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Automated image curation 
in diabetic retinopathy screening 
using deep learning
Paul Nderitu1,2*, Joan M. Nunez do Rio1, Ms Laura Webster3, Samantha S. Mann3,4, 
David Hopkins5,6, M. Jorge Cardoso7, Marc Modat7, Christos Bergeles7 & 
Timothy L. Jackson1,2

Diabetic retinopathy (DR) screening images are heterogeneous and contain undesirable non-retinal, 
incorrect field and ungradable samples which require curation, a laborious task to perform manually. 
We developed and validated single and multi-output laterality, retinal presence, retinal field and 
gradability classification deep learning (DL) models for automated curation. The internal dataset 
comprised of 7743 images from DR screening (UK) with 1479 external test images (Portugal and 
Paraguay). Internal vs external multi-output laterality AUROC were right (0.994 vs 0.905), left (0.994 
vs 0.911) and unidentifiable (0.996 vs 0.680). Retinal presence AUROC were (1.000 vs 1.000). Retinal 
field AUROC were macula (0.994 vs 0.955), nasal (0.995 vs 0.962) and other retinal field (0.997 vs 
0.944). Gradability AUROC were (0.985 vs 0.918). DL effectively detects laterality, retinal presence, 
retinal field and gradability of DR screening images with generalisation between centres and 
populations. DL models could be used for automated image curation within DR screening.

Diabetes mellitus (DM) affects 463 million people worldwide, with the prevalence estimated to rise to 700 million 
by  20451. Type 2 DM is the most common subtype affecting 90% of people with  diabetes2. Diabetic retinopathy 
(DR) affects 30% of type 2 and 56% of type 1  diabetics3 and is a leading cause of acquired vision loss in working 
age  adults2,4. Globally, DR is the fifth most common cause of blindness and the only one with an increased age-
standardised prevalence between 1990 and  20205.

DR screening using retinal photography aids in the early identification of sight-threatening DR (STDR), 
facilitating prompt referral and treatment which can reduce the risk of moderate visual loss by up to 50%6. In the 
UK, the Diabetic Eye Screening Programme (DESP) has been credited, in part, for the significant reduction in 
DR-associated sight-impairment7. However, the DESP is tremendously capital and labour intensive, costing more 
than £85 million per year in the England  alone8. Given the increasing prevalence of DM and resource intense 
nature of DR screening, there has been substantial interest in automated retina image analysis systems (ARIAS), 
especially using deep learning (DL) networks, due to their impressive performance in DR  classification9–12.

However, images must meet ARIAS specifications and quality requirements prior to analysis. In real-world 
DR screening programmes, large volumes of acquired images are affected by various factors including; capture 
technique (defocused, over/under exposed, artefacts), patient characteristics (limited pupil dilation, motion blur, 
media opacities) and other issues (non-protocol retinal fields and miscellaneous images)13. In the UK DESP, it is 
also customary to capture anterior segment views in patients who have co-pathology that affects the ability to take 
adequate retinal images (e.g., dense cataracts)14. The current curation process involves human assessment of image 
suitability prior to DR grading. With over 13 million images per year generated by the UK DESP, manual image 
curation is not a scalable solution. Therefore comprehensive, automated image curation systems are required and 
critically important to ensuring unsuitable images are excluded prior to manual or ARIAS-enabled DR grading 
as part of scalable clinical  deployments13,15. Automated image curation systems could also be useful at the point 
of capture by providing real-time feedback to camera operators which can reduce the incidence of low-quality 
images by up to 70%16,17. Finally, automated curation models could be beneficial for research by identifying suit-
able images from large, open-access datasets which often have variable quality images.
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Automating the curation of images captured during routine DR screening requires that systems identify four 
important characteristics: (1) laterality, (2) retinal presence (if images are retinal or non-retinal which includes 
anterior eye images), (3) retinal field (macula vs nasal vs other retinal fields) and (4) gradability (Fig. 1). Previous 
studies have explored the development of  laterality18–25, retinal  field18,22,23 and  gradability9,12,17,18,24–27 detection sys-
tems largely in isolation, with limited  research18 addressing the curation tasks in combination. Additionally, prior 
approaches required hand-crafted image pre-processing including feature  extraction28–33, object  detection34,35 
or  segmentation36–39. Finally, prior studies do not adequately describe patient  characteristics19–21,23–27, assess for 
model  bias9,12,17,18 or perform external  validation17,19,21,25. It is also unclear which image features are key drivers 
of model predictions for the curation tasks. To the best of our knowledge, comprehensive automated curation 
systems for concurrent laterality, retinal presence, retinal field and gradability detection have not been reported.

We aim to develop and validate single and multi-output DL networks that classify four image characteristics: 
laterality, retinal presence, retinal field and gradability for automated image curation using routinely captured 
images from the large, longitudinal, ethnically diverse South-East London DESP (SEL-DESP). We aim to explore 
model performance parity by stratifying results by demographic characteristics (age, sex, and ethnicity). Finally, 
image features which drive model predictions will be evaluated using integrated gradient pixel attribution maps 
for each of the curation tasks.

Results
The internal dataset was used for model development and internal testing. All 7743 images were used for later-
ality and retinal presence models, whilst 7369 images were used for retinal field and gradability models (after 
removing 374 non-retinal and unidentifiable laterality images). The external laterality and retinal presence model 
test set contained 1479 images, of which 1427 images were used for retinal field and gradability model testing 
after the removal of 52 non-retinal or unidentifiable laterality images (Fig. 2). Participant characteristics were 
mean (± standard deviation) age 63 ± 5 years, male 53%; type 2 diabetes 94%; mean diabetes duration 9 ± 8 years 
and STDR 4.1% for the routine digital diabetic eye screening dataset. These characteristics were matched fol-
lowing proportional sampling and splitting into training, tuning, and internal test datasets (Table 1) as were the 
contributions from individual DR screening sites (Supplementary Fig. S1). Image specifications for the internal 
and external datasets are shown in Supplementary Table S2.

Of the 7,743 internal dataset images, 50.7% were from right eyes and 4.8% were non-retinal. Only images 
which did not have any discernible anterior eye or retinal features were labelled as having an unidentifiable 
laterality (0.1%, 8 images). After removing non-retinal and unidentifiable laterality images, 7,369 retinal images 
remained of which, 91.1% were from macula or nasal fields, and 83.2% were gradable. The proportions of these 
curation characteristics were largely concordant following the partitioning of the dataset into training, tuning, 
and internal test sets. No participant characteristics were available for the external test datasets, however, internal 
and external datasets differed significantly with regards to STDR (4.2% vs 48.7%), macula (45.9% vs 74.2%), 
nasal (44.5% vs 11%) and ungradable (17.5% vs 28.6%) image proportions (Table 1 and Supplementary Table S3).

Figure 1.  Automated image curation criteria. Automated image curation requires the detection of (1) laterality, 
(2) retinal presence (retinal vs non-retinal images), (3) retinal field (macula vs nasal vs other retinal fields) and (4) 
gradability which allows for the selection of gradable, 2-field retinal images of identifiable laterality for manual 
or automated DR grading.
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Automated image curation model performance. Single-output model approach. Internal test. Lat-
erality area-under-the receiver operating characteristic (AUROC) for right, left and unidentifiable classes were 
0.994 (95% Confidence Interval: 0.991–0.997), 0.994 (0.991–0.997) and 0.980 (0.939–1.000), respectively. Reti-
nal presence AUROC was 1.000 (1.000–1.000) for the retinal class. Retinal field AUROC for macula, nasal and 
other retinal field classes were 0.994 (0.990–0.998), 0.995 (0.991–0.999) and 0.998 (0.997–1.000) respectively. 
Gradability AUROC was 0.986 (0.979–0.993) for the gradable class (Fig. 3).

External test. Laterality AUROC for right, left and unidentifiable classes were 0.894 (0.877–0.910), 0.888 
(0.871–0.906) and 0.689 (0.541–0.836), respectively. Retinal presence AUROC was 1.000 (1.000–1.000) for the 
retinal class. Retinal field model AUROC for macula, nasal, and other retinal field classes were 0.968 (0.960–
0.977), 0.960 (0.945–0.974) and 0.957 (0.946–0.968) respectively. Gradability model AUROC was 0.890 (0.873–
0.907) for the gradable class (Fig. 3).

Multi-output model approach. Internal test. Laterality and retinal presence AUROC were 0.994 (0.990–0.997, 
p vs single-output model: 0.739), 0.994 (0.990–0.997, p: 0.555) and 0.996 (0.988–1.000, p: 0.494) for right, left 
and unidentifiable classes respectively, with an AUROC of 1.000 (1.000–1.000, p: 0.739) for the retinal class. 
Retinal field and gradability AUROC were 0.994 (0.989–0.998, p: 0.497), 0.995 (0.991–0.999, p: 0.632) and 0.997 
(0.996–0.999, p: 0.075) for macula, nasal, and other retinal field classes respectively with an AUROC of 0.985 
(0.977–0.992, p: 0.361) for the gradable class (Fig. 4). To simulate real-world use and assess for error propagation 
from applying models sequentially, we used laterality labels from the laterality and retinal presence DL multi-
output model to flip left eye images to right eye orientation instead of using the ophthalmologist defined ground 
truth laterality label. Retinal field and gradability AUROC remained largely the same at 0.992 (0.988–0.997), 
0.991 (0.986–0.995) and 0.996 (0.994–0.998) for macula, nasal, and other retinal field classes respectively and 
0.983 (0.976–0.992) for the gradable class.

External test. Laterality and retinal presence AUROC were 0.905 (0.890–0.920, p vs single-output model: 0.07), 
0.911 (0.896–0.925, p: 0.002), 0.680 (0.594–0.765, p: 0.897) for right, left and unidentifiable classes respectively, 
with an AUROC of 1.000 (0.999–1.000, p: 0.271) for the retinal class. Retinal field and gradability AUROC were 
0.955 (0.945–0.965, p: < 0.001), 0.962 (0.949–0.976, p: 0.549), 0.944 (0.931–0.957, p: 0.012) for macula, nasal, 
and other retinal field classes respectively, with an AUROC of 0.918 (0.903–0.933, p: < 0.001) for the gradable 
class (Fig. 4). Using laterality model derived labels to horizontally flip left eye images, retinal field and gradabil-
ity AUROC were 0.914 (0.899–0.929), 0.936 (0.912–0.961) and 0.920 (0.904–0.936) for macula, nasal, and other 
retinal field classes respectively and 0.896 (0.880–0.913) for the gradable class.

Multi-output model internal test set performance stratified by demographic characteris-
tics. Laterality and retinal presence multi-output model sensitivity on the internal test dataset were compa-
rable after stratification by age group, sex, and ethnicity with the exception of laterality sensitivity which was 
marginally reduced for the ≥ 80 year age group (0.88 vs 0.96, Supplementary Table  S4). For some strata, due 
to the limited number of non-retinal samples, retinal presence specificity could not be estimated with a high 
degree of confidence. However, for subgroups with sufficient negative cases, retinal presence specificity did not 
vary significantly.

Retinal field and gradability sensitivity and specificity were similar between age, sex, and ethnicity groups 
for the multi-output model with the exception of gradability sensitivity/specificity for the ≥ 80 year age group 
(0.90/0.78 vs 0.97/0.86) and mixed ethnicity groups (0.90/0.67 vs 0.97/0.86). In addition, gradability specificity for 

Figure 2.  Study dataset flow chart.
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the Black ethnicity group was also marginally reduced (0.80 vs 0.86), but it should be noted that due to the lim-
ited ungradable images in some subgroups, the gradability specificity confidence intervals were relatively broad.

Multi-output model laterality and gradability internal test set performance stratified by retinal 
field. Laterality sensitivity and specificity for the multi-output model on the internal test dataset were ≥ 97% 
for macula and nasal fields and 93% for other retinal fields (Supplementary Table S5).

Gradability sensitivity for the multi-output model were high for macula and nasal fields (≥ 96%) but the 
specificity was lower at 76% and 69% respectively. The model had a high gradability specificity (98%) for other 
retinal fields indicating accurate detection these images as ungradable.

Pixel attribution maps. Single-output model integrated gradient pixel attribution map examples for the 
four curation tasks are shown in Fig. 5 (internal test) and Supplementary Fig. S5 (external test). Attribution maps 
for laterality detection demonstrate that the optic cup/disc and proximal retinal vasculature are the significant 
driver features amongst retinal images (Fig. 5a). Similarly, retinal images are distinguished by the presence of 
the optic cup/disc and vascular tree, whilst iris striations, conjunctival vessels, corneal reflections, caruncle, 
and tear meniscus are highlighted as important features for non-retinal (anterior segment) image identification 
(Fig. 5b). The optic cup/disc was also the main feature which was determinant to macula or nasal field predic-
tions (Fig. 5c). Finally, the optic cup/disc and vascular arcades were also important to the detection of image 
gradability, with the image edge highlighted in a fairly featureless ungradable image (Fig. 5d).

Table 1.  South-east London routine diabetic eye screening dataset characteristics. a Includes Indian, 
Bangladeshi, and Pakistani ethnic backgrounds, bIncludes any other asian background or Chinese, cIncludes 
any other ethnic group or Arab, Missing values: 15,665, 213, 32, 46, 517, 62, 72, N: Images, s.d. Standard 
deviation, DR: Diabetic retinopathy, STDR: Sight-threatening diabetic retinopathy.

Variable

Routine 
digital 
diabetic eye 
screening 
dataset
N = 1,558,175

Laterality and retinal presence dataset
N = 7,743

Retinal field and gradability dataset
N = 7,369

Train (70%)
N = 5446

Validation 
(10%)
N = 756

Internal test 
set (20%)
N = 1541

Train 
(70%)
N = 5193

Validation 
(10%)
N = 710

Internal test 
set (20%)
N = 1466

N (%) or mean 
(s.d.) N (%) or mean (s.d.) N (%) or mean (s.d.)

Age (years) 63 (15)

Representative 
proportional 
random sam-
pling

63 (15) 63 (15) 62 (15)

Non-retinal 
and unidentifi-
able laterality 
images 
removed 
(N = 374)

62 (15) 63 (14) 62 (15)

Sex Male 832,092 (53.4) 2533 (53.5) 389 (48.5) 832 (54.0) 2793 (53.8) 358 (50.4) 807 (55.0)

Ethnicity

White 779,971 (50.1) 2739 (50.3) 378 (50.0) 772 (50.1) 2615 (50.4) 355 (50.0) 749 (51.1)

Black 462,143 (29.7) 1627 (29.9) 212 (28.0) 462 (30.0) 1535 (29.6) 211 (29.7) 428 (29.2)

South  Asiana 100,861 (6.5) 354 (6.5) 45 (6.0) 99 6.4) 339 (6.5) 37 (5.2) 96 (6.5)

Other  Asianb 101,296 (6.5) 342 (6.3) 60 (7.9) 103 (6.7) 328 (6.3) 56 (7.9) 97 (6.6)

Mixed 41,038 (2.6) 148 (2.7) 13 (1.7) 37 (2.4) 140 (2.7) 16 (2.3) 35 (2.4)

Otherc 40,744 (2.6) 136 (2.5) 25 (3.3) 36 (2.3) 134 (2.6) 18 (2.5) 32 (2.2)

Not specified 32,122 (2.1) 100 (1.8) 23 (3.0) 32 (2.1) 102 (2.0) 17 (2.4) 29 (2.0)

Diabetes type

Type 2 1,456,971 
(93.5) 5122 (94.1) 709 (93.8) 1445 (93.8) 4868 (93.7) 667 (93.9) 1380 (94.1)

Type 1 95,728 (6.1) 317 (5.8) 46 (6.1) 91 (5.9) 317 (6.1) 41 (5.8) 84 (5.7)

Other 1842 (0.1) 2 (< 0.1) 1 (0.1) 2 (0.1) 3 (0.1) 1 (0.1) 0 (0)

Not Specified 3634 (0.2) 5 (< 0.1) 0 (0) 3 (0.2) 5 (0.1) 1 (0.1) 2 (0.1)

Diabetes duration (years) 9 (8)1 9 (8)2 9 (7)3 9 (8)4 9 (8)5 9 (8)6 9 (8)7

DR grade

No STDR 1,487,832 
(95.5) 5213 (95.7) 718 (95.0) 1474 (95.7) 4962 (95.6) 691 (97.3) 1412 (96.3)

STDR 64,125 (4.1) 215 (3.9) 33 (4.4) 64 (4.2) 223 (4.3) 19 (2.7) 54 (3.7)

Not Specified 5633 (0.4) 18 (0.3) 5 (0.7) 3 (0.2) 8 (0.2) 0 (0) 0 (0)

Laterality

Right – 2716 (49.9) 369 (48.8) 723 (46.9) 2561 (49.3) 330 (46.5) 721 (49.2)

Left – 2726 (50.1) 385 (50.9) 816 (53.0) 2632 (50.7) 380 (53.5) 745 (50.8)

Unidentifiable – 4 (< 0.1) 2 (0.3) 2 (0.1) – – –

Retinal pres-
ence

Non-retinal – 256 (4.7) 34 (4.5) 84 (5.5) – – –

Retinal – 5190 (95.3) 722 (95.5) 1457 (94.5) 5193 (100) 710 (100) 1466 (100)

Retinal field

Macula – – – – 2379 (45.8) 322 (45.4) 673 (45.9)

Nasal – – – – 2350 (45.3) 335 (47.2) 653 (44.5)

Other retinal 
field – – – – 464 (8.9) 53 (7.5) 140 (9.5)

Gradability
Ungradable – – – – 872 (16.8) 108 (15.2) 257 (17.5)

Gradable – – – – 4321 (83.2) 602 (84.8) 1209 (82.5)
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Figure 3.  Single-output model receiver operating characteristic curves. 1Test set size = 1541 images, 2Test set 
size = 1479 images, 3Test set size = 1466 images, 4Test set size = 1427 images. AUROC: area-under-the receiver 
operating characteristic curve, ORF: other retinal field.

Figure 4.  Multi-output model receiver operating characteristic curves. 1Test set size = 1541 images, 2Test set 
size = 1479 images, 3Test set size = 1466 images, 4Test set size = 1427 images. AUROC: area-under-the receiver 
operating characteristic curve, ORF: other retinal field.
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Discussion
To the best of our knowledge, this is the first four-in-one (laterality, retinal presence, retinal field and gradability) 
comprehensive automated DL curation system for images captured during routine DR screening. We developed 
two approaches for the automation of a four-label image curation system based using four sequential single-
output models or two multi-output sequential models, respectively. Models were validated in two datasets, an 
internal test set containing images sampled from a large, longitudinal, ethnically diverse, multisite DR screening 
programme in the UK, and an open-access external dataset containing images from a hospital-based DR dataset 
from Paraguay and a periocular dataset from Portugal. Both single and multi-output approaches demonstrated 
excellent performance on all the specific curation tasks in the internal test dataset, which generalised well to the 
external test set despite its more challenging and heterogeneous images. Multi-output models outperformed 
single-output models in left and gradability classification in the external dataset but with reduced macula and 
other retinal field detection. These results suggest that for some co-trained tasks, there may be performance and 
generalisation advantages to using multi-output DL models, but this may come at the cost of reduced perfor-
mance on other tasks. Additionally, however, multi-output models can simplify training and reduce inference 
time compared to using a multitude of individual single-output models. Figure 6 shows a proposed workflow for 
automated image curation whereby image laterality and retinal presence are initially identified, simultaneously in 

Figure 5.  Internal test single-output model pixel attribution maps. Integrated gradients pixel attributions: all 
models highlight the optic cup/disc within retinal images, especially model c. Models a, b and d also highlight 
the retinal vessels to varying degrees. Model b (non-retinal image) highlights the caruncle, lower tear meniscus, 
iris striations, conjunctival vessels, and corneal reflection. Model attributions relative to the true positive class in 
each image.
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the case of multi-output models. Non-retinal images which had an identifiable laterality were from the anterior 
eye. Identification of anterior eye images may be useful given recent work suggesting DL models can detect dis-
ease and systemic biomarkers using these  images40. After removing non-retinal images and those with unidentifi-
able laterality, retinal field and gradability classification is performed (simultaneously in the case of multi-output 
models), allowing for the selection of a pair of gradable macula and nasal images for onward manual or automated 
2-field DR grading. Modelling approaches and curation systems used in this study could also be applied to other 
clinical pathways reliant on colour photos where there is variability in imaged fields and gradability.

Laterality (right and left) internal/external test performance was competitive when compared to previous DL 
based approaches (AUROC: 1.00018, 0.99520, 0.98925, 0.97622, 0.92019, accuracy: 98.98%21, ≥ 98.623, sensitivity: left 
90.1% and right 91.6%24) despite the laterality model classifying both multifield retinal images and non-retinal 
(e.g., anterior eye) images, whereas prior approaches focused on macula or nasal field images alone. However, 
the laterality model also had excellent classification performance when stratified by retinal field (Supplemen-
tary Table S5). A reported DL model trained to classify laterality in anterior segment images alone achieved an 
AUROC of 0.99841. The classification of unidentifiable laterality images was excellent in the internal test set but 
reduced in the external dataset. This may be due to differences between datasets, with significantly more cases 
of advanced DR with obscuring retinal haemorrhages in the external test set. Reduced model performance may 
also be due to the limited number of examples were the laterality was unidentifiable (6 in the development dataset) 
which subsequently impacted generalisation to the external dataset. Images with misidentified laterality in the 
external dataset were all from other retinal fields, hence would likely be detected by retinal field or gradability 
models and subsequently excluded. Therefore, laterality misclassification minimally impacts downline image 
selection for subsequent DR screening.

Prior feature-based classification methods reported variable success in identifying non-retinal images (accu-
racy: 85.00%42, 99.54%43). In this study, retinal images were distinguished from non-retinal images extremely well 
in both the internal and external test sets using DL. This is very reassuring because these models would effectively 
safeguard against the selection of non-retinal images for downstream DR grading, which would otherwise be 
detrimental to ARIAS STDR  detection13.

Few studies have evaluated the detection of macula, nasal, and other retinal fields simultaneously. One study 
used a U-Net optic disc semantic segmentation and rule-based classification of the predicted mask with an overall 
accuracy of 99.0%23. Other studies focused on macula and nasal field classification alone, with the prerequisite 
that images were gradable, and reported an AUROC of 1.00018 and 0.95722. Bellemo et al., found model perfor-
mance generalised well between different ethnicity groups in concordance with our  findings22. Our retinal field 
model results, therefore, compare favourably to prior studies given the diversity of the development dataset which 
varied in imaging devices, locations, populations, and image quality.

Gradability definitions vary between studies and differ from current UK DR screening  guidelines14, making 
it challenging to compare results. However, internal test set performance are on par with previous DL-based 
approaches for gradability classification, with reported AUROC of 0.98718, 0.9809, 0.94725, 0.98626, 0.93417, 0.91427, 
and reported ungradable sensitivity of 81.3%24 and 70.9%12. Gradability sensitivity was excellent with good 

Figure 6.  Proposed curation workflow. (a) Images get predictions for laterality and retinal presence (values 
indicate model predictions between 0 and 1) allowing for the exclusion of non-retinal images (e.g., anterior 
segment). (b) Images obtain retinal field and gradability predictions which allows for the exclusion of other 
retinal field images and for the selection of gradable images from macula or nasal fields by selecting the image 
with the highest gradable score (underlined). (c) The ‘best’ macula and nasal field with an identifiable laterality 
are then selected; these gradable, 2-field images are then suitable for subsequent manual or automated diabetic 
retinopathy grading. R: Retinal presence, OS: Left eye, N: Nasal, M: Macula, ORF: Other retinal field, G: 
Gradability.
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specificity when stratified by retinal field (Supplementary Table S5). There was high gradability specificity for 
other retinal fields indicating the gradability model accurately detects these ungradable images. Differences in 
performance between the internal and external sets are likely due to higher STDR (49.8% vs 3.7%) and ungradable 
(28.6% vs 17.5%) images in the external dataset which were associated with significant higher levels of image 
obscuration (e.g., from DR-associated vitreous haemorrhage or advanced cataract). We evaluated real-world use by 
simulating the sequential application of the laterality model to obtain laterality labels which we use to horizontally 
flip left eye images for the retinal presence and gradability model. We found almost identical internal test perfor-
mance and a minimal reduction in external test performance (0.02–0.04 AUROC difference) compared to using 
ophthalmologist defined laterality labels, indicating low error propagation from applying models sequentially.

Prior studies have not evaluated for image curation model performance parity with respect to age, sex, and 
ethnicity. It is important to examine for disparity in DL model outputs to ensure that systems deployed in clinical 
practice do not unduly introduce or reinforce  biases44. Importantly, we ensured that our internal development 
and testing datasets were representative of the source DR screening population, to reduce the risk of introducing 
biases during model training. The automated curation models demonstrated equal sensitivity between groups 
for all curation tasks, with the exception of the ≥ 80 year age group. Reduced laterality and gradability sensitivity 
performance in this group may be explained by the potentially higher occurrence of cataract or other media 
opacities, which adversely affect image quality and subsequently degrade the clarity of image features used by 
models to classify laterality and gradability.

Similarly, few studies have evaluated image features which are the key drivers for curation model predictions. 
Jang et al. and Rim et al. analysed class activation maps and found that the optic disc and proximal retinal vascu-
lature were important features for laterality classification, in agreement with our  observations21,23. Uniquely, we 
also found that the optic disc and retinal vasculature have the greatest influence on model predictions for retinal 
presence, retinal field and gradability classification. This finding supports the strategy of using a multi-output 
model, given the shared features between the curation tasks. Attribution maps also reveal that models learned 
to use distinctive features (conjunctival vessels, corneal reflections, tear meniscus, and caruncle) to distinguish 
anterior eye from retinal images. Interestingly, despite significant differences in the imaged periocular area of 
the non-retinal external test set, attribution maps demonstrated that the retinal presence models utilized similar 
image features (corneal reflections and conjunctival vessels) to the internal test set to generate predictions for 
periocular images.

This study improves upon prior approaches in a several aspects. The study source dataset is a large, longitu-
dinal, ethnically diverse, multisite DR screening programme, which therefore captures the variations that exist 
in participant demographics, screening sites, imaging techniques, and devices. The source DR screening dataset 
was proportionally sampled to ensure participant diversity was maintained, and the sampled dataset was reflective 
of the routine DR screening population. We described in detail key image, participant, and disease characteris-
tics (e.g., STDR) for each step of model training, validation, and testing. Model performance was assessed with 
respect to important demographic characteristics to evaluate for discriminatory effects, a critical requirement 
for automated curation systems that would be deployed in heterogenous clinical  populations44.

Study limitations are the lack of multiple graders or repeat grading which precluded the ability to assess inter/
intra-grader performance or adjudication in cases of disagreement. In our prior study which developed curation 
DL models for handheld non-mydriatic retinal images from community-based DR screening, the intra-grader 
agreement was (Kappa) 0.78/0.94 with an inter-grader agreement of 0.59 for gradability in a challenging data-
set, therefore, a similar or better level of agreement would be expected in this study given the use of mydriatic, 
desktop retinal  imaging45. Further limitations are the limited development samples within the unidentifiable 
laterality class and lack of a single source external test dataset of routine DR screening multifield, and variable 
quality retinal and non-retinal images for additional validation. Although significant care was taken to propor-
tionally sample images for model development with regard to important participant characteristics, imbalance 
in other attributes may remain and the relatively conservative sample size may not capture the full distribution 
of images which occurred within the whole source DR screening dataset.

Our results demonstrate that DL systems can be used for the comprehensive, automated curation of images 
captured during routine DR screening, with generalisation across populations and sites. Study approaches based 
on sequential classification DL models perform well despite significant differences in imaging devices, DR sever-
ity and DR screening protocols. Developed DL models could enable the automated curation of large image sets 
which are routinely captured within DR screening in support of downstream manual or ARIAS-driven DR 
grading. Study approaches for automated image curation are also of relevance to other clinical pathways with 
large, heterogeneous fundus image datasets. Future prospective clinical validation studies should evaluate the 
efficacy of automated image curation and subsequent effects on DR severity grading. Future studies should also 
evaluate if on-imaging-device feedback from developed automated image curation models improve the quality 
of images captured in routine DR screening and effects on subsequent STDR detection as well as performance 
of the curation models in non-DR screening datasets.

Methods
This study was conducted in accordance with the tenets of the Declaration of Helsinki. UK Health Research 
Authority approval and a favourable ethical opinion from the UK East Midlands Leicester South Research Ethics 
Committee were attained prior to study commencement (20/EM/0250, 6/October/2020). The need for informed 
consent was waived by the favourable ethical opinion. Study data were anonymised prior to extraction, however, 
participants who previously objected to the use of their data for research were excluded.
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Internal dataset. Digital images taken between September 2013 to December 2019 across 27 different DR 
screening sites of SEL-DESP were eligible for inclusion. Images were captured after mydriasis (1% tropicamide) 
within hospitals and community settings, such as opticians. Characteristics data were collected including year 
of birth, sex, ethnicity, diabetes type, diabetes duration and final retinopathy/maculopathy grade. All screening 
procedures including image capture, DR grading and initial data collection, were performed by trained SEL-
DESP graders as part of routine DR screening using established  protocols46. STDR was defined as referable DR 
(R2 or R3A, moderate or worse DR) with or without referable maculopathy (M1) as per the UK national screen-
ing committee  criteria46; retinopathy and maculopathy grading definitions are summarised in Supplementary 
Table S6. A total of 1,558,175 images from 102,828 patients attending routine DESP screening were extracted.

Ground-truth creation. A representative random sample of 7,743 images (Fig. 2a) was manually labelled 
for laterality (right, left, unidentifiable) and retinal presence (retinal, non-retinal [includes anterior eye and miscel-
laneous images]). Images which had an identifiable laterality (right or left) and were retinal subsequently under-
went labelling for retinal field (macula, nasal, other retinal field) and gradability (gradable, ungradable). There-
fore, the retinal field/gradability dataset was a subset of the total study dataset and included retinal images of 
known laterality. All labelling was performed by an experienced ophthalmology fellow trained in DR grading. A 
custom labelling app (Supplementary Fig. S6) was created to ensure there was a consistent grading environment 
and to maximise the robustness of the labelling process. Definitions used for the creation of the ground truth 
labels are presented in detail in the Supplementary Information, with examples shown in Supplementary Fig. S7.

External test dataset. An external dataset comprised of a composite of 1,479 images was created by com-
bining two sources to overcome the lack of open-access datasets that include both non-retinal and multi-field 
retinal images. A sample of 42 non-retinal images from the UBIRIS periocular dataset (Portugal)47 were ran-
domly selected to ensure that when combined with the 1,437 retinal images from Universidad Nacional de 
Asunción hospital DR dataset (Paraguay) (Fig. 2b), the percentage of non-retinal images (2.8%) was propor-
tional to the internal dataset (4.8%) but with a degree of residual variation in order to construct a challenging 
test  dataset48.

Model development. The internal dataset was randomly split into 70% for training, 10% for validation and 
20% for internal testing at the patient-level. All internal dataset images were used in laterality and retinal pres-
ence model development and testing. Thereafter, non-retinal images and those without an identifiable laterality 
were removed prior to the development and testing of retinal field and gradability models.

Patients included in the train/validation/internal testing sets differed between laterality/retinal presence 
and retinal field/gradability datasets. However, their characteristics were comparable, and representative of the 
source population as shown in Table 1. Four single-output DL models were developed which classified lateral-
ity, retinal presence, retinal field or gradability respectively. Two multi-output DL models were also developed 
which simultaneously identified laterality and retinal presence or retinal field and gradability. Multi-output 
models were grouped by laterality/retinal presence and retinal field/gradability tasks given the synergy between 
latter tasks (i.e., a gradable image must be from a macula or nasal field). Multi-output models are advantageous 
because of touted improvements in regularisation and generalisation with multi-task  training49, and because at 
deployment, only two multi-output models are required for automated curation instead of four single-output 
models, which significantly reduces inference time.

EfficientNet-V1-B0 with ImageNet weight initialisation was used as the feature extractor (encoder), followed 
by an untrained, randomly initialised classification network with 3 × 3 depth-wise separable 2D  convolutions50, 
batch  normalisation51 and flattened feature layers prior to a final dropout  layer52 and classification node. Using 
pre-determined optimal hyperparameters, models were trained with a batch size of 32 for a maximum of 60 
epochs with an exponentially decaying learning rate after 2 epochs, with early stopping criteria when there was 
a 3-epoch plateau in the validation set AUROC (single-output models) or loss (multi-output models). EfficientNet 
model weights were frozen until validation set metrics reached a plateau, then unfrozen until either the maximum 
epoch or early termination conditions were met. The model with the maximum validation set AUROC (single-
output models) or minimum loss (multi-output models) during training were selected for testing. Models were 
developed on × 2 P6000 NVIDIA GPUs using python (v3.8.2) and Tensorflow (v2.5.0) open-source libraries. 
Image pre-processing and additional model development details are discussed in the Supplementary Information 
and the multi-output model architecture is shown in Supplementary Fig. S8.

Pixel attribution maps. Integrated gradients, an axiomatic feature attribution method, were used to ascer-
tain image pixels which were most influential to model  predictions53. A ‘heatmap’ of per pixel attributions rela-
tive to the target class were computed and displayed both in isolation and overlayed on a grayscale version of 
the original image, allowing for a subjective comparison of pixel attributions and image features. Single-output 
model integrated gradient pixel attribution map examples for the four curation tasks are shown in Fig. 5 (internal 
test) and Supplementary Fig. S5 (external test).

Statistical analysis. Receiver operating characteristic (ROC) curves and AUROC were used to summa-
rise model performance, with multi-output ROC/AUROC computed using a one-vs-all strategy. Mid-operating 
point (threshold 0.5) and largest prediction index (argmax function) for binary and multiclass labels respectively 
were used to compute multi-output model sensitivity and specificity stratified by age, sex, and ethnicity to assess 
for performance equivalence within subgroups. Confidence intervals for the AUROC and sensitivity/specificity 
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were estimated using the  Delong54 and exact Clopper-Pearson55 methods, respectively. Delong’s test was used 
to compare single and multi-output AUROC in the internal and external test datasets with a significance level 
of p ≤ 0.0554. Dataset characteristics are reported as means and standard deviations for continuous variables or 
counts and proportions for categorical variables with analyses performed using SPSS (v27), IBM, Chicago, Illi-
nois and statsmodels (v0.12.2) open-source python library.

Data availability
The external test datasets are freely accessible, and links are provided in Supplementary Table S2 with associated 
ground truth labels from this study available at https:// github. com/ pnder itu/ DUK_ Autom ated_ Curat ion. git.

Code availability
The code used to train, tune and test single and multi-output Tensorflow models are available from https:// github. 
com/ pnder itu/ DUK_ Autom ated_ Curat ion. git.
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