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Existence of weakly 
quasisymmetric magnetic fields 
without rotational transform 
in asymmetric toroidal domains
Naoki Sato

A quasisymmetry is a special symmetry that enhances the ability of a magnetic field to trap charged 
particles. Quasisymmetric magnetic fields may allow the realization of next generation fusion reactors 
(stellarators) with superior performance when compared with tokamak designs. Nevertheless, the 
existence of such magnetic configurations lacks mathematical proof due to the complexity of the 
governing equations. Here, we prove the existence of weakly quasisymmetric magnetic fields by 
constructing explicit examples. This result is achieved by a tailored parametrization of both magnetic 
field and hosting toroidal domain, which are optimized to fulfill quasisymmetry. The obtained 
solutions hold in a toroidal volume, are smooth, possess nested flux surfaces, are not invariant 
under continuous Euclidean isometries, have a non-vanishing current, exhibit a vanishing rotational 
transform, and fit within the framework of anisotropic magnetohydrodynamics. Due to the vanishing 
rotational transform, these solutions are however not suitable for particle confinement.

Nuclear fusion is a technology with the potential to revolutionize the way energy is harvested. In the approach to 
nuclear fusion based on magnetic confinement, charged particles (the plasma fuel) are trapped in a doughnut-
shaped (toroidal) reactor with the aid of a suitably designed magnetic field. In a  tokamak1, the reactor vessel is 
axially symmetric (see Fig. 1a). The axial symmetry is mathematically described by the independence of physical 
quantities, such as the magnetic field B and its modulus B, from the toroidal angle ϕ . Such symmetry is crucial 
to the quality of tokamak confinement, because it ensures the conservation of the angular momentum pϕ of 
charged particles. However, the constancy of pϕ is not enough to constrain particle orbits in a limited volume 
because, in addition to the tendency to follow magnetic field lines, particles drift across the magnetic field. This 
perpendicular drift eventually causes particle loss at the reactor wall, deteriorating the confinement needed to 
sustain fusion reactions. In a tokamak, perpendicular drifts are therefore suppressed by driving an axial electric 
current through the confinement region, which generates a poloidal magnetic field in addition to the external 
magnetic field produced by coils surrounding the confinement vessel (see Figs. 1a, b). The overall magnetic field 
therefore forms twisted helical field lines around the torus. Unfortunately, the control of such electric current 
is difficult because it is maintained by the circulation of the burning fuel itself, making steady operation of the 
machine a practical challenge.

In contrast to tokamaks,  stellarators2,3 are designed to confine charged particles through a vacuum mag-
netic field produced by suitably crafted asymmetric coils (see Fig. 1c). In this context, symmetry is defined as 
invariance under continuous Euclidean isometries, i.e. transformations of three-dimensional Euclidean space 
that preserve the Euclidean distance between points. In practice, these transformations are combinations of 
translations and rotations, with three corresponding types of symmetry: translational, rotational (including 
axial), and helical. The magnetic field generated by the asymmetric coils of a stellarator is endowed with the 
field line twist required to minimize particle loss associated with perpendicular drift motion. This removes, in 
principle, the need to drive an electric current within the confinement region, and thus enables the reactor to 
operate in a condition close to a steady state (in practice currents may exist in stellarators as well, but they are 
sensibly smaller than those in a tokamak). Unfortunately, the loss of axial symmetry comes at a heavy price: in 
general, the angular momentum pϕ is no longer constant, and confinement is degraded. However, a conserved 
momentum that spatially constrains particle orbits can be restored if the magnetic field satisfies a more general 
kind of symmetry, the so-called  quasisymmetry3,4. The essential feature of a quasisymmetric magnetic field, 
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whose rigorous  definition5 is given in Eq. (1), is the invariance u · ∇B = 0 of the modulus B = |B| in a certain 
direction in space u (the quasisymmetry). For completeness, it should be noted that there exist two kinds of 
 quasisymmetry6–9: weak quasisymmetry (the one considered in the present paper), and strong quasisymmetry. 
In the former, quasisymmetry results in a conserved momentum at first order in the guiding-center expansion, 
while in the latter the conservation law originates from an exact symmetry of the guiding-center Hamiltonian. 
Furthermore, the notion of quasisymmetry can be generalized to omnigenity, a property that guarantees the 
suppression of perpendicular drifts on  average10.

Despite the fact that several stellarators aiming at quasisymmetry or omnigenity have been  built11,12, that 
significant efforts are being devoted to stellarator optimization (see e.g.13), and that quasisymmetric magnetic 
fields have been obtained with high numerical  accuracy14, at present the existence of quasisymmetric magnetic 
fields lacks mathematical proof. This deficiency is rooted in the complexity of the partial differential equations 
governing quasisymmetry, which are among the hardest in mathematical physics. Indeed, on one hand the 
toroidal volume where the solution is sought is itself a variable of the problem. On the other hand, since the 
governing equations belong to the class of first order partial differential equations, it is difficult to establish gen-
eral results beyond the existence of local solutions by application of standard analytical tools such as the method 
of characteristics. The availability of quasisymmetric magnetic fields also strongly depends on the additional 
constraints that are imposed on the magnetic field. For example, if a quasisymmetric magnetic field is sought 
within the framework of ideal isotropic magnetohydrodynamics, the analysis  of15 suggests that such configura-
tions do not exist (see  also16–19) due to an overdetermined system of equations where geometrical constraints 
outnumber the available degrees of freedom. The issue of overdetermination is less  severe20–22 if quasisymmetric 
mgnetic fields correspond to equilibria of ideal anisotropic  magnetohydrodynamics23–25 where scalar pressure is 
replaced by a pressure tensor. In this context, it has been  shown26 that local quasisymmetric magnetic fields do 
exist, although such local solutions are only defined in a portion of a toroidal domain due to a lack of periodicity 
around the torus.

The goal of the present paper is to establish the existence of weakly quasisymmetric magnetic fields in toroi-
dal domains by constructing explicit examples. This ‘constructive’ approach has the advantage of bypassing the 
intrinsic difficulty of the general equations governing quasisymmetry, and hinges upon the method of Clebsch 
 parametrization27, which provides an effective representation of the involved variables, including the shape of 
the boundary enclosing the confinement region. The quasisymmetric magnetic fields reported in the present 
paper hold within asymmetric toroidal volumes, are smooth, have nested flux surfaces, are not invariant under 
continuous Euclidean isometries, and can be regarded as quilibria of ideal anisotropic magnetohydrodynamics. 
Nevertheless, these results come with some caveats: since the constructed solutions are optimized only to fulfill 
weak quasisymmetry, the found magnetic fields lack other features that would be desirable from a confinement 
perspective. In particular, they exhibit a vanishing rotational transform (the number of poloidal transits made 
by a magnetic field line during a toroidal transit is zero), they are not vacuum fields, and their quasisymmetry 
does not lie on toroidal flux surfaces. Hence, despite being quasisymmetric, the constructed solutions are not 
suitable to confine particles within a bounded region. Whether additional properties such as a non-vanishing 

Figure 1.  (a) and (b): magnetic field configuration in an axially symmetric tokamak. The total confining 
magnetic field B = Bϕ + Bϑ is given by an axial (toroidal) component Bϕ produced by external coils plus a 
poloidal component Bϑ generated by an electric current flowing in the ϕ-direction. This current is sustained by 
the confined plasma itself. Here, ϕ and ϑ denote toroidal angle and poloidal angle respectively. For simplicity, 
the reactor vessel separating external coils from the confinement region is not shown. (a) The total magnetic 
field B over a flux surface � = constant such that B · ∇� = 0 . (b) Schematic view of toroidal component Bϕ 
and poloidal component Bϑ on a cross section ϕ = constant . (c) Schematic representation of a stellarator: 
the confining magnetic field is asymmetric and entirely produced by external coils, implying that the 
associated electric current vanishes in the confinement region, J = ∇ × B = 0 . Figure created using Wolfram 
Mathematica 12.2 (www.wolfram.com/mathematica).
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rotational transform or a vanishing current are consistent with weak quasisymmetry therefore remains an open 
theoretical issue.

Construction of quasisymmetric magnetic fields
Let � ⊂ R

3 denote a smooth bounded domain with boundary ∂� . In the context of stellarator design � represents 
the volume occupied by the magnetically confined plasma, while the bounding surface ∂� ≃ T2 has the topology 
of a torus (a 2-dimensional manifold of genus 1). It is important to observe that, in contrast with conventional 
tokamak design, the vessel ∂� of a stellarator does not exhibit neither axial nor helical symmetry. In � , a station-
ary magnetic field B(x) is said to be weakly quasisymmetric provided that there exist a vector field u(x) and a 
function ζ (x) such that the following system of partial differential equations holds, 

 where B = |B| is the modulus of B , n denotes the unit outward normal to ∂� , and u is the direction of quasisym-
metry. As previously explained, system (1a) ensures the existence of a conserved momentum at first order in the 
guiding center ordering that is expected to improve particle confinement. Usually, the function ζ is identified 
with a flux function � having toroidal level sets. Then, both B and u lie on toroidal flux surfaces � = constant 
and the conserved momentum originating from the quasisymmetry is well approximated by the flux function � . 
Although this property is highly desirable from a confinement perspective because it confines particle orbits into a 
bounded region, in principle weak quasisymmetry (1) can be fulfilled even if the level sets of ζ differ from toroidal 
surfaces (see e.g.5). In particular, allowing configurations with ζ  = � leaves the interesting possibility of achieving 
good confinement if the level sets of ζ enclose bounded regions with a topology that may depart from a torus. 
Mathematically, the four equations in system (1a) represent so-called Lie-symmetries of the solution, i.e. the 
vanishing of the Lie-derivative LξT quantifying the infinitesimal difference between the value of a tensor field T at 
a given point and that obtained by advecting the tensor field along the flow generated by the vector field ξ . Specifi-
cally, the first equation and the third equation, which imply that both B and u are solenoidal vector fields, express 
conservation of volumes advected along B and u according to LBdV = LudV = (∇ · B)dV = (∇ · u)dV = 0 , 
where dV = dxdydz is the volume element in R3 . Similarly, the second equation in (1a) expresses the invari-
ance of the vector field B along u according to LuB = u · ∇B− B · ∇u = ∇ × (B× u) = 0 , while the fourth 
equation expresses the invariance of the modulus B2 along u , i.e. LuB

2 = u · ∇B2 = 0 . For further details on 
these points  see26.

The construction of a solution of (1) is complicated by the fact that B , u , ζ and ∂� are not independent param-
eters, but they must be optimized in a concurrent fashion while respecting the topological requirements on the 
shape of the bounding surface. For example, assigning the bounding surface ∂� from the outset will generally 
prevent the existence of solutions due to overdetermination (the available degrees of freedom are not sufficient 
to satisfy the quasisymmetry equations). A convenient way to simultaneously optimize B , u , ζ , and ∂� is to use 
Clebsch  parameters27, which enable the enforcement of the topological requirement on ∂� , which must be a 
torus, and the extraction of the remaining geometrical degrees of freedom from B , u , and ζ . To see this, first 
observe that the boundary ∂� can be expressed as a level set of a flux function � (which is assumed to exist) 
such that B · ∇� = 0 in � . In particular, this implies that the unit outward normal to the boundary ∂� can be 
written as n = ∇�/|∇�| . Next, parametrize B and u as

where the Clebsch parameters β1 , β2 , u1 , and u2 are (possibly multivalued) functions that must be determined 
from the quasisymmetry Eqs. (1) and the topological requirement that � defines toroidal surfaces. Here, it should 
be noted that, due to the Lie-Darboux  theorem28, for a given smooth solenoidal vector field v one can always 
find single valued functions α1 and α2 defined in a sufficiently small neighborhood U of a chosen point x ∈ � 
such that v = ∇α1 ×∇α2 in U. In light of the parametrization (2), the boundary condition B · n = B · ∇�

|∇�|
= 0 

on ∂� can now be identically satisfied by demanding that � = �(β1,β2) . Furthermore, assuming u  = 0 , the 
fourth equation in (1a) implies that the modulus B2 must be a function fB(u1, u2) of u1 and u2 . Thus, using the 
parametrization (2), system (1) reduces to

In going from (1)–(3) we used the fact that the first and third equations in (1a) are identically satisfied.
Now our task is to solve system (3) by determining β1 , β2 , u1 , u2 , fB , ζ , and � so that the level sets of � define 

toroidal surfaces. Direct integration of (3) is a mathematically difficult task due to the number and complexity 
of the geometric constraints involved. Therefore, it is convenient to start from known special solutions corre-
sponding to axially symmetric configurations, and then perform a tailored symmetry breaking generalization. 
The simplest axially symmetric vacuum magnetic field is given by

The magnetic field (4) satisfies system (1) if, for example, the quasisymmetry is chosen as u0 = B0 . The corre-
sponding flux surfaces are given by axially symmetric tori generated by level sets of the function

(1a)∇ · B = 0, B× u = ∇ζ , ∇ · u = 0, u · ∇B2 = 0 in �,

(1b)B · n = 0 on ∂�,

(2)B = ∇β1 ×∇β2, u = ∇u1 ×∇u2,

(3)(∇β1 ×∇β2)× (∇u1 ×∇u2) = ∇ζ , |∇β1 ×∇β2|
2 = fB(u1, u2), � = �(β1,β2).

(4)B0 = ∇ϕ = ∇z ×∇ log r.
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with r0 a positive real constant representing the radial position of the toroidal axis (major radius). Comparing 
Eq. (2) with Eqs. (4) and (5), one sees that β1 = u1 = z  , β2 = u2 = log r  , B20 = 1/r2 = e−2u2 , and 
�0 =

1
2

[

(

eβ2 − r0
)2

+ β2
1

]

.
The axially symmetric torus (5) can be generalized to a larger class of toroidal  surfaces26 as

In this notation, µ , µ0 , E , and h are single valued functions with the following properties. For each z, the func-
tion µ measures the distance of a point in the 

(

x, y
)

 plane from the origin in R2 . The simplest of such measures 
is the radial coordinate r. More generally, on each plane z = constant level sets of µ may depart from circles and 
exhibit, for example, elliptical shape. The function µ0 assigns the µ value at which the toroidal axis is located. For 
the axially symmetric torus �0 , we have µ0 = r0 . The function E > 0 expresses the departure of toroidal cross 
sections (intersections of the torus with level sets of the toroidal angle) from circles. For example, the axially 
symmetric torus �ell =

1
2

[

(r − r0)
2 + 2z2

]

 corresponding to E = 2 has elliptic cross section. Finally, the function 
h can be interpreted as a measure of the vertical displacement of the toroidal axis from the 

(

x, y
)

 plane. Figure 2 
shows different toroidal surfaces generated through (6).

(5)�0 =
1

2

[

(r − r0)
2 + z2

]

,

(6)� =
1

2

[

(µ− µ0)
2 + E(z − h)2

]

.

Figure 2.  Toroidal surfaces obtained as level sets of the function � defined by Eq. (6). (a) Axially symmetric 
torus � = 0.15 with µ = r , µ0 = 1 , E = 1 , and h = 0 . (b) Elliptic torus � = 0.1 with µ =

√

x2 + 0.4y2 , 
µ0 = 1 , E = 1 , and h = 0 . Notice that sections z = constant form ellipses. (c) Axially symmetric torus � = 0.15 
with µ = r , µ0 = 1 , E = 0.4 , and h = 0 . Notice that sections ϕ = constant form ellipses. (d) Torus � = 0.1 
with µ = r , µ0 = 3 , E = 1 , and h = 1+ 0.5 sin (4ϕ) . (e) Torus � = 0.1 with µ = r , µ0 = 3+ 0.5 sin (4ϕ) , 
E = 5+ 2.5 sin (4ϕ) , and h = 1+ 0.5 sin (4ϕ) . (f) Torus � = 0.1 with µ =

√

x2 + (0.9+ 0.1 sin (3ϕ))y2 , 
µ0 = 3+ 0.5 sin (5ϕ) , E = 5+ 2.5 cos (3ϕ) , and h = 1+ 0.5 sin (4ϕ) . Figure created using Wolfram 
Mathematica 12.2 (www.wolfram.com/mathematica).
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The axial symmetry of the torus �0 given by (5) can be broken by introducing dependence on the toroidal 
angle ϕ in one of the functions µ , µ0 , E , or h appearing in (6). Let us set µ = r , take µ0 and E as positive constants, 
and consider a symmetry breaking vertical axial displacement h = h(r,ϕ, z) . For the corresponding � to define 
a toroidal surface, the function h must be single valued. Hence, ϕ must appear in h as the argument of a periodic 
function. The simplest ansatz for h is therefore

Here m ∈ Z is an integer, ǫ a positive control parameter such that the standard axially symmetric magnetic field 
B0 with flux surfaces �0 can be recovered in the limit ǫ → 0 , and g a function of r and z to be determined. Now 
recall that from Eq. (3) the function � is related to the Clebsch potentials β1 and β2 generating the magnetic field 
B = ∇β1 ×∇β2 according to �(β1,β2) . Comparing with the axially symmetric case (5) we therefore deduce that 
the analogy holds if β1 = z − h and β2 = log r . Defining η = mϕ + g , it follows that the candidate quasisym-
metric magnetic field is

where g must be determined by enforcing quasisymmetry. Next, observe that

An essential feature of quasisymmetry (3) is that the modulus B2 can be written as a function of two variables 
only, B2 = fB(u1, u2) . From Eq. (9) one sees that this result can be achieved by setting ∂g/∂z = q(r) for some 
radial function q(r) so that u1 = η , u2 = log r , and also

with v(r) a radial function. The candidate direction of quasisymmetry is therefore

with σ(η, r) a function of η and r to be determined. Since by construction B2 = B2(u1, u2) , � = �(β1,β2) , and 
both B and u as given by (8) and (11) are solenoidal, the only remaining equation in system (3) to be satisfied is 
the first one. In particular, we have

Hence, upon setting σ = σ(r) , system (3) is satisfied with

Without loss of generality, we may set σ = −r3 so that ζ = mr and the quasisymmetric configuration is given by 

 where E is a positive real constant.

Verification of asymmetry
For the family of solutions (14) to qualify both as quasisymmetric and without continuous Euclidean isometries, 
we must verify that the magnetic field (14a) is not invariant under some appropriate combination of translations 
and rotations. To see this, consider the case q = 1/r and v = 0 corresponding to 

(7)h = ǫ sin
[

mϕ + g(r, z)
]

.

(8)B = ∇(z − ǫ sin η)×∇ log r =

(

1− ǫ cos η
∂g

∂z

)

∇ϕ + ǫm
cos η

r2
∇z,

(9)B2 =
1

r2

[

ǫ2m2 cos
2 η

r2
+

(

1− ǫ cos η
∂g

∂z

)2
]

.

(10)g(r, z) = q(r)z + v(r),

(11)u = σ(η, r)∇η ×∇ log r = σ(η, r)
(

q∇ϕ −
m

r2
∇z

)

,

(12)B× u = σ
(

∇ϕ − ǫ cos η∇η ×∇ log r
)

×
(

∇η ×∇ log r
)

= −m
σ

r3
∇r.

(13)ζ = −m

∫

σ

r3
dr.

(14a)

B =∇
[

z − ǫ sin
(

mϕ + qz + v
)]

×∇ log r =
[

1− ǫ cos
(

mϕ + qz + v
)

q
]

∇ϕ + ǫm
cos

(

mϕ + qz + v
)

r2
∇z,

(14b)u =−
1

3
∇
(

mϕ + qz
)

×∇r3 = mr∇z − qr3∇ϕ,

(14c)� =
1

2

{

(r − r0)
2 + E

[

z − ǫ sin
(

mϕ + qz + v
)]2

}

,

(15a)B =∇

[

z − ǫ sin
(

mϕ +
z

r

)]

×∇ log r =

[

1− ǫ
cos

(

mϕ + z
r

)

r

]

∇ϕ + ǫm
cos

(

mϕ + z
r

)

r2
∇z,

(15b)u =−
1

3
∇

(

mϕ +
z

r

)

×∇r3 = mr∇z − r2∇ϕ,
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 where E is a positive real constant. Notice that the magnetic field (15a) is smooth in any domain V ⊂ R
3 not 

containing the vertical axis r = 0 . To exclude the existence of any continuous Euclidean isometry for (15a) it is 
sufficient to show that the equation

does not have solution for any choice of constant vector fields a, b ∈ R
3 with a2 + b2 �= 0 . Indeed, since 

ξ = a + b × x represents the generator of continous Euclidean isometries, the impossibility of satisfying (16) 
prevents the magnetic field B from possessing translational, axial, or helical symmetry. For further details on 
this point,  see26. Next, introducing again η = mϕ + z/r , from Eq. (15a) one has

It follows that

Let 
(

ax , ay , az
)

 and 
(

bx , by , bz
)

 denote the Cartesian components of a and b . On the surface η = 0 , corresponding 
to z = z

(

x, y
)

= −mrϕ = −m arctan
(

y/x
)
√

x2 + y2 , we have sin η = 0 and cos η = 1 , and therefore,

This quantity vanishes provided that ax = ay = bx = by = 0 . Consider now the surface η = π/2 , which implies 
z = z

(

x, y
)

= r(π/2−mϕ) =
√

x2 + y2
(

π/2−m arctan
(

y/x
))

 . In this case sin η = 1 while cos η = 0 . Fur-
thermore, since the only surviving components in ξ are those coming from az and bz , one has ξ · ∇r = 0 , and 
therefore

This quantity vanishes provided that az = bz = 0 . Hence, the quasisymmetric magnetic field (15a) cannot pos-
sess continuous Euclidean isometries. Equation (20) also suggests that the magnetic field (15a) is endowed with 
a generalized kind of helical symmetry (although this symmetry does not correspond to an isometry of R3 ). 
Indeed, in a helically symmetric magnetic field one expects B2 = B2(r,mϕ + z) for some constant m. However, 
the obtained solution (15a) is such that B2 = B2(r,mϕ + z/r) as clear from (17). In this sense, the magnetic 
field (15a) possesses a different helical symmetry parametrized by 1/r on each magnetic surface r = constant.

Similarly, the flux function � defined by Eq. (15c) is not invariant under continuous Euclidean isometries. 
Indeed, the equation

does not have solution for any nontrivial choice of a, b ∈ R
3 . This can be verified easily for |m| > 1 . Indeed, in 

this case it is sufficient to evaluate ξ · ∇� over the line r = r0 , z = 0 parametrized by ϕ . Here, we have

This quantity identically vanishes provided that ax = ay = az = bx = by = bz = 0.

Properties of the constructed solutions
Let us examine the properties of the quasisymmetric configuration (15). First, observe that level sets of (15c) 
define toroidal surfaces (see Fig. 3a), implying that the magnetic field (15a) has nested flux surfaces. Next, note 
that the function ζ such that B× u = ∇ζ is proportional to the radial coordinate, i.e. ζ = mr . This function is 
associated with the conserved momentum p̄ generated by the quasisymmetry. In particular, we  have5

(15c)� =
1

2

{

(r − r0)
2 + E

[

z − ǫ sin
(

mϕ +
z

r

)]2
}

,

(16)LξB
2 = ξ · ∇B2 = 0, ξ = a + b × x,

(17)B2 =
1

r2
− 2ǫ

cos η

r3
+ ǫ2

(

1+m2
) cos2 η

r4
.

(18)
ξ · ∇B2 =

2

r3

[

−1+ 3ǫ
cos η

r
− 2ǫ2

(

1+m2
) cos2 η

r2

]

ξ · ∇r

+ 2ǫ
sin η

r3

[

1− ǫ
(

1+m2
) cos η

r

]

ξ · ∇η.

(19)ξ · ∇B2 =
2

r4

[

−1+
3ǫ

r
− 2ǫ2

(

1+m2
)

r2

]

[

xax + yay +
(

xby − ybx
)

z
(

x, y
)]

.

(20)ξ · ∇B2 =
2ǫ

r3

(az

r
+mbz

)

.

(21)Lξ� = ξ · ∇� = 0, ξ = a + b × x,

(22)

ξ · ∇� =− ǫE sin (mϕ)ξ · ∇(z − ǫ sin η)

=− ǫE sin (mϕ)

[

az −
ǫaz

r0
cos (mϕ)+ r0bx sin ϕ − r0by cosϕ − ǫ

(

bx −
max

r0

)

sin ϕ cos (mϕ)

+ǫ

(

by −
may

r0

)

cosϕ cos (mϕ)− ǫmbz cos (mϕ)

]

.

(23)p̄ = −
1

ǫgc
ζ + v�

u · B

B
.
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Figure 3.  The quasisymmetric configuration (15) for r0 = 3 , ǫ = 0.2 , m = 4 and E = 0.7 . (a) Flux surface 
� = 0.1 . (b) Levels sets of r on the flux surface � = 0.1 . These contours correspond to magnetic field lines. (c), 
(d), (e), (f), (g), (h), (i), (j): plots of the magnetic field B , the modulus B2 , the electric current J , the modulus 
J2 , the Lorentz force J × B , the modulus |J × B|2 , the quasisymmetry u , and the modulus u2 on the flux surface 
� = 0.1 . Figure created using Wolfram Mathematica 12.2 (www.wolfram.com/mathematica).
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Here, v‖ denotes the component of the velocity of a charged particle along the magnetic field B while ǫgc ∼ ρ/L 
is a small parameter associated with guiding center ordering, ρ the gyroradius, and L a characteristic length scale 
for the magnetic field. It follows that charged particles moving in the magnetic field (15a) will approximately 
preserve their radial position since p̄ ≈ − m

ǫgc
r . This property works in favor of good confinement, although it 

cannot prevent particles from drifting in the vertical direction. The situation is thus analogous to the case of an 
axially symmetric vacuum magnetic field B0 = ∇ϕ . Level sets of ζ = mr on a flux surface (15c) are shown in 
Fig. 3b. These contours correspond to magnetic field lines because the magnetic field (15a) is such that 
B · ∇� = B · ∇r = 0 , and field lines are solutions of the ordinary differential equation ẋ = B . In particular, 
observe that magnetic field lines are not twisted (the rotational transform is zero), and are given by the intersec-
tions of the surfaces � = constant and r = constant , implying that their projection on the 

(

x, y
)

 plane is a circle. 
Plots of the magnetic field (15a) and its modulus B2 are given in Fig. 3c, d. It is also worth noticing that the 
magnetic field (15a) is not a vacuum field. Indeed, it has a non-vanishing current J = ∇ × B given by

Figures 3e, f show plots of the current field J and the corresponding modulus J2 . The Lorentz force J × B can 
be evaluated to be

It is not difficult to verify that the right-hand side of this equation cannot be written as the gradient of a pres-
sure field ∇P . Hence, the quasisymmetric magnetic field (15a) does not represent an equilibrium of ideal mag-
netohydrodynamics. Nevertheless, it can be regarded as an equilibrium of anistropic magnetohydrodynamics 
J × B = ∇ ·� provided that the components P⊥, P� of the pressure tensor �ij = P⊥δ

ij +
(

P� − P⊥
)

BiBj/B2 
are appropriately chosen. Indeed, it is sufficient to set P⊥ =

(

P0 − B2
)

/2 and P� =
(

P0 + B2
)

/2 with P0 a real 
constant (on this point,  see26). Plots of the Lorentz force J × B and its modulus |J × B|2 are given in Figs. 3g, 
h. Next, observe that the quasisymmetry u given by Eq. (15b) is not tangential to the toroidal flux surfaces � 
defined in (15c). Indeed,

Plots of the quasisymmetry u and its modulus u2 can be found in Fig. 3i, j.
Finally, let us consider how the quasisymmetry of the configuration (15) compares with the usual under-

standing that the modulus of a quasisymmetric magnetic field depends on a flux function �b and a linear 
combination of toroidal angle ϕb and poloidal angle ϑb , i.e. B2(�b,Mϑb − Nϕb) with M, N integers. When 
B2 = B2(�b,Mϑb − Nϕb) , on each flux surface the contours of the modulus B2 in the (ϕb,ϑb) plane form straight 
lines. For the quasisymmetric magnetic field (15a) we have B2 = B2(r,mϕ + z/r) . Hence, the correspondence with 
the usual setting can be obtained by the identification �b → r , ϕb → ϕ , and ϑb → z/r . This correspondence can 
be made more rigorous by recalling that the property B2 = B2(�b,Mϑb − Nϕb) arises from writing the triple vec-
tor product formulation of quasisymmetry, ∇�b ×∇B · ∇(B · ∇B) = 0 , through Boozer coordinates (�b,ϕb,ϑb) . 
In these coordinates the magnetic field has expression B = B�b (�b,ϕb,ϑb)∇�b + Bϕb (�b)∇ϕb + Bϑb (�b)∇ϑb , 
which implies J · ∇�b = 0 . This is a property satisfied by magnetohydrodynamic equilibria with isotropic pres-
sure. However, as discussed above the solution (15a) does not belong to the class of magnetohydrodynamic 
equilibria with isotropic pressure. Therefore, the existence of Boozer coordinates is nontrivial. Nevertheless, for 
the solution (15a) it is possible to identify generalized Boozer coordinates 

(

�gb,ϕgb,ϑgb
)

= (r, η/r,−z/r) with 
the property that the Jacobian J = ∇�gb · ∇ϕgb ×∇ϑgb = −m/r3 is a function of the flux function �gb = r 
and the quasisymmetry is expressed by the condition ∂B/∂ϑgb = 0 or B2 = B2(r,mϕ + z/r) (on this point,  see6).

Figure 4 shows how the contours of the quasisymmetric magnetic field (15a) form straight lines in the 
(mϕ, z/r) plane. Next, it is useful to determine how much the contours of B2 depart from straight lines on each 
flux surface � . To this end, observe that Eq. (15c) can be inverted to obtain r(� , z/r, η) with η = mϕ + z/r so 
that the modulus (17) can be written in the form B2 = B2(r(� , z/r, η), η) . Figure 5 shows contours of B2 on the 
plane (mϕ, z/r) for a fixed value of � and different choices of the parameter ǫ controlling the degree of asymmetry 
of the solution. In particular, notice how the solution (15) approaches axial symmetry for smaller values of ǫ.

Concluding remarks
In conclusion, we have demonstrated the existence of weakly quasisymmetric magnetic fields in toroidal volumes 
by constructing explicit examples (14) through the method of Clebsch parametrization. The obtained configura-
tions are solutions of system (1) with the following properties. In the optimized toroidal domain � , the magnetic 
field B is smooth and equipped with nested flux surfaces � . Both B and � do not exhibit continuous Euclidean 
isometries, i.e. invariance under an appropriate combination of translations and rotations. The magnetic field 
B has vanishing rotational transform, while the quasisymmetry u is not tangential to contours of the flux func-
tion � defined in (14c), but lies on surfaces of constant radius r. In particular, B× u = m∇r with m an integer 
while B2 = B2(r,mϕ + z/r) in the example (15). The conserved momentum arising from the quasisymmetry 
is given by (23), which is approximately the radial position of a charged particle. The magnetic field B is not 
a vacuum field since a current J = ∇ × B �= 0 is present. The obtained quasisymmetric magnetic fields (14a) 

(24)J =
ǫ

r3

[

−
(

1+m2
)

sin η∇r +m(2r cos η − z sin η)∇ϕ +

(

cos η −
z

r
sin η

)

∇z
]

.

(25)
J × B =

ǫ

r4

{[

(

cos η −
z

r
sin η

)(

ǫ
(

1+m2
) cos η

r
− 1

)

+ ǫm2 cos
2 η

r

]

∇r

+ǫm
(

1+m2
)

sin η cos η∇ϕ −
(

1+m2
)

sin η
(

1− ǫ
cos η

r

)

∇z
}

.

(26)u · ∇� = mE(z − ǫ sin η)r.
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can be regarded as solutions of anisotropic magnetohydrodynamics if the component of the pressure tensor are 
appropriately  chosen26.

In addition to providing mathematical proof of existence of solutions to system (1) with the properties 
described above, this work offers an alternative theoretical framework for the numerical and experimental efforts 
devoted to modern stellarator design, and possibly paves the way to the development of semi-analytical schemes 
aimed at the optimization of confining magnetic fields. The next goal of the present theory would be to further 
improve the obtained results by ascertaining the existence of vacuum solutions ∇ × B = 0 of system (1) such 
that the modulus of the magnetic field can be written as a function of the flux function and a linear combination 
of toroidal and poloidal angles, B2 = B2(� ,Mϑ − Nϕ) , and in particular to establish the existence of vacuum 
quasisymmetric configurations with the field line twist required to effectively trap charged particles.
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