, including 
those of the CREB and ETS protein families, were characterized by increased binding activity as measured by 
footprint depth and relatively low average per-cell gene expression. Inflammatory regulators including JUN/
FOS, proteins from the KLF family, and IRF1 showed elevated gene expression. A complete list of transcription 
factors associated with accessible regions and low gene expression is found in Supplemental Table S7.

Comparison of PBMCs collected from subjects with mild or moderate symptoms identified specific peaks 
enriched on the day of study enrollment (IgG−) versus a timepoint 2–4 weeks later (IgG+) for all cell types 
(Fig. 3C). A total of 5988 peaks were identified as uniquely accessible at one of the three longitudinal (IgG−, 
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mixed serology, and IgG+) timepoints. A similar experimental approach was applied to each major cell type 
individually to determine the extent of chromatin remodeling prior to seroconversion. The cells with enrichment 
of significant peaks at the early, IgG− timepoint were primarily CD14+ monocytes (Fig. 3D).

Figure 1.  Differential gene expression in peripheral blood mononuclear cells (PBMCs) distinguishes COVID-
19 symptom severity. (A) Volcano plot depictions of differential gene expression from comparisons of healthy 
controls to IgG− subjects with mild symptoms (left), and healthy controls to IgG− subjects with moderate 
symptoms (right). Differential expression in genes with p ≤ 0.05 are plotted in red. (B) Principal component 
analysis (PCA) using differentially expressed genes identified in IgG− subjects with mild symptoms (green) 
and moderate subjects (blue) show distinct separation from healthy controls (red). (C) Volcano plot depictions 
of differential gene expression from comparisons of healthy controls to IgG+ subjects with mild symptoms 
(left), and healthy controls to IgG+ subjects with moderate symptoms (right). Genes with p ≤ 0.05 are plotted 
in red. (D) PCA using differentially expressed genes identified in IgG+ subjects with mild symptoms (green) 
and moderate subjects (blue) show distinct separation from healthy controls (red). (E) Log fold change (LFC) 
in differentially expressed genes in IgG− subjects with mild symptoms as a function of IgG− subjects with 
moderate symptoms (left) and likewise in IgG+ subjects (right). Genes differentially expressed in mild compared 
to healthy are green, moderate compared to healthy are red and genes differentially expressed in mild or 
moderate compared to healthy controls are blue.
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Figure 2.  Remodeling of the chromatin landscape identifies gene regulatory markers associated with symptom severity. (A) 
Differential chromatin accessibility, comparing healthy controls to mild symptom IgG− subjects (left) and healthy to moderate 
symptom IgG− subjects (center), and IgG− mild to moderate symptoms (right). Regions that are significantly different in 
each comparison at p ≤ 0.05 are red; regions not significantly different are black. A loess curve fit to the results is plotted 
in blue. (B) Differential chromatin accessibility, comparing healthy controls to mild symptom IgG+ subjects (left), healthy 
controls to moderate symptom IgG+ subjects (center), and mild to moderate IgG+ subjects (right). A loess curve fit to the 
results is plotted in blue. (C,D) Heat map depiction of differentially accessible regions (DARs) that compares healthy to mild 
symptoms (left column), healthy to moderate symptoms (center column) and mild to moderate symptoms (right column) in 
IgG− subjects (C) and in IgG+ (D). (E,F) Functional enrichment analysis of DARs in the TRANSFAC database (purple), the 
REACTOME database (red), and gene ontologies (GO) in categories of biological processes (BP, orange), cellular component 
(CC, blue), and molecular function (MF, green). DARs identified comparing healthy to mild symptoms (top) or healthy 
compared to moderate symptoms (bottom) are shown for IgG− (E) and IgG+ (F) subjects.
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Figure 3.  Epigenetic signatures in cells collected from COVID-19 subjects evolve with disease progression. 
(A) Uniform manifold approximation and projection (UMAP) plot of single-cell ATAC-seq data generated 
from healthy controls, uninfected close contacts, and COVID-19 subjects with mild or moderate symptoms 
(left). Relative abundance of cell types represented in the scATAC-seq data are plotted for each group at 
IgG− and IgG+ timepoints for COVID-19 subjects and collection day 0 and 14 for close contacts (right). (B) 
Transcription factor motif accessibility and binding activity measured by footprint depth (left) or average 
per-cell gene expression (right) in COVID-19 subjects with mild or moderate symptoms. Distribution of 
accessibility and gene expression are plotted as histograms along the axes (gray). The red circle is the average of 
all points; the dark blue circle is 50% of all data; the light blue circle is 75% of all data. Motifs with the top 5% 
change in flanking accessibility are plotted in red. (C) Differentially accessible chromatin between IgG− and 
IgG+ timepoints in all cells and (D) CD14+ monocytes. Differentially accessible chromatin observed across the 
IgG−, mixed and IgG+ timepoints in COVID-19 subjects is shown where significance is defined as p ≤ 0.05 and 
absolute LFC ≥ 0.5 (top); Changes in differentially accessible chromatin are shown across time (bottom).
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Domains of regulatory chromatin are specially enriched in myeloid cells. Domains of regula-
tory chromatin (DORCs) were identified in all cell types collected from IgG− subjects with mild or moder-
ate symptoms by counting the number of peak-to-gene linkages for each gene in the scATAC-seq  datasets7. A 
total of 1109 genes with greater than 10 peak-to-gene linkages were defined as DORC genes, and those known 
to be regulated by a super-enhancer were labeled (Fig. 4A). These DORCs showed cell type-specific profiles 
and appeared to have higher accessibility than gene expression in these cells, suggesting that these genes were 
being primed for activation (Fig. 4B). Accessibility at the DORCs regulated by a super-enhancer was enriched 
in CD14+ monocytes and other myeloid cells, including dendritic cells and CD16+ monocytes, indicated by the 
presence of proximal gene regulatory elements with correlated accessibility to DORC gene loci (Fig. 4C). These 
DORC genes regulated by super-enhancers play a role in priming active chromatin states in CD14+ monocytes, 
consistent with the cell fate decisions identified that distinguished subjects with variable symptom severity.

Epigenetic profiles of CD14+ monocyte subpopulations differentiate mild from moderate IgG− 
COVID‑19. We next identified transcriptomic and epigenetic profiles of sub-populations of CD14+ mono-
cytes that distinguished IgG− subjects with mild from moderate symptoms. Single-cell gene expression data for 
CD14+ monocytes were processed using the uniform manifold and projection (UMAP) algorithm. Clusters 2 
and 4 identified a unique sub-population of CD14+ monocytes in subjects with mild symptoms and cluster 7 
identified a sub-population of CD14+ monocytes in subjects with moderate symptoms (Fig. 5A). Transcrip-
tion factors and downstream targets were identified for each cluster by measuring correlated gene expression 

Figure 4.  Domains of regulatory chromatin (DORCs) are enriched in myeloid cells, indicating epigenetic 
control of cell fate. (A) Number of peak-to-gene linkages in cells from IgG− subjects is shown by a plot of rank 
sorted genes as a function of number of correlated peaks. Genes with > 10 linkages are defined as DORCs. 
Labeled genes are known to be regulated by a super-enhancer. (B) DORC gene activity for 1109 loci plotted for 
each cell type (right). Labeled DORC genes are known to be regulated by a super-enhancer (top). (C) Super-
enhancer regulated DORC genes for nuclear receptor corepressor 2 (NCOR2, left) and prosaposin (PSAP, right). 
Peak-to-gene linkages in CD14+ monocytes and other myeloid cells are plotted with a correlation cutoff of 0.5.
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with promoter-proximal transcription factor motifs (Supplemental Methods). CD14+ monocyte subpopulations 
from subjects with mild symptoms exhibited significant up-regulation of the regions that regulate IRF7, IRF1, 
and STAT1 transcription factors, whereas the CD14+ monocyte subpopulations from subjects with moderate 
symptoms were characterized by up-regulation of the CEBPB and KLF3 regulatory regions (Fig. 5B).

Single-cell ATAC-seq data for CD14+ monocytes were processed using a similar approach to identify clus-
ters with correlated gene expression regulatory activity (Fig. 5C). Activity at the transcription factor motifs 
was estimated by measuring genome-wide motif accessibility, and the correlations between scRNA-seq and 
scATAC-seq clusters were calculated in a pairwise manner (Fig. 5D). Differential gene expression between the 
mild and moderate sub-populations identified interferon-stimulated gene activation as a distinguishing feature 
of symptom severity. In addition to these transcriptomic markers, gene expression measurements of enriched 
monocyte-related pathways were calculated to quantify the average transcriptomic response in each cell subset 
(Fig. 5F, Supplemental Tables S8, S9). To perform this analysis, scRNA-seq clusters containing CD14+ monocytes 
from both mild and moderate subjects were merged were appropriate (Supplemental Methods) and two pub-
lished datasets were incorporated to enable comparison with more severe COVID-19 disease  phenotypes16,17. We 
identified an enrichment of interferon response activity in the mild and moderate monocytes from Mild 1, Mild 
2 and Moderate 1 CD14+ monocyte subsets (scRNA-seq clusters 2, 4 and 7) which was consistent with our bulk 
RNA-seq data on the same cohorts. CD14+ monocytes from subjects with severe or critical disease did not share 
the same strong gene expression signature of interferon signaling. Furthermore, monocytes from these clusters 
have elevated expression of TNF-a, NF-kB, toll-like receptor (TLR) signaling, and monocytic recruitment fac-
tor CCR2 which helps explain why these cells cluster separately in Fig. 5A. Expression of these pathways is also 
elevated in monocyte subsets from subjects with more severe disease, including the ICU subjects treated with 
TLR agonists 16. Pathways identified centered on those of the adaptive immune response. Differential regulation of 
pathways related to the transition from innate to adaptive immunity, marked by dectin-1 and the toll-like receptor 
cascade, suggested that activation of T and B cell receptor signaling were observed in these sub-populations18–20.

Discussion
This study demonstrated that the epigenomes of critical subsets of PBMCs were remodeled extensively early 
in SARS-CoV-2 infection and reflected disease severity in IgG− subjects with mild and moderate symptoms. 
Specifically, differential activity of transcription factors and chromatin accessibility prior to anti-spike IgG sero-
conversion were observed to distinguish disease severity, preceding the later transcriptional response. The fact 
that these signals were robust even in a small cohort of subjects with subtle differences in disease severity (WHO 
OS 1 vs 2) suggests the potential power of epigenetic approaches to classify subsets of SARS-CoV-2 infection. 
This study complements previous work that identified signatures of accessible chromatin in severe or convalesc-
ing COVID-19 21–24.

We found that transcription factor motifs enriched in peaks accessible prior to seroconversion had the high-
est occupancy in cells from the myeloid lineage, specifically CD14+ monocytes, dendritic cells, and CD16+ 
monocytes. KLF and CREB transcription factor families, which are known to regulate monocyte-macrophage 
polarization, had elevated motif accessibility in subjects with mild or moderate symptoms, suggesting an epige-
netic priming mechanism controlling cell  fate25,26. This distinction is important as not only are CD14+ monocytes 
generally more activated in early COVID-19, as has been described, but here were differentially activated across 
subjects with variable disease severity. These differences included modulation of IFN-γ, as reported previously. 
Specifically, mild symptom severity (or effective control) was marked by upregulation of classical antiviral path-
ways including those regulating IRF1 and IRF7. With increased severity, these antiviral signals diminished, sug-
gesting that dysregulated and less effective responses underlied moderate disease. These early epigenetic changes 
occurred prior to transcriptional manifestations and in this cohort were also more stable and predictive of disease 
severity than gene expression alone. These findings suggest that epigenetic approaches focusing on chromatin 
accessibility may offer even greater promise than other host-based molecular diagnostics and predictive tools, 
as has been suggested for DNA methylation-based  profiles27. Our work is consistent both with previous studies 
that identified DNA-methylation signatures, which included viral response and interferon signaling that will 
predicted SARS-CoV-2 infection and clinical  outcome27, and with genome-wide DNA methylation signatures 
associated with severe COVID-19 that highlight hypermethylation in IFN-related genes, hypomethylation in 
inflammatory genes and increased epigenetic  age28.

Interestingly, CD14+ monocytes underwent the most extensive chromatin remodeling over time and exhibited 
epigenetic profiles at early seronegative times that distinguished disease severity. In contrast, after seroconversion, 
motifs enriched in accessible peaks were not seen in monocytes, instead showing the highest activity in B cells 
and plasmablasts, consistent with the transition from inflammatory signaling to adaptive immune development 
in this phase. Our work is consistent with epigenetic profiles of immune cells of individuals convalescing from 
COVID-19 that show establishment of immunological  memory24.

There are limitations to this study, including the relatively small sample size, nonstandard enrollment and 
sampling times that vary across individuals, and a lack of subjects with critical illness to examine how these 
epigenetic changes manifest in more severe disease. However, development of a host-response assay that lever-
age the highly sensitive epigenetic biomarkers established early during infection has the potential to fill a clear 
unmet clinical need in the care of patients with COVID-1929,30. For example, in addition to the well characterized 
respiratory system damage of COVID-19, the deleterious effects on the central nervous system (CNS) can be 
devastating and include headache, anosmia (loss of smell), hyposmia (loss of taste), disturbance of smell, taste 
or vision, epileptic seizures, Guillain–Barre syndrome and intracerebral  hemorrhage31. Our future studies will 
determine association between epigenetic biomarkers and specific symptoms that reflect damage to the CNS or 
peripheral nervous systems.
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Figure 5.  CD14+ monocytes undergo extensive chromatin remodeling prior to seroconversion and harbor 
severity-specific epigenetic biomarkers. (A) scRNA-seq UMAP of all CD14+ monocytes collected from mild 
and moderate IgG− subjects. UMAP colored by disease severity (left) and cluster number (right). (B) Heat 
map depiction of regulon activity computed for each scRNA-seq cluster using SCENIC. Activity of the top 10 
regulons (right) is plotted for each cluster of cells from the UMAP (bottom). The black box indicates clusters 
of interest. (C) scATAC-seq UMAP of all CD14+ monocytes collected from IgG− mild and moderate subjects. 
UMAP colored by disease severity (left) and cluster number (right). (D) Heat map depiction of transcription 
factor motif enrichment of identified regulons (right) plotted for each scATAC-seq cluster (bottom). (E) 
Correlation plot using regulon activity to link clusters between scRNA-seq (columns) and scATAC-seq (rows). 
Black box indicates clusters of interest. (F) Enrichment of gene expression in monocyte-related pathways for 
CD14+ monocyte subsets from IgG− mild and moderate subjects. Pathway scores were computed for cell 
subsets from two published datasets for comparison. Hierarchical clustering was applied to samples within each 
dataset.



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11714  | https://doi.org/10.1038/s41598-022-15668-8

www.nature.com/scientificreports/

In summary, we found that the evolution of the chromatin landscape in circulating leukocytes during 
COVID-19 primes host immunological responses at early times, is mediated primarily by CD14+ monocytes 
and correlates with an observed divergence in disease severity. These changes temporally precede transcriptional 
manifestations of pathways related to adaptive immunity. Together, these observations offer novel insight into 
severity-associated variations in host responses to SARS-CoV-2 infection and suggest that detection of criti-
cal components of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools 
for COVID-19. The COVID-19 pandemic has highlighted with excruciating clarity the need for prognostic 
biomarkers to triage patients and personalize their treatment relevant to their likelihood to experience disease 
progression. Our findings offer a potential pathway via translation to diagnostic platforms capable of detecting 
markers of chromatin accessibility. Furthermore, improved understanding of the transcriptional and epigenetic 
response may reveal novel therapeutic opportunities. We envision that the rapid development of nanotechnol-
ogy that supported mRNA vaccines can be harnessed to support detection of peripheral blood-based epigenetic 
biomarkers of early pre-seroconversion COVID-19 32.

Methods
Cohort recruitment, biological sample collection, and initial phenotyping. The study was 
approved by the Duke University Institutional Review Board. Protection of human subjects was in accordance 
with research protocols approved by the Duke University Institutional Review Board, consistent with the Decla-
ration of Helsinki. Written informed consent was obtained from all research subjects or their legally authorized 
representatives. Subjects with confirmed or suspected SARS-CoV-2 infection or their close contacts were identi-
fied in the outpatient setting and enrolled into the Molecular and Epidemiological Study of Suspected Infection 
protocol (MESSI, IRB Pro00100241). All close contacts and subjects with mild or moderate COVID-19 were 
longitudinally sampled from enrollment to convalescent phase. Biological samples and demographic informa-
tion were collected prospectively at first visit (Day 0) and at weekly intervals on Day 7 and Day 14. At each visit, 
infection with SARS-CoV-2 was confirmed using quantitative polymerase chain reaction (qPCR) of nasopharyn-
geal (NP) swab samples, and serology testing was performed for IgG against the SARS-CoV-2 spike domain. All 
subjects with mild or moderate COVID-19 progressed from seronegative (IgG−) to seropositive (IgG+). Close 
contacts were qPCR negative and IgG− at all time points; healthy controls were enrolled pre-pandemic and were 
not tested for SARS-CoV-2 or spike protein IgG. Self-reported symptom surveys were performed at each visit. 
To quantify symptom severity, the sum of 38 defined symptoms, each scored 0–4 (0-none, 1-mild, 2-moderate, 
3-severe, 4-very severe), was determined from symptom onset through each longitudinal sample collection. 
SARS-CoV-2 q-PCR tests used virus RNA extracted from NP samples in 140 µL of viral transport medium 
(VTM) using QIAamp Viral RNA Mini Kit (QIAGEN, Cat# 52904) according to manufacturer’s instructions. 
SARS-CoV-2 nucleocapsid (N1) and human RNase P (RPP30) RNA copies were determined using 5 µL of iso-
lated RNA in the CDC-designed kit (CDC-006-00019, Revision: 03, Integrated DNA Technologies 2019-nCoV 
kit). SARS-CoV-2 IgG ELISA tests for antibody response were performed using the anti-SARS-CoV-2 spike S1 
domain IgG ELISA assay (EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany).

Purification of PBMCs. Peripheral blood mononuclear cells (PBMCs) were purified using the Ficoll-
Hypaque density gradient method according to manufacturer’s instructions. Briefly, whole blood was collected 
in ACD Vacutainer tubes (Becton Dickinson, Cat# 364606) and processed within 8 h by dilution 1:2 in PBS, 
layered onto the Ficoll-Hypaque (Sigma Aldrich, Cat# GE17-1440-02) in 50 ml conical tubes, and centrifuged 
at 420 × g for 25 min. Buffy coat was collected, washed twice in D-PBS (Sigma Aldrich, Cat# D8537) by cen-
trifugation at 400 × g for 10 min to isolate PBMCs which were assessed for viability and cell count using a Vi-
Cell automated cell counter (Beckman-Coulter). PBMCs were adjusted to 10 ×  106 cells/ml in cryopreservation 
media (90% FBS, 10% DMSO), frozen at − 80 °C using CoolCell LX (BioCision) for 12–24 h and stored in liquid 
nitrogen vapor phase.

RNA extraction, total RNA‑seq, and analysis. RNA was extracted from 300 K cells using the Zymo 
Direct-zol RNA Miniprep Kit (Zymo Research, Cat# R2051) and RNA quality assessed using the Agilent DNA 
Screentape assay. The RNA Integrity Number (RIN) scores for all samples were > 7.0. Total RNA libraries were 
generated using the NuGEN Ovation® SoLo RNA-Seq Library Preparation Kit (Tecan Life Sciences, Cat# 0500-
96). Libraries were sequenced using Illumina NovaSeq 6000 instrument with S4 flow cell and 150 base pair 
paired-end reads (Illumina, Cat# 20012866). FASTQ files were generated from the NovaSeq BCL outputs and 
quality was assessed with  FASTQC33. Differentially expressed genes were identified between subjects with differ-
ent disease severity using the limma package and voom to model  variance34.

Nuclei purification, ATAC‑seq and analysis. Nuclei were extracted from frozen PBMCs. Briefly, 100 K 
cells were spun down at 300×g for 5 min at 4 °C. The supernatant was removed, and cells were mixed with 100 µL 
of lysis buffer (10 mM NaCl, 3 mM MgCl2, 10 mM Tris–HCl pH7.4, 0.1% Tween-20, 0.1% NonidetTM P40) and 
lysed on ice for 4 min. Wash buffer (1 mL; 10 mM NaCl, 3 mM MgCl2, 10 mM Tris–HCl pH7.4, 0.1% Tween20) 
was added before centrifuging at 500×g for 5 min at 4 °C. ATAC-seq libraries were generated as described 14. 
Briefly, transposition mix (25 μL 2 × TD buffer, 2.5 μL transposase (Tn5, 100 nM final), 22.5 μL water) (Illumina, 
Cat# 20031198) was added to the nuclear pellets, incubated at 37 °C for 30 min, and DNA purified using the 
QIAGEN MinElute PCR Purification Kit (QIAGEN, Cat#28004). DNA fragments were PCR amplified for a 
total of 10–11 cycles and resulting libraries purified using the QIAGEN MinElute PCR Purification Kit. The 
libraries were sequenced with an Illumina Novaseq 6000 S4 flow cell using 100 bp paired-end reads (Illumina, 
Cat# 20027466). FASTQ files were generated from the NovaSeq BCL outputs and used as input to the ENCODE 
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ATAC-seq pipeline (https:// github. com/ ENCODE- DCC/ atac- seq- pipel ine) using the MACS2 peak-caller with 
all default parameters. Differential accessibility was calculated between groups of subjects with different disease 
severity using the csaw  package35.

Single‑cell (sc)RNA‑seq and analysis. Frozen PBMCs were thawed, and count and cell viability were 
measured by Countess II. The cell viability exceeded 80% for all samples except PBMC samples from CC sub-
jects, which had viability between 70 and 80%. For single cell (sc) RNA-seq, 200 K cells were aliquoted, spun 
down, resuspended in 30 µL PBS + 0.04%BSA + 0.2U/µL RNase inhibitor, and counted using Countess II. GEM 
generation, post GEMRT cleanup, cDNA amplification, and library construction were performed following 10X 
Genomics Single Cell 5’ v1 chemistry and quality was assessed using Agilent DNA Screentape assay. Libraries 
were then pooled and sequenced using Illumina NovaSeq 6000 platform with the goal of reaching saturation or 
20,000 unique reads per cell on average. Sequencing data were used as input to the 10× Genomics Cell Ranger 
pipeline to demultiplex BCL files, generate FASTQs, and generate feature counts for each library. Dimensionality 
reduction and cell type annotation was accomplished using gene-barcode matrices generated using CellRanger 
count were analyzed using Seurat 3 with the default parameters unless otherwise  specified36. Regulatory network 
inference was accomplished by converting the scRNA-seq Seurat object into a SingleCellExperiment and used as 
input to analysis with the SCENIC  package37.

scATAC‑seq and analysis. PBMCs were thawed and nuclei were extracted as for ATAC-seq. The single-
cell suspensions of scATAC-seq samples were converted to barcoded scATAC-seq libraries using the Chromium 
Single Cell 5′ Library, Gel Bead and Multiplex Kit, and Chip Kit (10 × Genomics). The Chromium Single Cell 
5′ v2 Reagent (10× Genomics, Cat# 120237) kit was used to prepare single-cell ATAC libraries according to 
the manufacturer’s instructions. Quality was assessed using Agilent DNA Screentape assay. Libraries were then 
pooled and sequenced using Illumina NovaSeq 6000 platform with the goal of reaching saturation or 25,000 
unique reads per nuclei on average. Sequencing data were used as input to the 10× Genomics Cell Ranger ATAC 
pipeline to demultiplex BCL files, generate FASTQs, and generate feature counts for each library.scRNA-seq and 
scATAC-seq were integrated using fragment file outputs generated using CellRanger ATAC count were analyzed 
using ArchR following the standard workflow and with default parameters unless otherwise  specified38. Feature 
and motif enrichment analysis (peak calling) was performed using MACS2 via the addReproduciblePeakSet() 
method in ArchR which uses pseudo-bulk replicates of cells grouped on a specific design variable. The correla-
tions between chromVAR transcription factor deviation scores and scRNA-seq derived gene expression data 
were calculated using the ArchR method correlateMatrices() to identify activators and repressors. Topic-based 
clustering was performed for the CD14+ monocytes from the mild or moderate subject cohorts using the R 
package  cisTopic39.

Detailed methods for qPCR and antibody tests, and epigenetic and genomic profiling, including RNA extrac-
tion, sequencing, differential expression analysis and differential chromatin accessibility analysis for both bulk 
and single cell analytic approaches can be found in Supplemental Information.

Data availability
The sequencing datasets and related clinical metadata tables are available via the NIH/NCBI Gene Expression 
Omnibus (GEO) repository using accession number GSE206284.
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