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Urban spatial structures 
from human flow 
by Hodge–Kodaira decomposition
Takaaki Aoki1*, Shota Fujishima2 & Naoya Fujiwara3,4,5,6,7

Human flow in cities indicates social activity and can reveal urban spatial structures based on human 
behaviours for relevant applications. Scalar potential is a mathematical concept that, when properly 
applied, can provide an intuitive view of human flow. However, the definition of such a potential in 
terms of the origin-destination flow matrix and its feasibility remain unresolved. In this case, we 
use Hodge–Kodaira decomposition, which uniquely decomposes a matrix into a potential-driven 
(gradient) flow and a curl flow. We depict the potential landscapes in cities resulting from commuting 
flow and reveal how the landscapes have either changed or remained unchanged by years or methods 
of transportation. We then determine how well the commuting flow is described by the potential, 
by evaluating the percentage of the gradient component for metropolitan areas in the USA and 
show that the gradient component is almost 100% in several areas; in other areas, however, the curl 
component is dominant, indicating the importance of circular flow along with triangles of places. The 
potential landscape provides an easy-to-use visualisation tool for showing the attractive places of 
human flow and will help in a variety of applications such as commerce, urban design, and epidemic 
spreading.

Human mobility is a vital social activity in our society that is relevant to various applications in commerce, urban 
design, marketing, and economics while also being involved in the spreading of diseases such as COVID-19. 
Mobility data have long been collected through person-trip surveys, but currently, they are also collected through 
mobile phone tracking. The person-trip survey data are not real time (typically reported annually or decennially); 
however, they are well-organized into separated journeys based on the purpose of trips, transportation methods, 
and other valuable properties that are difficult to obtain explicitly by tracking mobile devices.

These human mobility data are typically aggregated as an origin-destination (OD) matrix (Fig. 1), which 
describes how many people are moving from one location (origin) to another (destination). Thus, the mobility 
data characterises the relationships between places based on human behaviour and is expected to reveal the places 
that attract human flow and their basins. Such information tells us the centres and limits of cities and unfolds the 
actual shapes of cities, which dynamically change according to years, transportation methods, and movement 
restrictions. They, in turn, aid location decision-making for commercial or public buildings, the optimisation 
of transportation systems, urban planning by policymakers, and measures for movement restrictions to reduce 
the spread of COVID-19.

We consider the scalar potential of human flow to reveal the spatial structure of cities. Potential is a popular 
mathematical concept used in various scientific fields, ranging from physics to economics. In the context of our 
study, it is defined as a function of location, and its gradient yields the net movement of people between loca-
tions. Such a potential landscape provides an intuitive perspective of human flow by analogously representing 
water flowing from a higher place to a lower place. Furthermore, it reduces the relational flow data to location-
level statistics that are ready to be shown on a map. The map allows us to easily identify the sinks and sources 
of human flow, as illustrated in Fig. 1. A sink of human flow indicates attractive places. Potential landscape can 
visualise the urban structure behind massive data of human mobility and utilise it for relevant applications, if 
successfully introduced.
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However, it is not obvious how to introduce the potential to human flow. Unlike an electromagnetic field, 
human flow is not described by a two-dimensional vector field, but as an OD matrix. Furthermore, it is an 
open question whether human flow can be effectively described by a potential in the first place, according to 
Helmholtz’s theorem. In literature, the OD matrix is converted into a 2D vector field by averaging all trips from 
each location1, focusing solely on the motion of the centre of mass rather than the motions of individuals. The 
resultant vector field was found to be almost irrational, and a scalar potential was introduced. However, this 
aggregation discards the place-to-place information of the original data. We demonstrate through benchmark 
tests using synthetic data that using the previous method it is difficult to identify the number of centres and their 
areas expressed in the given data.

Another approach is to define a potential2 or attractiveness3 using the gravity model4–6, which is a well-known 
model for human flow. Several residential and economic datasets have been used to evaluate these measures7,8. 
These measures, however, are specific to the assumed model and are not calculated from the OD matrix data.

Here, we provide a straightforward introduction of a potential to the OD matrix by applying the 
Hodge–Kodaira decomposition of graph flow9–13. As described in the "Methods" section, human flow is uniquely 
decomposed into two distinct flows: a potential-driven (gradient) flow and a circular flow. The potential at each 
place is directly and easily calculated from a given OD matrix without any model assumptions and calibration 
parameters. The potential is interpretable: it refers to the difference between incoming and outgoing flux of 
people. Furthermore, the decomposition allows us to determine how well the potential describes human flow by 
evaluating the percentage of the gradient component. We observe that the circular component in human flow is 
not always negligible. This is in contrast to the previous study that treated the circular flow as noise1.

Following an overview of the decomposition method, we validate potential extraction methods using bench-
mark tests for conceptual situations. Then, we depict the potential of the commuting flow in London for several 
different transport methods and show the evolution of the potential landscape over 30 years in Tokyo. We then 
study the percentage of the gradient component in metropolitan areas in the USA. Finally, we discuss the practi-
cal implications of the potential and limitations of the proposed method.

Results
Overview of Hodge–Kodaira decomposition to an OD matrix.  In this section, we review Hodge–
Kodaira decomposition as it applies to an OD matrix. We assume that people can travel between any pair of loca-
tions. Technically, this assumption corresponds to the case of complete graphs in the method’s general descrip-
tion (see Methods for the details).

First, we consider the net flow of movement from a given OD matrix M as when 150 persons move from 
location i to another location j and 50 people move in the opposite direction, we consider the net movements of 
100 persons from i to j. The net flow is given by

where M⊺ denotes the transpose of M. The matrix A is skew-symmetric, that is, Aij = −Aji , and is possibly 
described by combinatorial gradient of a potential s, given by

Then, we define the optimisation problem for potential s:

According to the combinatorial Hodge theory11, the space of net flow A is orthogonally decomposed into two 
subspaces:
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Figure 1.   Origin-destination matrix and the concept of the potential of human flow.
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where curl is the combinatorial curl operator and curl∗ is its adjoint operator. Thus, the optimisation problem is 
equivalent to an l2-projection of A onto im(grad), and the minimal norm solution is simply given by

where si is the potential at the ith location and N is the number of locations. Using equation (1), the potential 
is rewritten as

Note that si is negative potential ( si = −Vi ). This means that we see more trips from a location with low potential 
to another with high potential.

The matrix A is orthogonally decomposed into gradient and curl components. To determine how well the 
potential describes human flow, we define the percentage of gradient component as:

This quantity is known as the ‘coefficient of determination’ in statistics. It is a reasonable choice for assessing the 
explanatory power of the potential, which is determined using orthogonal projection and is similar to ordinary 
least squares. In the following, we will show the values of R2 as percentages by multiplying 100.

Benchmark test using synthetic OD matrix.  Before investigating the potential of human flow in real 
cities, we validate potential extraction methods by benchmark tests for which the OD matrix was synthetically 
derived from a given potential V̄ :

where [x]+ = max(0, x) is a rectifier to ensure positive trips. For the synthetic OD matrix, we treat V̄  as the 
“ground truth” of the potential. We validated the extracted potential V̂  from the synthetic OD matrix M̄ by 
comparing with this true potential and calculated the mean squared error (MSE):

In the comparison, the potential is standardised such that its maximum value matches with the reference value 
( V = 0).

Figure 2 shows the benchmark results; the left panels show typical urban structures represented by the poten-
tial V̄  and the middle and right panels show those obtained from the previous method in1 and the proposed 
method, respectively. This indicates visually whether each of the two methods recovers the “true” structures 
correctly from the synthetic OD matrix.

The first point peak situation represents an ideal monocentric city (Fig. 2a). There is an attractive location 
at the centre, and the potential of the other locations is equal to the reference value ( ̄V  = 0). In this situation, 
people gather at the single point at the centre, and the flow is seen as a star network. Under this condition, the 
potential V̂  extracted by the previous method in1 is peaked at the same centre but has a broader distribution 
(Fig. 2b). This suggests that the area near the centre is differentiated from more peripheral areas by the potential 
V̂  . This is inconsistent with the ground truth of the city structure, in which all the locations are identical except 
for the central point.

Next, in the single peak situation (Fig. 2d), the attractive place has some spatial extents. In this condition, the 
potential V̂  extracted by the method in1 still has a wider distribution (Fig. 2e); therefore, the central area by V̂  
appears larger than its actual size.

The double peak situation represents a polycentric city (Fig. 2g). There are two attractive places that draw 
people from the other locations. The place on the right-hand side is more attractive than the one on the left-hand 
side, as shown by their potential values; thus, the right-hand side is the main centre, and the left-hand side is a 
sub-centre. The extracted potential V̂  in1 has only a single-peak broad distribution (Fig. 2h); thus, it is difficult 
to observe the clear polycentric structure. This misidentification is caused by the conversion process from the 
place-to-place flow to a 2D vector field as described in equation (21) in the "Methods" section. In the Tokyo 
metropolitan area, for example, Kawasaki city is known as a sub-centre to which people commute14. At the same 
time, many residents in the area commute to the largest central area around Chiyoda city. This is a common 
situation in a metropolitan area, which is often defined as an urban centre and its commuter hinterland, such 
as core-based statistical areas in the US or travel-to-work areas in the UK. In this case, the averaged vector at 
Kawasaki city will be directed toward the largest centre, and the sub-centre is hidden. The potential shown in1 for 
the Tokyo metropolitan area has no peak at Kawasaki city and other known sub-centres; therefore, the previous 
method would be unsuitable for discussing polycentric structures within metropolitan areas.
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The restricted area situation in Fig. 2j is similar to the single peak situation, with some locations near the 
centre labelled as NA. Here, NA indicates that the potential is undefined because the location is a non-land cell, 
such as a river, lake, or sea, or a restricted area by law. Some historical cities, for example, have developed around 
palaces or castles, which frequently had restricted areas. The NA locations cannot be the origin or destination 
of a flow. The potential obtained by the previous method spreads over the NA locations (Fig. 2k), which has also 
been observed in real cities1. Furthermore, it identifies those locations as a part of a central area. The potential 
at a non-land cell or restricted area would be difficult to interpret.

These observed deviations from the true potential V̄  are quantitatively measured in terms of mean squared 
error. Although the large errors obtained via the previous method are partly caused by inconsistencies in the 
generation process of the OD matrix by equation (8), the concepts of the investigated situations are generic and 
independent of the specific equation. The conversion process from the place-to-place flow to the 2D vector field, 
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Figure 2.   Potential identification for conceptual situations. (a–c) point peak situation represents an artificial 
monocentric city. There is an attractive location at the centre, to which people move from all other locations 
(a). Given an OD matrix generated by this situation, the potential estimated by the previous method1 is shown 
in panel (b) and that by the proposed method is shown in panel (c). (d-f) single peak situation is similar to the 
point peak situation, but the central place has some spatial extents (d). The potential is estimated by the previous 
method (e) and the proposed method (f), respectively. (g-i) double peak situation represents a polycentric city, 
in which there are two attractive places (g). The potential is estimated by the previous method (h) and the 
proposed method (i), respectively. (j-l) In the restricted area situation (j), the potentials at some locations (white 
cell) are not available (NA), because they are, for example, a restricted area or a lake. These NA locations cannot 
be the origin or destination of flow. The potential is estimated by the previous method (k) and the proposed 
method (l), respectively.
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which is intrinsic to the method, discards the essential information of the urban structures represented in the 
given flow.

In contrast to the previous method, the proposed decomposition method perfectly recovers the true potentials 
without any error, in every situation (Fig. 2c,f,i,l). It does not assign any potentials to non-land cells or restricted 
areas, that is those labelled as NA. Therefore, in this benchmark test, we can identify urban structures, such as 
the location of a city centre, its area, or the number of centres, as represented by the potential. It should be noted 
that the synthetic flow only contains the gradient component, which is generated by a given potential, and the 
potential can be perfectly identified by the method. However, actual human flow could have another component 
(curl flow) as described in equation (4), which is not explained by the potential.

Furthermore, it should be noted that these benchmark examples are not unduly detrimental to the previous 
method. It is actually advantageous: the method requires flows to be provided at grid points, as shown in this 
benchmark. Human flow datasets, on the other hand, are typically aggregated by administrative units in survey-
based collections or Voronoi polygons of cell towers in call detail records (CDRs) of mobile phones, necessitating 
some resampling treatments to grid points. By contrast, the proposed method is applicable to the OD matrix 
aggregated by any shape of the geographical zones.

Potential landscapes in cities.  As a first demonstration, we show the potential landscape in Greater Lon-
don in 2011, using a person-trip dataset from home to workplace. The OD matrix shows the number of com-
muters aggregated by the middle layer super output area (MSOA) in the 2011 census (see "Methods" for details). 
The trips were categorised based on the method of travel used for the longest part by distance. We first show 
the potential by all the methods and then by specific transport methods. This allows us to investigate the urban 
structures from different viewpoints through transport methods.

Figure 3 depicts the negative potential −Vi(= si) of the decomposed gradient flow. The potential has the larg-
est peak at “City of London 001”, literally the centre of London. Its neighbouring areas, such as “Westminister 
018” and “Westminister 013”, also have large potentials. Another peak, that is, a local maximum in the potential 
landscape, is seen at “Tower Hamlets 033”, and there are small peaks outside the central area of London. Most 
other areas are characterised by a relatively lower potential by −V  , serving as the sources of commuters to the 
centres.

0

10
50
200

−V

0

2

4

−V

a

b

0

10

50

200

−V

cPublic transport Private car

Figure 3.   Negative potential −V  of the home-work trips in London. (a) The potential at a place is indicated by 
its colour and its height. (b,c) The potentials are depicted for the selected trips by specific transport methods.
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The flows selected by specific transport methods provide another picture of potential landscapes in London. 
The potential for public transportation (Fig. 3b) is similar to that of all methods. By contrast, the potential for 
private cars (Fig. 3c) becomes a single-centre city than multi-centre: a few locations still have higher potential, and 
the other locations have very low potentials without small peaks. In addition, the potential amplitude is smaller 
than that for other cases, reflecting the volume of commuters (public transport = 1.6 million trips, private car 
= 45.2 thousand trips).

Next, we demonstrate how the urban structures in Tokyo have either changed or remained unchanged over 
30 years in terms of the time evolution of the potential landscape. We used the commuter datasets of successive 
person-trip surveys from 1988 to 2018 in the Tokyo metropolitan area (see "Methods" for details).

Figure 4 shows that, over 30 years, Chiyoda city—the Imperial Palace and its surrounding areas—has been at 
the top of the potential. The city is known as the economic and political centre of Japan: it houses the headquarters 
of major enterprises, government institutions, and the Tokyo Central Railway Station. Its neighbouring cities, 
such as Minato, Chuo, Shinjuku, and Shibuya, have occupied the top five ranks, by potential, over the years (Sup-
plementary Table S1), and formed the largest stable peak in the Tokyo metropolitan area. Several small, steady 
peaks were observed outside the central area (e.g. Yokohama, Chiba, Kawasaki, and Atsugi cities). In contrast to 
these steady peaks, new peaks appeared in Tachikawa and Akishima cities after 1998 and at the Omiya ward in 
Saitama city after 2008. These small peaks correspond to the business cores envisioned by the fourth National 
Capital Regional Development Plan in 198615, which aimed at multi-nucleated urban structures to avoid over-
concentration in the Tokyo central area.

How much of the percentages of human flows are represented by potential?  To answer this 
question, we evaluated the percentage of the gradient component R2 defined in equation (7) for many cities and 
examined its distribution. We used the person-trip dataset for the metropolitan areas in the USA in 2018 (see 
“Methods” for details). In this dataset, the metropolitan area is given by core-based statistical area (CBSA), a 
standard definition of the geographical area of cities. The dataset covers almost all CBSAs in the USA and com-
pares the percentage R2 across many metropolitan areas.

Figure 5a shows the percentage R2 for each metropolitan area in the USA. The percentage R2 varies widely 
among the areas: the minimal percentage R2 = 17.72% was in New York-Newark-Jersey City, NY-NJ-PA, while 
the maximum was 99.98% in Zapata, TX. The distribution has a mean of µ = 66.2% and standard deviation σ = 
15.3% (Fig. 5b). In CBSAs, metropolitan statistical areas (MSAs) tend to have a lower percentage than micropo-
litan statistical areas ( µSAs). Thus, the percentage R2 is plotted against the population (Fig. 5c), showing that the 
percentage R2 tends to decline for larger populations. In addition, the percentage R2 was changed by the transport 
methods in the London case (Supplementary Table S2) and by years in the Tokyo case (Supplementary Table S3).

Discussion
In this study, we introduced a potential for the OD matrix by Hodge–Kodaira decomposition and depicted the 
potential landscape in cities. In London, the largest peak of the potential landscape, that is, the most attractive 
centre of the flow, is located at “City of London 001”. The landscape could give a different view of urban struc-
tures by the transportation method. In the Tokyo metropolitan area, the time evolution of the potential over 30 
years revealed how Tokyo had either changed or remained unchanged from the viewpoint of human flow. We 
observed that the largest peak was stably located in Chiyoda city, which is the central area of Tokyo. Other peaks 
were observed in suburban business cores, confirming the development of the multi-nucleated urban structures 
envisioned in the 1986 national development plan. These business cores are also known as “edge cities” of Tokyo, 
which are dynamically organised14,16,17. In fact, it is clearly shown that some cores have emerged over the years 
as new peaks in the potential landscape.

We first discuss the practical meaning of the potential we introduced. According to equation (6), the potential 
is clearly interpreted as the difference between incoming and outgoing flux of people. In other words, a location 
with a greater incoming flow from other locations and a smaller outgoing flow to other locations becomes a 
location with a higher potential. The total balance of incoming and outgoing flux determines the attractiveness 
of a location in terms of potential s.

Chiyoda
Tachikawa & Akishima Omiya ward in Saitama

1988 1998 2008 2018
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Figure 4.   Time-evolution of the potential landscape in Tokyo metropolitan area. The potentials are obtained 
from the home-work trips of successive surveys over 30 years in the Tokyo metropolis and surrounding 
provinces. Each zone is basically equal to a municipal district.
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The potential of human flow also incorporates the importance of circular flow in cities. We evaluated how 
well the potential describes human flow in metropolitan areas in the US by using the percentage of the gradi-
ent component. We found that the percentage is not always 100% and not a universal value but highly variable 
among the areas. For several areas, the gradient component is more dominant, with a high percentage R2 , while 
in other areas, the other component (curl component) is dominant. This variation reflects the differences in 
human flow across the areas and raises new questions of when and why human flow is well described by the 
potential. Furthermore, the curl component tends to be dominant for large cities, indicating the importance of 
circular flow in net movements of people. The curl is defined for triplets of locations as described in the "Meth-
ods" section. By contrast, human flow has been discussed in terms of paired locations: origin and destination. 
The circulation along triangle places addresses a new aspect of human flow with another question: What drives 
the circular flows in populated areas? The decomposition method opens up new research avenues in human 
mobility and urban structures.

The limitation of the proposed method should be noted. The potential is based on the rigorous mathematical 
definition of the OD matrix and does not require any model assumptions and any additional datasets. Conversely, 
the analysis in this study does not consider several factors assumed in spatial interaction models, such as the 
gravity model4–6 or radiation model18. In particular, the distance deterrence on human mobility is not considered. 
This could impose limitations on a native application to a dataset at the country level, where distance critically 
matters. Thus, it is appropriate to apply decomposition to the human flow dataset within cities or narrow regions. 
Otherwise, a distance-weighted function can be integrated into the decomposition, as described in the “Distance 
deterrence effect” section in Supplementary Information.

In summary, the potential landscape by Hodge–Kodaira decomposition provides an intuitive perspective of 
human flow by its gradient flow from a higher place to a lower place. The landscape allows us to understand the 
spatial structure of cities based on human movements rather than administrative circumstances and to study 
the dynamic changes in the spatial structure under different conditions. For example, we can study whether the 
global increase in remote workers due to the COVID-19 pandemic is alleviating over-concentration of popula-
tion in city centres by checking the emergence of new potential peaks in suburbs or the decline of pre-existing 
ones. The method provides an easy-to-use visualisation tool to show the places attracting human flow and will 
aid relevant applications in commerce, urban design, and epidemic spreading.

Methods
Hodge–Kodaira decomposition to OD matrix.  The origin-destination (OD) matrix M is a square 
matrix that represents the number of trips from origin i to destination j by its elements Mij . Any square matrix 
M is uniquely decomposed into a symmetric and a skew-symmetric matrix,

where M⊺ is the transpose of M. The symmetric part can be further decomposed into diagonal and off-diagonal 
elements. The former represents a self-loop flow at each location. The latter part is the bidirectional circulation 
of people between two locations. Although investigating these symmetric elements would be interesting, we 
will concentrate on the skew-symmetric part because it may be described by the gradient flow. In this study, we 
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analyse A ( = M −M⊺ ) by multiplying the skew-symmetric part by 2. The matrix A represents the net movement 
of human flow, by removing the self-loop and bidirectional circulations.

We decompose the net flow A by the Hodge–Kodaira decomposition. The decomposition is, in general, 
defined for an undirected graph G(V ,E) , where the vertex set is V and the edge set is E. The element Aij represents 
the flow at the edge11. According to11, the combinatorial gradient operator and combinatorial curl operator are 
defined as follows:

where s is a potential function, T(E) is the set of triangles in the graph, and {{i, j, k} : {i, j}, {j, k}, {k, i} ∈ E} . Using 
these operators, the space of edge flow A is orthogonally decomposed into three subspaces,

where ker(�1 ) = ker(curl) ∩ ker(div), and curl∗ is the adjoint operator of the curl. With a Euclidean inner product 
in the space A , �X,Y� =

∑

{i,j}∈E XijYij , we define an optimisation problem:

This is equivalent to an l2-projection of A onto im(grad). Then, the solution of the optimisation problem 
satisfies the following normal equation11:

where �0 is the graph Laplacian of graph G, and the divergence is (div A)(i) = 
∑

j s.t. {i,j}∈E Aij . Potential s with 
the minimal norm is given by,

where † denotes the Moore-Penrose inverse. Similarly, the vector potential � of curl flow is derived as

The OD matrix determines the edge flow for every pair of nodes, corresponding to a complete graph. It should 
be noted that no edge between i, j in graph G means that the flow Aij between them is undefined or unavailable, 
and does not mean zero movement, Aij = 0 . In this case of a complete graph, dim(ker(�1)) = 0 holds, and the 
matrix A is decomposed into only two parts: gradient and curl flows. Furthermore, the scalar potential in (16) 
and the vector potential in (17) are simplified as follows:

where N is the number of nodes. Using these potentials, the net flow A is uniquely decomposed as

The method used in the benchmark test.  We briefly describe the method proposed in a related work1, 
which we used in the benchmark test in Fig. 2. First, the OD matrix Mij is converted into a 2D vector field Wi by 
averaging all trips from each location i:

where uij is the unit vector from location i to location j.
Next, the empirical potential V is numerically computed on a square grid. For a cell i with indices ( α,β ) on 

the grid, the equation −∇Vi = Wi is discretised by,

(11)(grad s)(i, j) = sj − si for{i, j} ∈ E,

(12)(curlA)(i, j, k) = Aij + Ajk + Aki for{i, j, k} ∈ T(E),

(13)
A = im(grad)

︸ ︷︷ ︸

gradient flow

⊕ ker(�1)
︸ ︷︷ ︸

harmonic flow

⊕ im(curl∗)
︸ ︷︷ ︸

curl flow

,

(14)min
s

�grad s − A�2 = min
s




�

{i,j}∈E

�
(sj − si)− Aij

�2



.

(15)�0s = −divA,

(16)s = −�
†
0divA,

(17)� = (curl ◦ curl∗)†curlA.

(18)si = −
1

N

N∑

j=1

Aij ,

(19)�ijk =
1

N
(Aij + Ajk + Aki),

(20)
Aij = (grad s)(i, j)+ (curl∗ �)(i, j)

= (sj − si)+
∑

k

�ijk .

(21)Wi =
∑

j �=i

Mij
∑

j Mij
uij ,
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where Wx and Wy are x and y components of W , respectively. Starting from one of the city bounding box cor-
ners with the boundary condition V = 0, the potential V at all the other cells are calculated by this discretisation 
formula. Different resultant potentials V can be obtained for each starting point (bounding box corner). We 
average them to calculate the outcome of the empirical potential V as proposed in the paper1.

Datasets.  London.  We used a 2011 person-trip dataset, obtained from the UK Data Service19. This in-
cluded typical one-way trips from home to work with no return trips. The OD matrix denotes the number 
of commuters aggregated by middle layer super output area (MSOA) in the 2011 census. The shapefile of the 
MSOAs is obtained from Office for National Statistics20. The dataset covers the MSOAs in England and Wales. 
In this paper, we selected only the trips among the MSOAs in Greater London. The resultant matrix contains 2.9 
million trips between 983 MSOAs.

The trips in the dataset are categorised by main transport methods used for the longest part, by distance, and 
we selected the following two types of transport methods: “Public transport” includes the trips by underground, 
metro, light rail, tram, train, Bus, minibus, and coach. “Private car” includes the trips by driving a car, taxi, 
motorcycle, scooter, or moped, including their passengers.

Tokyo.  We used datasets from successive person-trip surveys from 1988 to 2018 in the Tokyo metropolitan 
area21. The datasets were categorised according to the purpose of trips, and one-directional trips from home 
to the workplace were selected. The OD matrix denotes the number of commuters aggregated by middle-sized 
geographical zones. A middle-sized zone is essentially equivalent to a municipal district, with the exception 
that some zones in rural areas contain several districts. The zones have been altered by municipal mergers and 
dissolutions between 1988 and 2018, and the target regions of the surveys have been extended. We selected the 
areas covered by all surveys from 1988 to 2018 and have a surjective mapping from the zones in 2018, to make 
shapefiles before 2018 (The shapefile was available only for the last survey in 2018). Several peripheral areas in 
the Ibaragi, Chiba, Kanagawa, and Saitama provinces were excluded.

The resultant matrix contained 11.77 million trips among 121 zones in 2018, 11.74 million trips among 120 
zones in 2008, 10.97 million trips among 114 zones in 1998, and 9.97 million trips among 106 zones in 1988.

Core‑based statistical area (CBSA) in the United States.  We used LEHD Origin-Destination Employment Sta-
tistics (LODES) datasets for 201822. The datasets contain the number of jobs for each pair of residential places 
and workplaces at the census block level. We aggregated the data into the census tract level and analysed the OD 
matrix of commute trips for each core-based statistical area (CBSA) defined by the U.S. Office of Management 
and Budget23. The shapefiles of the census tracts were obtained from 2019 TIGER/Line shapefiles24.

There were 930 CBSAs in 2018, excluding those in Alaska and Puerto Reco25. CBSAs are classified into metro-
politan statistical areas (MSAs) and micropolitan statistical areas ( µSAs), depending on whether the population 
is larger than 50,000.

The population of a CBSA was computed by adding those of the counties that belong to the CBSA. County 
populations were taken from26.

Data availability
Person-trip datasets and the census data that support the findings of this study are publicly available, as noted 
in the "Methods" section.

Code availability
The code is available in the GitHub repository at https://​github.​com/​Takaa​kiAok​iWork/​Hodge​Poten​tialH​umanF​
low/.

Received: 13 December 2021; Accepted: 24 June 2022

References
	 1.	 Mazzoli, M. et al. Field theory for recurrent mobility. Nat. Commun. 10, 1–10 (2019).
	 2.	 Stewart, J. Q. Empirical mathematical rules concerning the distribution and equilibrium of population. Geogr. Rev. 37, 461 (1947).
	 3.	 Harris, B. & Wilson, A. G. Equilibrium values and dynamics of attractiveness terms in production-constrained spatial-interaction 

models. Environ. Plan. A 10, 371–388 (1978).
	 4.	 Zipf, G. K. The P1 P2/D hypothesis: On the intercity movement of persons. Am. Sociol. Rev. 11, 677–686 (1946).
	 5.	 Ullman, E. L. The role of transportation and the bases for interaction. In Thomas, W. L. (ed.) Man’s Role in Changing the Face of 

the Earth, 862–880 (University of Chicago Press, 1956).
	 6.	 Wilson, A. G. Urban and regional models in geography and planning (Wiley, 1974).
	 7.	 Geurs, K. T. & van Wee, B. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp. 

Geogr. 12, 127–140 (2004).
	 8.	 Ellam, L., Girolami, M., Pavliotis, G. A. & Wilson, A. Stochastic modelling of urban structure. Proc. R. Soc. A 474, 20170700 (2018).
	 9.	 de Rham, G. Differentiable Manifolds, vol. 266 of Grundlehren der mathematischen Wissenschaften (Springer Berlin Heidelberg, 

1984).

dVi

dx
=

Vα+1,β − Vα,β

�x
= Wx

α,β ,

dVi

dy
=

Vα,β+1 − Vα,β

�y
= W

y
α,β ,

https://github.com/TakaakiAokiWork/HodgePotentialHumanFlow/
https://github.com/TakaakiAokiWork/HodgePotentialHumanFlow/


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11258  | https://doi.org/10.1038/s41598-022-15512-z

www.nature.com/scientificreports/

	10.	 Hodge, W. V. D. & Atiyah, M. F. The Theory and Applications of Harmonic Integrals. Cambridge mathematical library (Cambridge 
University Press, 1989).

	11.	 Jiang, X., Lim, L.-H., Yao, Y. & Ye, Y. Statistical ranking and combinatorial Hodge theory. Math. Program. 127, 203–244 (2011).
	12.	 Kodaira, K. Harmonic fields in riemannian manifolds (generalized potential theory). Ann. Math. 50, 587 (1949).
	13.	 Warner, F. W. Foundations of Differentiable Manifolds and Lie Groups, vol. 94 of Graduate Texts in Mathematics (Springer New 

York, 1983).
	14.	 Li, Y. & Monzur, T. The spatial structure of employment in the metropolitan region of Tokyo: A scale-view. Urban Geogr. 39, 

236–262 (2018).
	15.	 Itsuki, N. Concentration and deconcentration in the context of the Tokyo capital region plan and recent cross-border networking 

concepts. In Hein, C. & Pelletier, P. (eds.) Cities, Autonomy, and Decentralization in Japan, 55–80 (Routledge, 2006).
	16.	 Garreau, J. Edge City: Life on the New Frontier (Doubleday, 1991).
	17.	 Fujita, M. & Ogawa, H. Multiple equilibria and structural transition of non-monocentric urban configurations. Reg. Sci. Urban 

Econ. 12, 161–196 (1982).
	18.	 Simini, F., González, M. C., Maritan, A. & Barabási, A. L. A universal model for mobility and migration patterns. Nature 484, 

96–100 (2012).
	19.	 Office for National Statistics. 2011 special workplace statistics - msoa level (england and wales). http://​www.​nomis​web.​co.​uk/​

census/​2011/​wu03EW, Retr. May. 28, 2021.
	20.	 Office for National Statistics. 2011 middle layer super output area (msoa) boundaries - full clipped. https://​data.​gov.​uk/​datas​et/​

2cf1f​346-​2f74-​4c06-​bd4b-​30d7e​4df5a​e7/​middle-​layer-​super-​output-​area-​msoa-​bound​aries, Retr. May. 28, 2021.
	21.	 Tokyo Metropolitan Region Transportation Planning Commission. Tokyo metropolitan region person trip survey. https://​www.​

tokyo-​pt.​jp/​data/​01_​01, Retr. June. 9, 2021.
	22.	 United States Census Bureau. Lehd origin-destination employment statistics (lodes), version 7.5. https://​lehd.​ces.​census.​gov/​data/, 

Retr. June. 15, 2021.
	23.	 U.S. Office of Management and Budget. Revised delineations of metropolitan statistical areas, micropolitan statistical areas, and 

combined statistical areas, and guidance on uses of the delineations of these areas. https://​www.​bls.​gov/​bls/​omb-​bulle​tin-​15-​01-​
revis​ed-​delin​eatio​ns-​of-​metro​polit​an-​stati​stical-​areas.​pdf, Retr. June. 17, 2021.

	24.	 United States Census Bureau. 2019 tiger/lineshapefiles. https://​www2.​census.​gov/​geo/​tiger/​TIGER​2019/​TRACT/, Retr. June. 15, 
2021.

	25.	 United States Census Bureau. List of core based statistical areas (cbsas), april 2018. https://​www.​census.​gov/​progr​ams-​surve​ys/​
metro-​micro.​html, Retr. June. 17, 2021.

	26.	 United States Census Bureau. County population totals: 2010-2019. https://​www.​census.​gov/​conte​nt/​census/​en/​data/​tables/​time-​
series/​demo/​popest/​2010s-​count​ies-​total.​html, Retr. June. 17, 2021.

Acknowledgements
We thank S. Segi, T. Mori, R. Lambiotte, and S. Shinomoto for fruitful discussions.This work was supported by the 
Research Institute for Mathematical Sciences, a joint research centre at Kyoto University (TA); JSPS KAKENHI 
Grant Number JP18K12776 (SF); JSPS KAKENHI Grant Number JP21H03507 (NF).

Author contributions
All authors designed the study, discussed the implications of the data analysis, and wrote the manuscript. T.A. 
implemented the method. T.A. and S.F. performed the data analysis of London data (T.A.), CBSAs in the US 
(SF, TA), and Tokyo (TA).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​15512-z.

Correspondence and requests for materials should be addressed to T.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://www.nomisweb.co.uk/census/2011/wu03EW
http://www.nomisweb.co.uk/census/2011/wu03EW
https://data.gov.uk/dataset/2cf1f346-2f74-4c06-bd4b-30d7e4df5ae7/middle-layer-super-output-area-msoa-boundaries
https://data.gov.uk/dataset/2cf1f346-2f74-4c06-bd4b-30d7e4df5ae7/middle-layer-super-output-area-msoa-boundaries
https://www.tokyo-pt.jp/data/01_01
https://www.tokyo-pt.jp/data/01_01
https://lehd.ces.census.gov/data/
https://www.bls.gov/bls/omb-bulletin-15-01-revised-delineations-of-metropolitan-statistical-areas.pdf
https://www.bls.gov/bls/omb-bulletin-15-01-revised-delineations-of-metropolitan-statistical-areas.pdf
https://www2.census.gov/geo/tiger/TIGER2019/TRACT/
https://www.census.gov/programs-surveys/metro-micro.html
https://www.census.gov/programs-surveys/metro-micro.html
https://www.census.gov/content/census/en/data/tables/time-series/demo/popest/2010s-counties-total.html
https://www.census.gov/content/census/en/data/tables/time-series/demo/popest/2010s-counties-total.html
https://doi.org/10.1038/s41598-022-15512-z
https://doi.org/10.1038/s41598-022-15512-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Urban spatial structures from human flow by Hodge–Kodaira decomposition
	Results
	Overview of Hodge–Kodaira decomposition to an OD matrix. 
	Benchmark test using synthetic OD matrix. 
	Potential landscapes in cities. 
	How much of the percentages of human flows are represented by potential? 

	Discussion
	Methods
	Hodge–Kodaira decomposition to OD matrix. 
	The method used in the benchmark test. 
	Datasets. 
	London. 
	Tokyo. 
	Core-based statistical area (CBSA) in the United States. 


	References
	Acknowledgements


