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Examination of sub‑harmonic 
responses along with various initial 
conditions induced by multi‑staged 
clutch damper system
Jong‑Yun Yoon1 & Byeongil Kim2*

Using the harmonic balance method to investigate the nonlinear dynamic behaviors pertaining 
to sub‑harmonic responses is difficult compared with that of super‑harmonic cases because of 
the limitations of the HBM. Since sub‑harmonic motions differ under various initial conditions, 
difficulties can arise when this method is used to calculate all possible solutions within sub‑harmonic 
resonances. To explore complex dynamic behaviors in sub‑harmonic resonant areas, this study 
suggests mathematical and numerical techniques to estimate sub‑harmonic responses depending 
on various initial conditions. First, sub‑harmonic responses are calculated under various excitation 
conditions relevant to the sub‑harmonic input locations of the HBM formula. Second, the HBM results 
are verified by comparing them with the results of the numerical simulation (NS) under various initial 
conditions with respect to different frequency up‑sweeping paths. Finally, the positive real part of the 
eigenvalues is examined to anticipate bifurcation characteristics, which reflect the relevance of the 
complex dynamic behaviors in the eigenvalues’ unstable solutions. Overall, this study successfully 
proves that the techniques and methods described are suitable for examining complex sub‑harmonic 
responses, and suggests basic ideas for analyzing nonlinear dynamic behaviors in sub‑harmonic 
resonances using the HBM.

Nonlinear dynamic responses observed in a practical system, as illustrated in Fig. 1, reflect various types of 
dynamic phenomena, generally called super- and sub-harmonic, periodic, quasi-periodic, and chaotic. These 
responses are normally signified by various types of bifurcations in super- and sub-harmonic resonant areas. 
Complex nonlinear dynamic behaviors in sub-harmonic resonances are particularly difficult to find, relative 
to other resonances such as primary and super-harmonic areas, when the harmonic balance method (HBM) is 
employed.

The methods for solving complex nonlinear problems using the HBM have been reported for  decades1–21. 
For example, Peng et al. implemented nonlinear output frequency response functions (NOFRFs) in strong 
nonlinear equations by applying the Volterra series to extend the classic frequency response function (FRF) to 
a nonlinear  case1. Al-shyyab and Kahraman investigated sub-harmonic and chaotic motions in a multi-mesh 
gear train using a nonlinear time-varying dynamic  model2. Here, nonlinear dynamic motions were simulated 
with the multi-term harmonic balance method and correlated with the direct numerical integration results. 
Chen et al. used the incremental harmonic balance (IHB) method to investigate the limit cycle oscillation of a 
two-dimensional airfoil with parameter variability in an incompressible  flow3, and further utilized the IHB to 
estimate the strong nonlinear cubic stiffness, subject to either (1) non-probability but bounded uncertainty, or 
(2) bounded stochastic parameters. Kim et al. proposed and verified a multi-term harmonic balance method by 
including adaptive arc-length continuation and stability calculation  capabilities4, which aided them in developing 
nonlinear frequency response calculations of a torsional system with clearance-type nonlinearity. Miguel et al. 
suggested the closed-form solutions for the Bouc-Wen and LuGre models by developing a smoothing procedure 
with the harmonic balance  method5. The bifurcation analysis techniques with the employment of the harmonic 
balance method were suggested by Detroux et al. and Xie et al.6,7. The basic mathematical models of the harmonic 
balance method by using Galerkin forms were investigated by the prior  researches8–11. Masiani et al. suggested 
masing model to analyze the hysteretic behavior of the elements with the multi-component harmonic balance 
 method12. Raghothama and Narayanan investigated the bifurcation and chaos which occur in geared rotor 
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bearing and piecewise nonlinear stiffness systems by using the incremental harmonic balance  method13,14. Shen 
et al. established the dynamic model of a spur gear pair by including the backlash, time-varying stiffness and static 
transmission  error15. Wong et al. presented the nonlinearities in the restoring force under the unsymmetrical 
piecewise-linear  stiffness16. To determine the stability of system responses, the Hill’s method was suggested and 
 employed17,18. Comparin and Singh suggested the driveline model embedded by the clearance type nonlinearities 
and investigated its complex system  responses19. Sundararajan and Noah examined the nonlinear responses in 
rotor systems by employing shooting/arc-length continuation  method20,21.

However, some difficulties remain in capturing the complex motions of sub-harmonic responses, especially 
when their dynamic behaviors differ depending on various initial conditions. Thus, to investigate sub-harmonic 
responses, the sub-harmonic index must be used, and basic matrix formulae are  constructed8,18. To capture 
sub-harmonic responses, further techniques must be utilized, such as numerical modification of the input 
 conditions18. This study expands upon the theoretical and numerical methodology of prior studies which could 
not clearly determined the sub-harmonic responses, by investigating the nonlinear dynamic behaviors in sub-
harmonic resonant areas sensitive to initial conditions using the  HBM8. The specific objectives are as follows: 
first, to investigate nonlinear dynamic motions under various input excitation conditions when the sub-harmonic 
input components of the HBM are artificially defined; second, to verify sub-harmonic responses of the HBM by 
comparing the numerical simulation (NS) under various initial conditions and different frequency up-sweeping 
paths; and finally, to examine the eigenvalues’ unstable solutions for bifurcation characteristics, which will provide 
a guide for anticipating bifurcation characteristics while the stability conditions are determined simultaneously 
based on the Hill’s method. Therefore, understanding the dynamic behaviors at sub-harmonic resonance areas 
will give the reasonable insights to resolve the severe vibrational problems such as gear rattle under the vehicle 
coast  conditions8,22. To analyze these main issues, this study focuses on a torsional system with one degree-of-
freedom (DOF) affected by piecewise-type nonlinearities, as presented in Fig. 2. This system has been simplified 
from the physical system shown in Fig. 1.

Figure 1.  A physical driveline system based on the front-engine and front-wheel layout with multi-staged 
clutch  dampers22.

Figure 2.  A single-degree-of-freedom system with piecewise-type nonlinearities based on a physical system: (a) 
a nonlinear torsional system model with one DOF; (b) Torque TC(δ1) profile for a multi-staged clutch  damper8.
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Physical system and its problem formulation
Physical system and its modeling. Figure 1 illustrates a physical driveline system based on the front-
engine and front-wheel (FF)  layout22. The entire system can be considered to have three main parts: the engine, 
which is the power generating system; the multi-staged clutch dampers, which operate as the vibration isola-
tor; and the transmission and driveline subsystems, which transfer the torque from the engine into the wheel. 
Assuming the inertia value of the transmission and driveline systems’ lumped mass is relatively higher than the 
engine inertia, the physical system can be simplified to a single DOF system, as illustrated in Fig. 2a8,22. The 
multi-staged clutch dampers have the properties listed in Table 18,22, and are the main nonlinearities for the 
system, whereas the transmission and driveline systems are assumed as the ground. Using the values provided in 
Table 1 which were measured from the clutch damper experimental setup, the clutch torque profile is drawn, as 
shown in Fig. 2b. Therefore, based on prior studies, the nonlinear one DOF torsional system can be considered 
a part of the driveline by focusing on the rotational motion observed in the crankshaft and flywheel’s lumped 
mass with multi-staged clutch  dampers8,22,23. In this study, the inertia of the flywheel and crankshaft’s lumped 
mass, If  = 1.38 ×  10−1 kg  m2, and viscous damping, cf = 1.59 N m s/rad8 were the parameters implemented for the 
torsional system shown in Fig. 2a, and the input torque, TE, drag torque, TD, and clutch torque, fn

(

θf , θ̇f
)

 define 
the additional parameters. Here, θf  and θ̇f  are the angular displacement and velocity of the flywheel (subscript f), 
respectively, as indicated in Fig. 2a. Here, the employed system parameters are measured and given based on the 
manual transmission type of driveline  system23.

Development of a mathematical model with piecewise‑type nonlinearities. The equation of 
motion for the one DOF system shown in Fig. 2a is derived as follows:

Here, fn
(

θf , θ̇f
)

 is the nonlinear function, which will be explained in terms of piecewise-type nonlinearities. 
TE(t) and TD are the sinusoidal input and drag torque, respectively. The excitation of the system in terms of its 
input torque is given by Fourier coefficients from the measured data as follows:

Here, Tm and Tpi are the mean and alternating parts of the input torque, respectively; ωp and ϕpi are the excita-
tion frequency and phase angle, respectively; and Nmax is the maximum number of harmonics correlated to the 
harmonic index of the HBM. The input torques are described using the properties listed in Table 2 and, assum-
ing the system is under steady-state conditions, the drag torque can be expressed as TD = Tm, also the employed 
number of alternating part of toque is 1 with Tpi (i = 1). Here, the torque profile employed as shown in Table 2 
is measured from the engine dynamometer setup under the WTO (wide open throttle) conditions based on the 
4-cylinder  engine23.

In addition, the clutch torque is dependent on various factors, while the input torque is transferred from the 
engine into the rest of the driveline  system8. The basic profile of piecewise-type nonlinearities induced by multi-
staged clutch dampers is shown in Fig. 2b, where kCi (i = 1,2,3,4) indicates the stage of stiffness. The main factors 
to consider for the clutch torque are the clutch torque TS from multi-staged linear springs, a second clutch torque 
TH from the dry friction between the clutch plate and friction materials, and the total preload effect TSPr due to 

(1)If θ̈f (t)+ cf θ̇f (t)+ fn
(

θf , θ̇f
)

= TE(t)− TD

(2)TE(t) = Tm +

Nmax
∑

i=1

Tpicos
(

iωpt + ϕpi
)

Table 1.  Properties for the piecewise type nonlinearities based on the practical  system8,23.

Property Stage Value

Torsional stiffness, kCi
(Linearized in a piecewise manner)
(Nm/rad)

1 10.1

2 61.8

3 595.8

4 1838.0

Hysteresis, Hi (Nm)

1 0.98

2 1.96

3 19.6

4 26.5

Transition angle at positive side
(θf > 0), φpi (rad)

1 0.05

2 0.16

3 0.30

4 0.39

Transition angle at negative side (θf <  0), φni (rad)

1 − 0.04

2 − 0.05

3 − 0.09

4 − 0.15
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design concepts under various practical conditions. The mathematical model of nonlinear torque fn
(

θf , θ̇f
)

 (or 
TC) can be derived from prior  studies8,22,23. First, the clutch torque TS

(

θf
)

 from the stiffness with a smoothing 
factor σC of 1× 103 is described as follows:

where kC(N) (or kC(i)) is the Nth (or ith) stage of the clutch stiffness (with subscript N or i), Tsp(i) (or Tsn(i)) is the 
positive (or negative) side of the clutch torque induced by the stiffness at the ith stage (with subscript p or n), and 
φp(i) (or − φn(i) ) is the ith transition angle of the positive (or negative) side. Second, the clutch torque TH induced 
by dry friction is derived with a smoothing factor σH of 0.1.

where HN (or H(i)) is the Nth (or ith) stage of hysteresis (with subscript N or i), and THp(i) (or THn(i)) is the positive 
(or negative) side of the clutch torque induced by hysteresis at the ith stage (with subscript p or n). In addition to 
calculating the torque using Eqs. (3) and (4), the preload TPri (subscript i = 1(or 2) for the positive (or negative) 
value) must be considered as a function of θ1pr.

Here, TSPr is the total clutch torque induced by the preload, TPr1 (or TPr2) is the positive (or negative) torque 
induced by the preload, and φPr is the angle located at the preload. Thus, the total clutch torque is estimated by 
the summation of TS

(

θf
)

 , TH

(

θf , θ̇f
)

 , and TSPr

(

θ1pr
)

 from Eqs. (3)–(5), as follows:

Figure 2b shows the physical clutch torque profile well obtained using Eqs. (3)–(6).

Development of the HBM model based on the Galerkin scheme. The Galerkin scheme in Eq. (1) 
can be expressed as  follows8,22:

Its relevant terms are defined as follows:

(3a)TS

(

θf
)

= kC1θf +
1

2

N
∑

i=2

(

kC(i) − kC(i−1)

)(

Tsp(i−1) − Tsn(i−1)

)

,

(3b)Tsp(i) =
(

θf − φp(i)
)[

tanh
{

σC
(

θf − φp(i)
)}

+ 1
]

,

(3c)Tsn(i) =
(

θf + φn(i)
)[

tanh
{

σC
(

θf + φn(i)
)}

− 1
]

,

(4a)TH

(

θf , θ̇f
)

=
H(N)

2
tanh

(

σH θ̇f
)

+

N
∑

i=2

(

H(i)

4
−

H(i−1)

4

)

[

THp(i−1) + THn(i−1)

]

,

(4b)THp(i) = tanh
{

σC
(

θf − φp(i)
)}[

1+ tanh
(

σH θ̇f
)]

,

(4c)THn(i) = tanh
{

σC
(

θf + φn(i)
)}[

1− tanh
(

σH θ̇f
)]

,

(5a,b)TSPr

(

θ1pr
)

=
1

2
TPr1

[

tanh
(

σCθ1pr
)

+ 1
]

+
1

2
TPr2

[

−tanh
(

σCθ1pr
)

+ 1
]

, θ1pr = θf − φPr .

(6)fn
(

θf , θ̇f
)

= TC

(

θ1pr , θ̇1pr
)

= TS

(

θ1pr
)

+ TH

(

θ1pr , θ̇1pr
)

+ TSPr

(

θ1pr
)

.

(7)−ω2mHP′′θc + ωcHP′θc + fn
(

θf, θ̇f
)

− FE(t) = 0

(8a,b)θf(t) = Hθc, θf(t) =
[

θf(t0) θf(t1) · · · θf(tm−2) θf(tm−1)
]T
,

(8c)θc =
[

θm θa(1) θb(1) · · · θa(k) θb(k) · · · θa(ηNmax) θb(ηNmax)

]T
,

Table 2.  Employed input torque profiles from the engine dynamometer test.

Torque Component

Magnitude 
(Nm)

Phase (rad)Tm Tp1

168.9 251.5 − 1.93
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Further, the nonlinear and input functions are defined as follows:

Within these equations, the relevant variables include ̟ t = ψ , the nondimensionalized time scale; 
̟ = ω/ωn , the normalized frequency value with a natural frequency of ωn ; T = ητ , the concerned time 
period with respect to 0 ≤ t < T → 0 ≤ ψ < 2π/ωn ; η , a sub-harmonic index; τ , a fundamental excitation fre-
quency; and k, the incremental index defined by k = ωn, 2ωn, 3ωn . . . . By employing the relationship between 
θ̇ (t) = dθ

dt = ̟ dθ
dψ = ̟θ ′ and θ̈ (t) = ̟ 2θ ′′ , the overall Galerkin scheme of Eq. (7) is expressed as follows:

To determine the solutions of θc and ̟  for each step, the Newton–Raphson method was implemented under 
the condition � → 0 , where �  is considered as a function of θc and ̟  such that �

(

θc,̟
)

 . Prior studies can be 
referred to for more derivation and descriptions on the  HBM8.

Investigation of sub‑harmonic responses under the frequency up‑sweeping condition. Fig-
ure  3 shows a comparison of the HBM and NS which was also studied in the prior  study8. The HBM was 
conducted with η = 2 and Nmax = 12 under the frequency up-sweeping condition, Hill’s method was utilized to 
determine the stability  condition4,8,17,24, and the valid components of the input torque vector were expressed as 
Fm = 168.9 , Fa(2) = −87.97 , and Fb(2) = 235.65 in Eq. (9d)8,22,23. Figure 3 also presents a correlation between 
the simulations resulting from the HBM and NS; however, the outcome of both at the sub-harmonic region 
marked with a red dotted line, as shown in Fig. 3b, are not matched with each other; the NS results simulate the 
sub-harmonic resonance well, while the HBM follows the normal harmonic response path with an indication 
of instability.

Based on a previous  study18, numerical techniques must exist to determine sub-harmonic resonant behaviors; 
hence, to reveal these sub-harmonic responses, the input torque values pertaining to the sub-harmonic locations, 
such as Fa(1) and, Fb(1) were given by Fa(1) = εFa(2) and Fb(1) = εFb(2) . Here, 1× 10−5 is artificially employed for 
ε to avoid triggering the system responses corresponding to the normal input torque. Figure 4a shows that the 
simulated results successfully included sub-harmonic resonances marked with blue dotted circles. In general, 

(8d)H =













1 · · · cos (kψ0) sin (kψ0) · · ·

1 · · · cos (kψ1) sin (kψ1) · · ·

. . .
. . .

1 · · · cos (kψN−2) sin (kψN−2) · · ·

1 · · · cos (kψN−1) sin (kψN−1) · · ·
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(9a,b)fn
(

θf, θ̇f
)

= Hfnc, FE(t) = HFEc

(9c)fnc =
[

fm fa(1) fb(1) · · · fa(k) fb(k) · · · fa(ηNmax) fb(ηNmax)

]T
,

(9d)FEc =
[

Fm Fa(1) Fb(1) · · · Fa(k) Fb(k) · · · Fa(ηNmax) Fb(ηNmax)

]T
.

(10a,b)H� = 0,� = −̟ 2mP′′θc +̟ cP′θc + fnc − FEc = 0

Figure 3.  Nonlinear frequency response with RMS under frequency up-sweeping stability conditions: (a) 
comparison of the HBM with NS; (b) comparison of the HBM and NS at sub-harmonic resonance. Key: Blue 
Open circle, NS with frequency up-sweeping; Green plus, NS with frequency down-sweeping; Black line, HBM 
result; Red times, HBM result under the unstable  condition8.
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the unstable conditions of the HBM are closely related to complex dynamic behaviors, such as super- or sub-har-
monic resonances and bifurcations. However, the stable conditions always indicate responses from the practical 
system that follow their relevant excitation harmonics such as in Fig. 4b, where a specific region under the stable 
condition is observed around the concentrated sub-harmonic resonance area at ̟ = 1.22 . To examine its non-
linear dynamic behaviors, a NS was conducted by artificially applying the initial conditions, θf (0) = −1.89(rad) 
and θ̇f (0) = −1.04(rad/s) , with the assumption that these conditions can be abruptly changed physically. The 
blue rectangles and the green diamonds indicated in Fig. 4b show the frequency down- and up-sweeping results, 
respectively, from the stable region in the sub-harmonic resonance at ̟ = 1.22 . Furthermore, the areas marked 
with (1) and (2) in Fig. 4b show the additional system results from the NS when compared with the HBM, indicat-
ing that the nonlinear responses in this regime are affected by more sub-harmonic resonances. In addition, both 
results based on the HBM and NS could not show all of the possible solutions that appear in Fig. 4b since the 
solutions are much dependent on the initial conditions which reflect the solutions calculated at the prior steps.

To capture all the relevant sub-harmonic resonances in this regime, the appropriate input torque values for the 
sub-harmonic components in Eq. (9c) can be artificially obtained using various values of ε . To trigger their sub-
harmonic resonances, ε must be increased within a certain range of values assumed to be nearly zero numerically. 
Figure 5 compares the three results of the HBM using 1× 10−5 , 1× 10−3 and 2.9× 10−3 as values of ε . Assum-
ing the baseline is the HBM simulation with ε = 1× 10−5 , the results with ε = 1× 10−3 and ε = 2.9× 10−3 
follow the nonlinear system response of the baseline well. However, as displayed in Fig. 5, the simulation with 
ε = 2.9× 10−3 was the only one to successfully capture all sub-harmonic resonances. Figure 6a shows the stabil-
ity conditions with the arc-length continuation schemes, and Fig. 6b compares the two results from the HBM and 
NS. The latter are calculated using the initial conditions at ̟ = 1.22 of the upper sub-harmonic resonance regime 
and three different solution paths are presented, with paths (A), (B), and (C) defined in this study as the upper, 
lower, and normal paths. Complex dynamic behaviors in sub-harmonic resonant areas can be analyzed using 
information shown in Fig. 6b. First, as indicated in Fig. 3, the NS with frequency up-sweeping from ̟ = 0.93 
and frequency down-sweeping from ̟ = 1.7 , follows path (C). Second, the nonlinear solutions on paths (A) 
and (B) can be obtained by utilizing each stable regime’s particular initial conditions, as shown in Fig. 6a. Third, 
the dynamic behaviors between ̟ = 1 and ̟ = 1.7 are sensitive to various initial conditions; hence, the system 
responses can be abruptly changed among paths (A), (B), and (C). The initial conditions of a physical system can 
be determined depending on various external factors, such as sudden changes in drag torques and velocities due 
to fluctuations in road conditions. For example, vibro-impacts such as gear rattles occur with different driving 
 conditions23. While gear rattles generally arise around acceleration ranges of 1800 rpm, the same vibro-impacts 

Figure 4.  Nonlinear frequency response with RMS reflecting sub-harmonic resonance: (a) the HBM result 
under unstable conditions with sub-harmonic resonance; (b) comparison of HBM with NS by focusing on the 
specific stable regime. Key: Black line, HBM result; Red times, HBM result under unstable conditions; Blue 
square, NS results with frequency down-sweeping; Green diamond, NS results with frequency up-sweeping.

Figure 5.  Comparison of HBM results under various excitation conditions: (a) the HBM results under 
frequency up-sweeping; (b) comparison of sub-harmonic responses under various excitations. Key: Black line, 
HBM result with ε = 1× 10−5 ; Red dashed line HBM result with ε = 1× 10−3 ; Blue dotted line, HBM result 
with ε = 2.9× 10−3.
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are also found at higher velocity ranges of 3200 rpm when the system is under coast conditions. This, as shown 
in the nonlinear resonant issues in Fig. 6, demonstrates that the same dynamic behaviors can occur under dif-
ferent initial conditions.

Figure 7a and b compare two results under two different initial conditions. A comparison of the calculated 
HBM and NS reveals that the solutions for path (A) under the initial conditions at ̟ = 1.22 follow all paths (A), 
(B), and (C), and are designated as stable solutions of the HBM. When the initial conditions for path (B) have 
θf (0) = −0.15(rad) and θ̇f (0) = −12.54(rad/s) at ̟ = 1.5 , the NS results only follow paths (B) and (C), and 
never appear on path (A). These dynamic characteristics are clearly shown in Figs. 6 and 7.

Examination of bifurcation characteristics with the real part of eigenvalues. As shown in Figs. 3, 
4, and 6, the stability conditions, which were determined during the HBM, are examined, and the real parts of 
the eigenvalues are considered. Applying the basic procedures of Hill’s method, the system responds as follows.

Here, θf(t) and ξf(t) are the periodic (particular) and perturbation (homogeneous) parts of the solutions, 
 respectively4,8,22, and ξf(t) consists of p(t) and e�t , the periodic and decay terms, respectively. Based on the 
calculated eigenvalues �i with i = 1, 2, . . . , 2(2ηNmax + 1) , at least one positive value among Re(�i) makes the 
system unstable. In addition,Re(�i) = 0 satisfies the condition that the system responses fall into bifurcation, 
as indicated in Fig. 8a7,24. From this point onward, this study assumes that the properties of the positive Re(�i) 
signify the bifurcation characteristics, and by focusing on the frequency up-sweeping direction, this bifurcation 
is assumed to occur in the regimes determined as unstable. Thus, only these unstable regimes will be exam-
ined, with the exception of the arc-length solutions’ reverse direction. Though various conditions of Re(�i) are 
investigated, they are generally considered in three forms: Re(�i) < 0 , Re(�i) > 0 , and Re(�i) ≫ 0 . Under the 
condition Re(�i) < 0 , its relevant transient responses ξf(t) reach zero, which stabilizes the system response and 
sustains the particular solution, θf(t) = θfp(t) as depicted in Fig. 8b. However, Re(�i) > 0 and Re(�i) ≫ 0 cause 
the system to fall into diverging conditions by preventing the system responses from maintaining that particular 
solution, as illustrated in Fig. 8c and d. Re(�i) > 0 , rather than Re(�i) ≫ 0 , is assumed to gradually diverge the 
system response from the periodic solution of θf(t) = θfp(t) ; hence, it is assumed that Re(�i) > 0 is relevant for 
period-doubling or period-halving cascades. On the other hand, it is assumed that Re(�i) ≫ 0 allows the system 
responses to change rapidly into more complicated phenomena, such as quasi-periodic and chaotic.

The relationships between each unstable solution of the HBM and the properties of Re(�i) are shown in 
Fig. 9. To implement the previously suggested ideas, two properties, Ed the distribution of positive Re(�i) and 

(11a,b)θf(t) = θfp(t)+ ξf(t), ξf(t) = p(t)e�t

Figure 6.  Nonlinear frequency response with RMS at sub-harmonic resonances: (a) HBM results with stability 
conditions; (b) comparison of HBM and NS results with various initial condition paths. Key: Balck line, HBM 
result with ε = 2.9× 10−3 ; Red times, HBM results with the unstable condition; Red open circle, NS result.

Figure 7.  Comparison of HBM with NS under various initial conditions: (a) comparison of HBM with NS 
calculated at ̟ = 1.22 ; (b) comparison of HBM with NS calculated at ̟ = 1.5 . Key: Black line, HBM result 
with ε = 2.9× 10−3 ; Blue square, NS results with frequency down-sweeping; Green diamond, NS results with 
frequency up-sweeping.
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Emax the maximum value of positive Re(�i) can be considered. Here, Ed, from whole number values of Re(�i) , is 
defined as follows:

Figure 9 also illustrates regimes (a)–(e), which has been carefully examined as follows. Regimes (a) and (e) 
are the stable response areas where no Ed and Emax are obtained, and the small numbers of Ed in regime (a) are 
related to the unstable conditions of the primary resonance, not the sub-harmonic resonance. When regime (b) 

(12)Ed =
Number of positive Re(�i)

Overall number of Re
(

�j

) with i, j = 1, 2, . . .

Figure 8.  Nonlinear dynamic behaviors along with the various real parts of eigenvalues: (a) bifurcation points 
and various branches of transient responses; (b) system response under Re(�i) < 0 ; (c) system response under 
Re(�i) > 0 ; (d) system response under Re(�i) ≫ 0.

Figure 9.  HBM result under unstable conditions compared with the properties of Re(�i) : (a) HBM result at 
sub-harmonic resonances with various specific areas; (b) distribution of positive Re(�i) along with different 
solution paths; (c) maximum value of positive Re(�i) along with different solution paths. Key: Black line, HBM 
result; Red times, HBM result with unstable condition.
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is examined, the value of Ed is higher than 0.45 and the value of Emax is higher than 5, and the system responses 
are much more complex with quasi-periodic or chaotic motions. Moreover, the system responses are smoothly 
connected between regimes (a) and (c), even though it follows the arc-length path (A), as indicated in Fig. 6b. 
Since the two stable regions in (a) and (c) are located near the unstable responses of (b), instead of obeying the 
arc-length path (A), the dynamic behaviors occur by following the order of: (1) a stable response in regime (a), 
(2) an unstable response in regime (b), and (3) a stable response in regime (c). Due to a series of smooth changes 
in the stability conditions from regimes (a) to (c), regime (c) is expected to be under pure harmonic responses, 
and thus, the calculated results of Ed and Emax can only be ignored for regime (c). Additionally, the characteristics 
of the bifurcation diagrams observed in Figs. 10, 11, and 12, also correlate well when focused on regimes (a)–(c) 
in particular. The green dotted circles and ellipses in regime (d) are the reverse path results of those for the lower 
branch of sub-harmonic resonance, which is not the main concern of this study.

An examination of the calculated values Ed and Emax must be carefully carried out when investigating the 
nonlinear dynamic behaviors for regime (d), since these values are taken from two different paths (A) and (B), as 
shown in Fig. 6b. When the bifurcation characteristics shown in Figs. 11 and 12 are compared, clear differences in 

Figure 10.  Comparison of HBM and bifurcation diagram with RMS values focused on super-harmonic 
resonances with the initial condition path (C): Key: Black line, HBM result with stable condition; Red times, 
HBM result with unstable condition; Blue circle, bifurcation diagrams.

Figure 11.  Comparison of HBM and bifurcation diagram with RMS values focused on sub-harmonic 
resonances with the initial condition path (A): Key: Black line, HBM result with stable condition; Red times, 
HBM result with unstable condition; Blue circle, bifurcation diagrams.
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the two system responses are observed depending on the initial conditions. For example, Fig. 11 shows the results 
when the initial conditions are set at ̟ = 1.22 on path (A), as shown in Fig. 4. From this point, the solutions 
follow the frequency down-sweeping direction, and first show the period-halving and period-halving cascades 
which fall into chaotic in regime (d). When the solutions follow the frequency up-sweeping direction, they enter 
the period-doubling cascade and finally reach the pure harmonic response regime. When these complex bifurca-
tion phenomena are compared with Fig. 9b and c, each bifurcation characteristic is correlated with the calculated 
values of Ed and Emax, marked by green dotted lines, based on their relevant sub-harmonic resonances, as indi-
cated by (A) and (B). On the other hand, compared with Figs. 11, 12 presents simpler responses, as also seen in 
Fig. 7b; thus, the bifurcations only occur for the arc-length paths (B) and (C). The two bifurcation diagrams in 
Figs. 11 and 12, with the exception of the responses around the area at ̟ = 1.22 are correlated with each other 
and through careful examination of Fig. 9, 10, 11 and 12 the results of regimes (c) and (d) provide the basic ideas 
required to map the complex nonlinear dynamic behaviors. First, the system responses can be abruptly changed 
under various initial conditions, and should follow different solution paths, despite the potential for a smooth 
change in the initial conditions along the normal solutions path (C), as shown in Fig. 6. Second, the bifurcation 
characteristics can also be defined under various initial conditions and can be anticipated along with the relevant 
eigenvalues Ed and Emax in unstable conditions, as shown in Fig. 9.

Conclusion
This study investigated the nonlinear dynamic behaviors in sub-harmonic resonant areas under various initial 
conditions. Depending on these different initial conditions, the system responses followed different paths of the 
arc-length solutions from the HBM. Regarding the complex nonlinear phenomena, the contributions of this 
research are as follows. First, this study suggested a method to determine all possible sub-harmonic resonances 
by employing various excitation conditions, successfully simulating two branches of sub-harmonic resonances 
using the HBM with a variety of initial conditions. Second, this study investigated various paths of nonlinear 
responses under different initial conditions by employing the HBM in comparison with the NS. These results 
show the multitude of system responses, while the dynamic behaviors follow different arc-length solution paths. 
Finally, the bifurcation characteristics that occur in the unstable solutions were examined based on the eigenval-
ues in terms of Ed and Emax. This provided basic ideas for predicting the bifurcation characteristics numerically.

The current study has dealt with a simple torsional system with 1DOF which is a part of whole driveline 
 system23. As a further study, the conceptual approach employed for this study can be extended to investigate the 
severe vibro-impact problems which occur in the driveline system concerned with the gear rattle or the gear 
whine.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to its relatively 
large size but are available from the corresponding author on reasonable request.
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Figure 12.  Comparison of HBM and bifurcation diagram with RMS values focused on sub-harmonic 
resonances with the initial condition path (B): Key: Black line, HBM result with stable condition; Red times, 
HBM result with unstable condition; Blue circle, bifurcation diagrams.
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