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Prediction of postoperative cardiac 
events in multiple surgical cohorts 
using a multimodal and integrative 
decision support system
Renaid B. Kim1,6, Olivia P. Alge1,6, Gang Liu1, Ben E. Biesterveld2, Glenn Wakam2, 
Aaron M. Williams2, Michael R. Mathis3, Kayvan Najarian1,4,5 & Jonathan Gryak1,4*

Postoperative patients are at risk of life-threatening complications such as hemodynamic 
decompensation or arrhythmia. Automated detection of patients with such risks via a real-time 
clinical decision support system may provide opportunities for early and timely interventions that can 
significantly improve patient outcomes. We utilize multimodal features derived from digital signal 
processing techniques and tensor formation, as well as the electronic health record (EHR), to create 
machine learning models that predict the occurrence of several life-threatening complications up 
to 4 hours prior to the event. In order to ensure that our models are generalizable across different 
surgical cohorts, we trained the models on a cardiac surgery cohort and tested them on vascular and 
non-cardiac acute surgery cohorts. The best performing models achieved an area under the receiver 
operating characteristic curve (AUROC) of 0.94 on training and 0.94 and 0.82, respectively, on testing 
for the 0.5-hour interval. The AUROCs only slightly dropped to 0.93, 0.92, and 0.77, respectively, for 
the 4-hour interval. This study serves as a proof-of-concept that EHR data and physiologic waveform 
data can be combined to enable the early detection of postoperative deterioration events.

Patients who undergo cardiovascular surgery are at risk of developing hemodynamic  decompensation1. Decom-
pensation can include arrhythmias (e.g., atrial fibrillation), hypotension, and pulmonary edema. Monitoring 
devices in intensive care units (ICU) produce wealth of data, but the deluge of information produced, in addi-
tion to false alarms, alarm fatigue, and cognitive biases, can negatively affect patient  care2–4. As such, there is a 
growing need for predictive models and effective clinical decision support systems (CDSS) that identify only the 
relevant data from multiple sources to give information to healthcare providers.

Previous work has incorporated electronic health record (EHR) data in machine learning (ML) to create 
predictive models, as EHR data are noninvasive and routinely collected. Some examples of previous studies 
 include5 to predict coronary artery  disease6, to compute survival risk scores,  and7–9 to predict mortality or 
30-day readmission.

Other research focuses on the utility of physiological signals. Several  models10–12 used features from heart rate 
variability (HRV) to predict mortality or vascular events. Belle et al.13 showed that HRV and electrocardiogram 
(ECG) features could better predict hemodynamic stability compared to standard biomarkers used in hemo-
dynamic assessment. Hernandez et al.14 took a multimodal approach, using ECG, HRV, arterial blood pressure 
(ABP) waveform from an arterial line, pulse plethysmography (PPG) waveform from a pulse oximeter, and EHR 
data to predict hemodynamic decompensation.

In this study, we use multimodal features from physiological signals and EHR data to create ML models that 
predict hemodynamic decompensation after surgery in surgical ICU patients. We do this in order to test the 
hypothesis that models trained on a cardiovascular surgery cohort may be successfully applied to other cohorts 
that underwent different surgical procedures (vascular and acute non-cardiac surgery). We then share the results 
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of applying the models trained on the single surgical cohort to the other postoperative cohorts, which show that 
the models are robust and can be generalized to the other postoperative patient groups.

Methods
This section details the creation of the predictive models for hemodynamic decompensation, which builds upon 
our previous  work14–16. A graphical schematic of the method is presented in Fig. 1.

Dataset. Michigan Medicine data systems provided the EHR data and physiological signal data, including 
ECG, ABP, and PPG waveform data. Our data include features extracted from Taut String estimates of ECG, 
ABP, PPG, and HRV, dual-tree complex wavelet packet transform (DTCWPT) features extracted from the Taut 
String estimation of ECG waveform, and features extracted from EHR data from three postoperative cohorts of 
surgical patients. The Taut String and DTCWPT methods of feature extraction are described in further detail 
in the "Signal processing for feature extraction" section, and the list of EHR data features is included in the Sup-
plementary Information.

Figure 1.  A schematic of the utilized methods. ECG: Electrocardiogram; ABP: Arterial Blood Pressure; PPG: 
Pulse Plethysmography; HRV: Heart Rate Variability; DTCWPT: Dual-tree Complex Wavelet Packet Transform; 
TS: Taut String.
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Patient cohorts. The three cohorts of surgical patients have increasing heterogeneity. Cohort 1 consists of 
patients recovering from elective cardiac surgery, Cohort 2 major vascular surgeries, and Cohort 3 acute condi-
tions requiring urgent and/or major non-cardiac surgery. Examples of surgeries in Cohort 1 include coronary 
artery bypass grafting, cardiac valve repair/replacement, and thoracic aortic procedures; Cohort 2 abdominal 
aortic aneurysm surgeries (both open repairs and endovascular stenting) and major vascular bypass proce-
dures (e.g., aortofemoral bypass, axillofemoral bypass, and femoral-popliteal artery bypass); Cohort 3 major 
abdominal surgeries (e.g., exploratory laparotomies), orthopedic surgeries (e.g., total hip replacements for hip 
fractures), and neurosurgeries (e.g., craniotomies and spinal fusions).

Seven adverse events associated with hemodynamic decompensation are included in our study: low cardiac 
index, sustained low mean arterial pressure, epinephrine bolus, inotropic therapy initiated, inotropic therapy 
escalated by ≥100%, vasopressor therapy initiated, and vasopressor therapy escalated by ≥100%. In addition, 
we include two additional adverse events that may not necessarily results from hemodynamic decompensation 
but are clinically significant enough to warrant detection by an algorithm: re-intubation and mortality, as an 
algorithm missing these two events while detecting other decompensation events would be clinically less mean-
ingful. The exact definitions, details, and rationale for inclusion of these events as agreed by our clinical team 
are available in Hernandez et al.14.

Signal processing for feature extraction. We divided ECG, ABP, and PPG signals into five non-over-
lapping tumbling windows three minutes in length. We created four prediction windows of different lengths: 30 
minutes, 1 hour, 2 hours, and 4 hours.

Data preprocessing. To remove artifacts, each ECG tumbling window was preprocessed using a second order 
Butterworth bandpass filter with cutoff frequencies of 0.5 and 40 Hz. Similarly, each ABP window was pre-
processed with a third order Butterworth bandpass filter with cutoff frequencies 1.25 and 25 Hz, and each PPG 
window with a third order Butterworth bandpass filter with cutoff frequencies 1.75 and 10 Hz.

Heart rate variability. We identified peaks within the filtered ECG signal using the peak detection method 
defined in Hernandez et al.14. We compute the difference in time between subsequent peaks to produce HRV.

Taut string. Taut String (TS)17 has previously been used to capture hemodynamic instability in  ECG13,14, and 
we utilize these same TS features in our method with varying values for ǫ.

Given a discrete signal f = (f1, f2, ..., fn) , we define the first-order finite difference as

We use a parameter ǫ > 0 to create the piecewise linear function g, the TS estimate of f, such that the max norm 
of (f − g) is ≤ ǫ and the Euclidean norm of diff(g) is minimal, defined below as

and

respectively.
Next, diff∗ is defined as

Here, diff∗ : Rn−1 → R
n is dual to diff : Rn → R

n−1 . The function g also minimizes

One can visualize the function g as a string pulled tightly between f + ǫ and f − ǫ . It is generally a piecewise 
linear function that results in a smoother line than f. Figure 2 shows a sample TS estimate of ECG.

We applied TS to each tumbling window of ECG, HRV, ABP, and PPG signals with different ǫ values. A sum-
mary of TS estimations performed and the number of features extracted are listed in Table 1. These features are 
detailed in Hernandez et al.14.

Dual‑tree complex wavelet packet transform. Dual-tree complex wavelet packet transform (DTCWPT)18 has 
previously been used in an ECG  context14. More detail is available in Bayram et al.18, but briefly: at each level k, 
DTCWPT uses a high- and low-pass perfect reconstruction wavelet filter bank to decompose the previous level’s 
subbands. Increasing k yields increased frequency resolution, but at computational expense. We select k = 2 in 
this study.

The filter banks of k are selected such that the first filter bank’s discrete Hilbert transform is the frequency 
response of each branch of the second filter bank. This allows for approximate shift-invariance. If � is the wavelet 

(1)diff(f ) = (f2 − f1, ..., fn − fn−1).

(2)�f − g�∞ = max
i
{|fi − gi|} ≤ ǫ

(3)�diff(g)�2 =

√

√

√

√

n−1
∑

i=1

(xi+1 − xi)2,

(4)diff∗(y1, y2, ..., yn−1) = (−y1, y1 − y2, ..., yn−2 − yn−1, yn−1).

(5)�diff∗diff�1 = |g2 − g1| +

n−1
∑

i=2

|gi−1 − 2gi + gi+1| + |gn − gn−1|.
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for low-pass filter h0(n) and high-pass filter h1(n) , and � ′ or H{�} is its Hilbert pair, then the z-transforms of 
the two filters, H0 and H1 , are related by

when the wavelet basis is orthonormal. H1 and H ′
1 have the relationship

where d is an odd integer and |w| < π.
Following this, if H(k)(ejw) is the equivalent response at level k, then:

(6)H1(e
jw) = −ejdwH∗

0 (e
j(w−d))

(7)H ′
1 = −j · signum(w)ej0.5wH1(e

jw),

Figure 2.  TS Approximation of ECG Signal. The grey waveforms are the margins for TS, f + ǫ and f − ǫ , the 
blue line is the TS estimation.

Table 1.  Taut string estimation information.

(a) Epsilon values for each feature type

Feature type ε values

ECG 0.0100, 0.1575, 0.3050, 0.4525, 0.6000

HRV 0.0010, 0.0258, 0.0505, 0.0753, 0.1000

DTCWPT 0.0100, 0.1575, 0.3050, 0.4525, 0.6000

ABP 0.1000, 0.7000, 1.3000, 1.9000, 2.5000

PPG 1.0000, 8.7500, 16.5000, 24.2500, 32.0000

(b) Features extracted per epsilon value

Feature type Number of features extracted

ECG 6

HRV 6

DTCWPT 152

ABP 21

PPG 21
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and the equivalent response of the second filter bank’s corresponding branch is

according  to18.

Electronic health records. EHR data was available for each subject in addition to physiological signals. It 
included static information, including age, race, and comorbidities, as well as temporal information, such as lab 
results and medications administered. The features that required different levels of representation through one-
hot encoding are presented in Supplementary Tables S1 through S4 and also further explained in Hernandez 
et al.14. For completeness, the temporal EHR information for each tumbling window was carried over from the 
most recent record.

Tensor formation and reduction. Taking into account all values of ǫ from TS estimation, the filter banks 
of DTCWPT, and the five tumbling windows, a total of 5,150 features are extracted from ECG, HRV, ABP, and 
PPG signals. To reduce the feature space of this data and maintain structural information, we rely on tensor 
decomposition.

First, we format the data into a tensor. Each type of signal features has the structure of five tumbling windows 
and five values of ǫ , with varying numbers of features. We standardize the features within each tumbling window 
and ǫ value using mean and standard deviation (SD) of each ǫ-window-feature entry from the training set. These 
training set values are later used to standardize the ǫ-window-feature entries from the test set. We construct a 
third-order tensor of structure ( ǫ × feature× window ) for each feature type, visualized in Table 2. Once the 
tensors of a feature type have been created for all subjects in the training set, they are stacked along a new fourth 
mode, generating a tensor of size (ǫ × feature× window× Ntrain) , where Ntrain is the number of individuals 
in the training set. This is repeated for tensors of each feature type. We perform higher-order singular value 
decomposition (HOSVD)19–21 using Tensor Toolbox22 to reduce the DTCWPT, ABP, and PPG tensors to their core 
tensors, GDTCWPT,GABP,GPPG , and reserve their respective transformation matrices ( UDTCWPT,UABP,UPPG).

Next, we stack all fourth order tensors from the different feature types along the feature mode (second mode) 
to create a new tensor T. We then perform a Canonical Polyadic (CP)  decomposition23 to obtain T’s four factor 
matrices: (A, B, C, D). Given the tensor T = R

n1×n2×n3×n4 and rank r, the CP decomposition produces the tensor

such that �T − T̂� is minimized. The tensor Frobenius norm � · � is defined as

where xi1...im is the (i1, ..., im) entry of X.
We use alternating least squares (ALS)23 to solve the CP decomposition, setting rank r = 4 as done in Her-

nandez et al.14. After solving for T̂ , we reserve factor matrices A and C for feature extraction.
Now that we have the transformation matrices from HOSVD and the factor matrices from CP-ALS, we 

can compute the core tensor of any DTCWPT, ABP, or PPG tensor in the test set. We perform the follow-
ing to compute features for each individual j in the test set: Using the transformation matrices from HOSVD 
( UDTCWPT,UABP,UPPG ), core tensors are computed for DTCWPT, ABP, and PPG. Next, all of j’s tensors are 
stacked along mode 2 to build the new tensor Sj . Lastly, the factor matrices A and C from T’s CP decomposition 
are used to solve for B via least squares by minimizing

The optimal solution is calculated as

(8)H(k)(ejw) = H1(e
j2(k−1)w)

k−2
∏

m=0

H0(e
j2mw)

(9)H ′(k)(ejw) = −ej0.5wH
{

H(k)(ejw)
}

(10)T̂ =

r
∑

i=1

ai ⊗ bi ⊗ ci ⊗ di

(11)�X� =

√

∑

i1,...,im

(xi1...im)
2,

(12)�Sj − B(C ⊙ A)⊺�.

Table 2.  Tensors formed for each feature type.

Feature type Tensor dimensions

ECG 5× 6× 5

HRV 5× 6× 5

DTCWPT 5× 152× 5

ABP 5× 21× 5

PPG 5× 21× 5
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where S(2) is the mode-2 slice of tensor Sj , ⊙ is the Khatri-Rao product, and † is the Moore-Penrose 
 pseudoinverse23.

Machine learning. The ML models are created to predict an occurrence of the nine adverse events detailed 
in the Data section. in prediction windows 0.5, 1, 2, and 4 hours before the event. The training set consisted of 
Cohort 1 while the test set was Cohort 2 or 3 exclusively. The incidence rates of adverse events by cohort and 
prediction window are available in Table 3. Given that clinicians may want to detect more cases with adverse out-
comes at the risk of somewhat increased false positives, we balanced the training set to have a ratio of 0.35 to 0.65 
between positive and negative cases by discarding excess negative cases. No such adjustment was performed for 
the test sets. Patients without complete signals in the analysis windows (e.g., ECG signals with missing R peaks) 
were excluded. The respective sample size for each prediction window is available in Table 4.

Model training consisted of 3-fold cross-validation (CV) of Cohort 1 data to select optimal hyperparameters 
for each model using a validation set. Models were then trained on all three folds with the selected hyperpa-
rameters in Cohort 1, and tested against Cohort 2 and Cohort 3 data. This process was repeated 101 times, with 
shuffling of data across CV folds, for each model to obtain the mean area under the receiver operating charac-
teristic curve (AUROC).

Naive Bayes (NB) models with normal distribution were trained with no hyperparameter tuning, serving as 
the simplest baseline models.

Random forest (RF)  models24 were trained with varying numbers of trees (50, 75, or 100), minimum leaf 
size (1, 5, 10, 15, or 20), percentage of features to include for maximum number of splits (25, 50, 75, 100%), split 
criterion (Gini impurity or cross entropy), and number of predictors to sample ( [10, 100] in increments of 10) 
using grid search to select hyperparameters.

Support vector machines (SVM)25 were trained with a linear kernel via sequential minimal optimization. Grid 
search was used to determine the optimal box constraint C and scaling parameter γ , where C ∈ [10−7, 1012] and 
γ ∈ [10−12, 1012] consist of logarithmically-spaced values.

(13)B = S(2)(C ⊙ A)(A⊺A ∗ C⊺C)†,

Table 3.  Incidence rate of adverse outcomes in each cohort.

Prediction window (hrs) Cohort 1 Cohort 2 Cohort 3

0.5 0.174 0.212 0.905

1 0.187 0.283 0.900

2 0.166 0.234 0.813

4 0.158 0.190 0.750

Table 4.  Mean AUROC and standard deviation of the models. The means and standard deviations (SDs) of 
AUROC for models trained on the Cohort 1 (Cardiac Surgery) and tested on Cohorts 2 (Vascular Surgery) 
and 3 (Acute Non-cardiac Surgery). The n in each row represents the number of deterioration events (i.e., the 
sample size). The best performance in each prediction window is boldfaced.

Prediction window (hrs)

LUCCK RF NB SVM

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

(a) Cohort 1 - Cardiac Surgery Cohort (Training Set)

0.5 ( n = 423) 0.90 (0.01) 0.94 (0.01) 0.83 (0.02) 0.91 (0.01)

1 ( n = 466) 0.89 (0.01) 0.93 (0.01) 0.84 (0.02) 0.91 (0.01)

2 ( n = 426) 0.89 (0.01) 0.93 (0.01) 0.83 (0.02) 0.90 (0.01)

4 ( n = 414) 0.91 (0.01) 0.93 (0.01) 0.85 (0.02) 0.91 (0.01)

(b) Cohort 2 - Vascular Surgery Cohort (Test Set A)

0.5 ( n = 66) 0.94 (0.02) 0.94 (0.01) 0.82 (0.06) 0.91 (0.08)

1 ( n = 60) 0.94 (0.02) 0.94 (0.01) 0.83 (0.07) 0.91 (0.06)

2 ( n = 64) 0.92 (0.01) 0.94 (0.02) 0.88 (0.04) 0.92 (0.04)

4 ( n = 63) 0.90 (0.02) 0.92 (0.02) 0.87 (0.03) 0.90 (0.06)

(c) Cohort 3 - Acute Non-cardiac Surgery Cohort (Test Set B)

0.5 ( n = 21) 0.75 (0.13) 0.82 (0.15) 0.42 (0.03) 0.80 (0.15)

1 ( n = 20) 0.75 (0.12) 0.82 (0.10) 0.51 (0.09) 0.67 (0.16)

2 ( n = 16) 0.74 (0.08) 0.72 (0.16) 0.79 (0.07) 0.81 (0.16)

4 ( n = 12) 0.77 (0.09) 0.77 (0.15) 0.63 (0.10) 0.74 (0.14)
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Learning using concave and convex kernels (LUCCK) is a novel machine learning method developed in 
 201926. This method is designed to maintain the robustness and generalizability of performance with a smaller 
dataset. For a feature space of vectors x = (x1, ..., xn) ∈ R

n , there is a similarity function

where �i > 0 and θi > 0 . The range of � values used in hyperparameter optimization was [0.01, 0.1] in increments 
of 0.01, and the range of θ values was in [0.1,1.0], in increments of 0.1. We selected for � and θ via grid search.

Additionally, the mean Shapley  values27 of all features across all training data from the best performing model 
were obtained to provide the model explainability. The Shapely value of a given feature indicates the deviation 
of prediction from the average prediction caused by the feature.

Ethics declarations. The human data collection and use were approved by the University of Michigan’s 
Institutional Review Board (IRB) under HUM00092309. The informed consent was obtained and all experi-
ments in this study were performed in accordance with this approval.

Results
The AUROCs of each ML model are presented in Table 4.

Cohort 1 - training with cardiac surgery cohort. During training with Cohort 1, the RF models exhibit 
the highest AUROCs between 0.93 and 0.94 across all gaps, followed by the SVM (0.90–0.91) and LUCCK 
(0.89–0.91). The NB models achieve the lowest performance (0.83-0.85).

Cohort 2 - testing with vascular surgery cohort. The RF models achieve the highest AUROCs on 
testing with Cohort 2. The LUCCK models perform marginally better on Cohort 2 compared to the training set, 
achieving AUROCs similar to those of RF. The NB and SVM models also achieve AUROCs comparable with 
those obtained on the training set, with the NB models on 2- and 4-hour windows actually achieving higher 
AUROCs than their respective training sets. The NB and SVM models demonstrate higher SDs compared to the 
LUCCK and RF models.

Cohort 3 - Testing with acute non-cardiac surgery cohort. With Cohort 3, the overall performance 
is lower across all models. The RF models achieve the highest performance, with the models on 0.5- and 1-hour 
windows achieving AUROCs greater than 0.8. LUCCK models maintain mean AUROCs between 0.74 and 0.77 
across models on all windows, while the SVM’s AUROCs fluctuate to a larger extent, between 0.67 and 0.81. The 
NB models decline to the greatest extent, exhibiting an AUROC as low as 0.42 on the 0.5-hour window.

Shapley values for the best performing model. The best performing model was the 36th Random 
Forest model with the 0.5-hour gap (AUROC: 0.9698). In this model, 384 tensor-reduced signal features (41%) 
and 542 EHR features (59%) were used. The 10 features each with the most positive and most negative Shapley 
values are presented in Fig. 3. In this model, 5 out of 10 features with the most positive Shapley values and 1 out 
of 10 features with the most negative Shapley values are tensor signal features.

Discussion
In this study of postoperative deterioration events among three successively more heterogeneous cohorts of 
surgical patients, the incidence rates of a patient-level deterioration event were 16–19%, 19–28%, and 75–90%, 
respectively, although for Cohort 1, we adjusted the rate of positive cases to 35% during training. The best per-
forming models for each cohort yielded AUROCs of 0.94, 0.94 and 0.82, respectively, all for 0.5-hour prediction 
windows. Our study serves as a proof-of-concept that EHR data and physiologic waveform data may be combined 
to improve the early detection of postoperative deterioration events, even when trained on one surgical cohort 
and applied to other cohorts.

The predictive performance is well maintained throughout all prediction windows during training with 
Cohort 1; the RF models achieve the highest performance. With Cohort 2, likely due to smaller sample size, 
the SDs of AUROCs of the models tend to be higher than those of the training set. Nonetheless, these models 
achieve performance comparable to that achieved on the training set, with some models (especially LUCCK) 
even exceeding the mean AUROCs achieved in training. Overall, the models trained on Cohort 1 generalize 
extremely well to the Cohort 2.

When the models are tested on Cohort 3, the acute non-cardiac surgery cohort, the performance of all models 
decline. This is likely due to the paucity of samples in Cohort 3, which is a fraction of Cohort 2, let alone Cohort 
1; the SDs of the AUROCs are also much larger than their counterparts in Cohorts 1 and 2. The NB models 
suffer most from the performance decline, with models on 0.5- and 1-hour prediction windows performing 
near or worse than random guessing. Given the simplicity of the NB models, it is not surprising that they fail to 
generalize to a small dataset from a different surgical cohort.

On the other hand, the other three models maintain an acceptable performance for most prediction windows 
despite the paucity of data. The RF models achieve the highest AUROC with the 0.5- and 1-hour prediction 
windows at 0.82. The AUROC declines for the 2-hour prediction window to 0.72 but recovers to 0.77 at the 
4-hour prediction window. The SVM model displays even more fluctuation, with the highest AUROC of 0.81 

(14)Q(x) =

n
∏

i=1

(1+ �ix
2
i )

−θi
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on the 2-hour prediction window and lowest AUROC of 0.67 on the 1-hour prediction window. The LUCCK 
models maintain the most consistent range of performance, between 0.74 and 0.77 across all prediction windows, 
with generally smaller SDs than RF and SVM. LUCCK also does not experience a steep decline that the RF and 
SVM models show in the 1- and 2-hour prediction windows, respectively. It should also be noted that LUCCK’s 
generalization with Cohort 2 was the best among the four models, showing the largest increase in performance 
from training when tested on Cohort 2. Such findings are consistent with previous reports indicating that the 
LUCCK models are capable of demonstrating more robust and generalizable performance, especially when the 
number of samples is  small14,26, which is often the case with clinical data.

The Shapley values obtained from the best performing model indicate that both the signal and EHR features 
make meaningful contributions towards the prediction, as both categories of features are fairly represented in the 
lists of Shapley values with the highest magnitudes (Figure 3). A positive Shapley value indicates the importance 
of the feature with respect to the positive class (i.e., an occurrence of a deterioration event), while a negative 
value indicates the same for the negative class (i.e., the non-occurrence of a deterioration event). Also, we may 
also infer that the signal features are more represented in the marginal contribution towards the prediction of an 
occurrence rather than a non-occurrence of an adverse cardiovascular event, as indicated by the greater number 
of signal features with very positive Shapley values than very negative ones.

Figure 3.  Features with the most positive and most negative Shapley values, 10 each. Features whose 
names start with “ReducedTensor” are reduced tensor signal features. “Retro” denotes retrospective features 
(Supplementary Tables 1–4). “SubWin” followed by a number indicates the nth tumbling or retrospective 
window. The information on what each component means for each feature is available in Supplementary 
Tables 1–4. PLT: Platelet counts. DailyIntubation: Whether or not the patient has been re-intubated. Intubated: 
the patient’s intubation status. HR: Heart Rate. Milrinone: Milrinone infusion. Hgb: Hemoglobin. SpO2: 
Oxygen saturation. PH, MS, GA, HS and RS are the number of medications in the given category administered 
during the patient’s hospital stay. PH: Pharmaceutical aids/reagents. MS: Musculoskeletal medications. GA: 
Gastrointestinal medications. HS: Hormones/synthetics/modifiers. RS: Rectal (local) medications.
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A few predictive scoring systems for assessing mortality risks in the ICU patients have been developed in 
clinical settings. The APACHE II scoring system, which utilizes 12 physiological measurements, age, and previous 
health conditions from 5030 ICU patients in 13 hospitals to create a logistic regression model to predict hospital 
death, reported an AUROC of 0.86328.

The SAPS II scoring system, which utilizes 12 physiological variables, age, type of admission, and three 
underlying disease variables to create a logistic regression model predicting the hospital mortality based on 
12,997 ICU patients from 12 countries, reported an AUROC of 0.88 on the developmental dataset and 0.86 on 
the validation  dataset29.

The evaluation of Sequential Organ Failure Assessment (SOFA) scoring  system30, which utilizes physiological 
variables from various organ systems to assign a score between 0 and 24, demonstrated the highest AUROC of 
0.90 based on 352 patients when using the highest SOFA score taken during the entire ICU stay.

Our study differs from these studies in two major aspects: (1) We have included features derived from several 
digital signal processing (DSP) techniques performed on the physiological waveform data, and (2) our models 
are trained to predict other clinical deterioration events besides mortality, given that the ultimate form of these 
models is intended for real-time clinical monitoring in a CDSS. Despite being trained on just a few hundred 
cases, our best-performing models can achieve AUROCs between 0.90 and 0.94 for all prediction windows on 
Cohort 2. Although Cohort 3’s best performing models achieve a maximum AUROC of 0.82, we expect that 
such performance can be improved upon including additional quality physiological waveform data, given the 
largest sample size in this Cohort was 21.

Monitoring patients in the ICU for cardiovascular adverse events and complications is a crucial component 
of postoperative critical care. Early warning systems for patients predicted to be at risk of major cardiovascular 
complications in advance of clinicians’ attention can enable potentially life-saving interventions to be pursued 
before deterioration onset and significantly improve clinical outcomes. However, because different surgical 
procedures imply different underlying patient pathologies, along with varying levels of invasiveness and result-
ant derangements to organ systems, a CDSS for predicting postoperative adverse outcomes may be challenged 
by inadequate generalizability across a variety of surgical populations. In this study, we test the hypothesis that 
models trained on one surgical cohort may be successfully applied to other cohorts that underwent different 
surgical procedures, by training them on the cardiac surgery cohort and testing them on vascular and acute non-
cardiac surgery cohorts. The results obtained in this work suggest such generalizability and serve as a prototype 
for a CDSS where the ML models trained in one surgical cohort can be successfully applied to others.

Additionally, one should consider ensembles of different ML models in implementation of a CDSS, since no 
model definitively stands out as the best model in all cases. For example, in Cohort 3, RF has the highest perfor-
mance of 0.82 in the 0.5- and 1-hour prediction windows, SVM of 0.81 in the 2-hour window, and LUCCK of 
0.77 (which is equal to that of RF but with a smaller SD) in the 4-hour window.

As for limitations, sufficient data for training were only available for Cohort 1, allowing us only to train the 
models on Cohort 1 and test on Cohorts 2 and 3, but not vice versa. Adjusting the positive/negative case ratio to 
increase sensitivity may result in more false positives. Also, all cases in this study were from a single quaternary 
care center. The care processes and patient populations at other facilities can be substantially different. Another 
limitation is the few negative cases in Cohort 3, resulting in very high incidence rates of adverse events that are 
unlikely to be encountered in actual clinical settings. In future work, more non-cardiac surgical cases from other 
surgical care facilities would be needed to further increase the generalizability and robustness of these models. 
Also, our results must be interpreted with caution given that they were based on all surgical cohorts and may 
not necessarily extrapolate to non-surgical cohorts.

Conclusion
In this study, we utilized DSP techniques such as TS estimation and DTCWPT to generate features from physi-
ological waveforms. A novel tensor dimension reduction algorithm successfully reduced the feature space while 
still demonstrating translatable performance across different surgical cohorts. Four different types of ML models 
were trained on a cardiac surgery cohort and tested on different surgery cohorts. The RF models perform the 
best in terms of the AUROC, but LUCCK models maintain the most consistent range of performance, especially 
when the sample sizes are small. Our study suggests that ML models trained on a combination of waveform and 
EHR data of one group of surgical cases to predict life-threatening cardiovascular complications have potential 
to be successfully applied to other types of surgical cases, opening doors to the clinical decision support system 
enabling early detection of such events and timely interventions to improve clinical outcomes on a wide variety 
of surgical cases.

Data availability
The datasets generated or analyzed in this study were collected by Michigan Medicine. The University of Michi-
gan’s Innovation Partnerships (UMIP) office will handle potential charges/arrangements of the use of data by 
external entities, using such methods as material transfer agreements. The executable code developed in this 
work is available from the corresponding author upon UMIP approval.
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