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Heterogeneous adaptive 
behavioral responses may increase 
epidemic burden
Baltazar Espinoza*, Samarth Swarup, Christopher L. Barrett & Madhav Marathe

Non-pharmaceutical interventions (NPIs) constitute the front-line responses against epidemics. Yet, 
the interdependence of control measures and individual microeconomics, beliefs, perceptions and 
health incentives, is not well understood. Epidemics constitute complex adaptive systems where 
individual behavioral decisions drive and are driven by, among other things, the risk of infection. To 
study the impact of heterogeneous behavioral responses on the epidemic burden, we formulate a 
two risk-groups mathematical model that incorporates individual behavioral decisions driven by risk 
perceptions. Our results show a trade-off between the efforts to avoid infection by the risk-evader 
population, and the proportion of risk-taker individuals with relaxed infection risk perceptions. We 
show that, in a structured population, privately computed optimal behavioral responses may lead to 
an increase in the final size of the epidemic, when compared to the homogeneous behavior scenario. 
Moreover, we find that uncertain information on the individuals’ true health state may lead to worse 
epidemic outcomes, ultimately depending on the population’s risk-group composition. Finally, we find 
there is a set of specific optimal planning horizons minimizing the final epidemic size, which depend on 
the population structure.

Non-pharmaceutical interventions (NPIs) constitute a suite of front-line behavioral responses whose collective 
compliance may assemble a behavioral immune system at the population  scale1, 2. Classical mathematical models 
use a variety of modeling frameworks to study the interplay between disease dynamics and epidemic mitigation 
 policies3–5. However, control policies have historically focused on the population-level consequences, neglecting 
individual-level incentives and costs associated with complying with public health  recommendations6, 7. Charac-
terization of the effectiveness of control policies and their viability requires understanding how behavioral modi-
fications intended to reshape epidemic dynamics at the population scale interact with individual microeconomics, 
beliefs, perceptions and health  incentives8–11. Heterogeneous living conditions (socioeconomic characteristics, 
beliefs, education, demography, etc.) modulate the behavioral choices individuals make during the epidemic 
period. Particularly, these impact people’s adherence to recommended control  policies12–14. Consequently, the 
extent to which control policies are effective in ameliorating the epidemic burden inherently depends on the 
affected population’s structure and the associated behavioral  responses15, 16.

For instance, during the early stage of the COVID-19 pandemic high compliance rates were reported in devel-
oped  countries17. Harper et al. conducted a study about mitigating behaviors during the COVID-19 pandemic 
in 2020, where about 50% of the participants perceived themselves at “medium” risk of contracting COVID-
19, while 33% reported to perceive “low” infection  risk18. The study by Barber et al.19 on assessing COVID-19 
perceptions during 2020, reported that 24.5% of participants expressed at least some agreement that people are 
overreacting. Moreover, Fedele et al. found that vaccine hesitancy in Italy was a major concern with an acceptance 
of 26.5%20. The risk-perception paradigm has historically challenged the effectiveness of population-scale control 
measures. For example, a study during the 2009 influenza pandemic (pH1N1) in Hong Kong found that 60% of 
the population perceived low risk of being infected, with a vaccine aversion of around 37% of the  population21.

Diverse modeling frameworks have been used to characterize the intertwined dynamics generated by the dis-
ease dynamics and the set of behavioral responses available to mitigate disease  spread3–5, 22–25. However, often, the 
mathematical models do not consider the adaptive nature of the co-evolving epidemic and adaptive behavioral 
dynamics—in other words, most current behavioral models in epidemiology look only at the current and past 
system’s state, and use that information to infer individual behavioral responses. Our behavioral model takes 
into account the behavior of individuals based on their estimate of the epidemic dynamics at the current state 
and in the future. During an epidemic, the feedback loop between people’s activities to avoid risk of infection 
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and the desire to maintain social interactions and economic productivity creates a complex adaptive system, in 
which behavioral responses both drive and are driven by the disease transmission process. Recently, the modeling 
framework proposed by Fenichel et al.22–25 envisions individual behavioral adaptations as a Markov decision 
process by using an epidemiological-economic model. Markov decision processes have found applications and 
provided foundations in AI for modeling sequential decision-making in diverse  contexts26–28. In this work we 
focus on a behavioral aspect extensively documented during the COVID-19 pandemic on different regions, 
the population’s heterogeneous behavioral responses to the risk of infection. We aim to study the impact of het-
erogeneous behavioral responses on the progression of an epidemic. We extend the epidemiological-economic 
framework by considering a risk-structured population and information uncertainty. We use a set of ordinary 
differential equations to model disease progression, and a decentralized Markov decision framework to model 
the strategic behavior of individuals across risk groups and over different health classes. We assume economic 
productivity depends on social  interactions29, 30, and model behavioral changes as adjustments in the contact 
decisions made by individuals seeking to maximize the net benefits offered by contacts with others, where these 
also carry a risk of infection. Beyond our explicit formulation of behavioral responses, our results are robust to 
other types of behavioral responses that ultimately reduce the risk of infection. We incorporate important fea-
tures of the COVID-19 pandemic: (i) a large proportion of infected individuals are asymptomatic or show mild 
symptoms that allow them to continue social interaction, thus becoming major drivers of  transmission31–33; (ii) 
the relative infectiousness of exposed and asymptomatic infectious individuals is  uncertain34–36; and (iii) hetero-
geneous population behavioral responses driven by differential risk perceptions. The role of non-symptomatic 
(exposed and asymptomatic) but infectious individuals in our behavioral model formulation is critical. Most 
social interactions require immediate evaluation of the infection risk, which is assumed to be determined by 
vulnerability  cues37. Consequently, in the absence of symptoms, exposed and asymptomatic individuals may 
both behave and be treated by others as if they are uninfected (i.e., in the susceptible state w.r.t. the epidemic 
dynamics). The potential transmission of COVID-19 during the pre-symptomatic and asymptomatic stages 
was quickly recognized during the  pandemic38, 39. Moreover, it is known that non-symptomatic transmission is 
critical at the early- and long-term epidemic dynamics, so that models not considering this transmission route 
would exhibit bias on estimates of the basic reproductive number potentially leading to model  inaccuracy40–43.

We extend the behavioral modeling framework by Fenichel et al.22–25 by: (i) coupling a set of Markov decision 
processes (MDPs) to incorporate differential adaptive behavioral responses; (ii) using a more complex epidemic 
model of disease transmission; and (iii) including the role of uncertain information about individual health states, 
affecting the decision-making processes. Individuals are divided into two classes based on their risk-acceptance 
behavior. These extensions aim to incorporate pervasive experiences from the ongoing COVID-19 pandemic. 
Our simulations yield the following insights: (i) there is a balance between the reduction of cases due to risk-
evaders’ effort to decrease their infection likelihood, and the proportion of the population acting as risk-takers; 
(ii) the risk-reduction and risk-takers trade-off has the potential to increase the attack rate (the proportion of 
the population infected over the epidemic), and it is sensitive to the proportion of asymptomatic cases and their 
relative infectiousness; and (iii) there is a set of optimal planning horizons that minimize the attack rate. The 
optimal planning horizons depend on the population’s structure and the group-specific risk sensitivities. Finally, 
to the best of our knowledge, this is the first time that multiple MDPs are coupled to study heterogeneous adaptive 
behavioral responses in an epidemic model.

Methods
Constant contacts model. We assume the affected population is composed of two risk-groups, a fraction 
p of the population is composed of risk-takers (RT) and the remaining fraction 1− p are risk-evaders (RE). We 
differentiate the RT and RE subpopulations by assuming the RE population face a reduced likelihood of infec-
tion due to adopting precautionary behaviors. On the other hand, we assume RT do not follow public health 
recommendations, thus facing a higher risk of infection, relative to the RE population. Political or ideological 
reasons, economic stress, the lack of reasonable alternatives, epidemic politicization or the lack of trust in public 
health authorities are some of the documented factors that potentially lead the population to risk the dangers of 
COVID-19  infection44, 45.

Previous mathematical models consider complex within-host disease  dynamics46 or the impact of exogenous 
factors on the COVID-19 transmission  dynamics47. In this study, we focus on incorporating individual hetero-
geneous adaptive behavioral responses, based on group-specific infection risk perceptions. Our model of disease 
progression assumes that individuals in each behavioral group may show the following health status: Susceptible 
(S), infectious Exposed (E), Infectious symptomatic (I), infectious Asymptomatic (A), and Recovered (R). We 
consider a pre-symptomatic infectious health status (E), following evidence suggesting that exposed individuals 
exhibit a period of viral  shedding38, 48–51. RT susceptible individuals ( S1 ) can get infected by making contacts with 
either: symptomatic ones (I) with a baseline per-contact likelihood of disease transmission β , exposed individu-
als ( E1 and E2 ) with reduced per-contact likelihood of infection ρβ , or asymptomatic individuals ( A1 and A2 ) 
with reduced per-contact likelihood of infection αβ . Similarly RE susceptible individuals ( S2 ) may get infected 
by making contacts with symptomatic, exposed or asymptomatic individuals at respective likelihoods, ǫβ , ρǫβ , 
and αǫβ , where 0 < ǫ < 1 corresponds to the reduction of the infection risk given by adopting precautionary 
behaviors. We assume C∗ is the optimal contact rate in the absence of disease transmission, which remains 
constant in the absence of behavioral adaptations. Due to the absence of adequate data on the specific infectious-
ness of exposed and asymptomatic COVID-19 infected  individuals49, we assume these subpopulations are less 
infectious than symptomatic ones, with ρ = 0.25 , and α = 0.4 . Our model assumes that on average, 1/κ days 
after infection, a proportion σ of exposed individuals remain asymptomatic, while the rest develop symptoms. 
Finally, we assume a similar infectious period of 1/γ days for symptomatic and asymptomatic individuals. Our 
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model for disease progression is sketched in Fig. 1A, and mathematically formalized by the system of ordinary 
differential equations in Fig. 1B, where ḟ  stands for the time derivative of f.

Heterogeneous adaptive behavior. We study the impact of interactions between infected individuals 
and susceptible individuals dynamically adapting their behavior in response to the perceived risk of infection. 
Our model focuses on infected individuals with mild or no symptoms and excludes individuals with severe symp-
toms, since these have minimal interaction with the general population. The economic-epidemiological model 
we use incorporates the interdependence between the epidemic burden and individual behavioral responses. 
Figure 2 shows a schematic of the coupling between the mean field epidemiological model and the Markov 
Decision Processes we use to model heterogeneous adaptive behavioral responses. We formulate a mean-field 
epidemiological model incorporating explicit contact rates to evaluate the progression of the epidemic, while 
simultaneously using a Markov Decision Framework to model individual adaptive behavioral responses.

Notice that the optimization processes for RT and RE susceptible individuals are intrinsically coupled. The 
contact rates selected by a given population affect the overall population’s activity, which in turn impact the 
population’s mixing. At each time step, we decouple these processes by computing the optimal contact rate at time 
t + 1 for a given risk group, assuming the contact rate of the other risk-group to be the same as the one observed 
at time t, the latest sample available. At each time step, the group-specific optimization process incorporates a 
projection of the system’s future state, by assuming the current prevalence remains constant over the planning 
horizon. Variations on the future system’s state projection, and on the projection period length, deeply impact 
the solutions of the optimization problems, consequently impacting the outcomes of the behavioral responses 
and the epidemic dynamics. By solving the group-specific optimization process at each time-step, we get the 
privately optimal contact rate for each risk-group. This allows us to simulate the epidemic one step forward and 
to find the next step disease prevalence level. We iterate this process over the epidemic period to simulate the 
coevolution of the epidemic process and behavioral adaptations.

The paradigm in our model of human adaptive behavior is given by the trade-off between increasing contacts 
and the differential risk of infection that these carry for the RT and the RE populations. Individuals in each health 

Figure 1.  Constant contacts disease model. The affected population is divided into two behavioral groups: risk-
takers (RT) and risk evaders (RE), denoted with the subscripts 1 and 2, respectively. Thus, S1,E1, and A1 are the 
susceptible, exposed, and asymptomatic subpopulations of risk-takers, respectively; and similarly S2,E2, and A2 
for risk evaders. We consider a single symptomatic subpopulation since we assume homogeneous behavior of 
individuals in this health class.

Figure 2.  Coupling disease dynamics and forward looking Markov Decision Processes. At each time step the 
sequential decision process sets a feedback loop between the epidemic state and individual behavioral responses: 
(i) the current disease prevalence defines potential future health state transitions, (ii) a projection of the system’s 
future state over the planning horizon sets the optimization problem, (iii) we find the population-specific 
optimal contact rates that maximize the expected utility of the susceptible population, over the planning horizon 
and simulate the epidemic model one step forward.
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class seek to maximize the expected utility due to social interactions, while trying to minimize infection risk, 
according to the transmission dynamics determined by the constant contact model.

Aside from the conditions that motivate heterogeneous behaviors, in our model individual behavior differs 
across health classes and risk groups, but individuals with similar health status and within the same risk group 
are assumed to behave similarly. We may expect some individuals to be satisfied with lower social activity than 
others however, for simplicity, we assume individual contact preferences have homogeneous and time-invari-
ant structure. That is, individuals similarly value contacts over time, and independently of the epidemic state. 
Moreover, individual decentralized decisions are assumed to be taken from privately optimal perspectives. The 
cost-benefit trade-off perceived by individuals does not consider the aggregate effects that changing the pool of 
contacts has on others’ decisions.

We incorporate heterogeneous behavior in the constant contacts model by weighting the population in each 
health-class with the corresponding risk-group specific contact rates. Under the adaptive behavior model, the 
mixing is proportional to the population distribution among health-classes, and conditional on the behaviors 
determining the dynamic contact rates. Taking the constant contacts model as a baseline, we derive the incidence 
terms for the RT and RE susceptible individuals by considering the proportion of contacts that a typical individual 
in the S1 and S2 compartments makes with other infectious individuals,

where 
∑

h C
h
t h is the total population activity, for individuals in health classes h ∈ {S1, S2,E1,E2, I ,A1,A2,R} 

selecting contact rates {CS1
t ,CS2

t ,CE1
t ,CE2

t ,CI
t ,C

A1
t ,CA2

t ,CR
t } , at time t.

Since we assume economic productivity depends exclusively on social interactions, individuals determine 
the daily optimal contact choices at each time step by maximizing their expected utility Vt(h) , depending on 
their current health status h ∈ {S1, S2,E1,E2, I ,A1,A2,R} . The health-specific expected utilities Vt(h) comprise 
the potential benefits obtained by making the optimal contact choice at each future time step during the group-
specific planning horizon τi . The expected utilities account for potential future transitions to other health states, 
weighted by the respective transition probabilities, which are given by the system’s current state (the population 
distribution among health states and their respective contact choices). Individuals evaluate the future ben-
efits/costs assuming the population distribution remains constant during the planning periods. Preferences are 
assumed single-peaked, so that individuals have a unique optimal contact rate in the absence of disease dynamics. 
Following the work by Morin et al.24, we assume a utility function of the particular form u(Ch

t ) =
(

bCh
t − (Ch

t )
2
)ν 

, where b is the per-day maximum number of contacts possible, ν is the utility function shape parameter, and Ch
t  

is the contact rate of a typical individual with health status h at time t. We assume individuals within the same 
risk-group obtain benefits based on a time-invariant utility function shape, regardless of their health status, except 
symptomatic individuals who get no utility during the infectious period. We use variations of the ν parameter 
to modify the marginal benefits of increasing contacts across groups. In other words, our model of heterogene-
ous behavior assumes individuals across groups show differential disposition to reduce their daily number of 
contacts. Moreover, we assume risk assessment remains constant over time, therefore the risk-group-specific 
utility function remains invariant over the epidemic period.

Finally, we incorporate the role of uncertain information on the decision-making process. We let the perceived 
health status represent a source of information uncertainty, where non-symptomatic individuals (exposed and 
asymptomatic), unaware of the infection risk they pose to others, may perceive themselves—and be perceived 
by others—as not presenting a risk of  infection25.

Susceptible, exposed, and asymptomatic individual behavior. We model the susceptible individuals’ daily opti-
mal contact choice problem as a dynamic programming problem, the solution to which generates the privately 
optimal contact  rate22–25. Note that, regardless of the behavioral group, individuals follows a SEIAR disease pro-
gression across health states. Therefore, a single set of Bellman’s equations formulates the optimization problem 
for both behavioral groups, where behavioral heterogeneity is captured by accordingly changing the health state 
transition probabilities. Formally, susceptible individuals’ daily optimal contact rate solves the Bellman’s equa-
tion,

where Vt(Si) is the expected utility of risk group i susceptible individuals at time t, Vt+1(Si) ( Vt+1(Ei) ) is the 
expected utility of being susceptible (exposed) at time t + 1 , and

is the probability of being infected at time t for RT individuals. Since RT and RE individuals have similar disease 
progressions, Eq. (2) also holds for RE, by adjusting the respective infection risk ( ǫβ ) and the corresponding 
contact rate ( CS2

t  ), such that
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The optimization problem formalized in Eq. (2) incorporates RT (RE) susceptible individuals’ immediate utility ( 
u(CSi

t ) ), plus the expected future utility discounted at a rate δ . The susceptible individuals’ expected future utility 
accounts for the expected utility of remaining susceptible at the next time step, Vt+1(Si) , with probability 1− PSiEi 
and the expected utility of being infected Vt+1(Ei) (progressing to the Ei compartment), with probability PSiEi.

Notice that the solution of the optimization problem for susceptible individuals depends upon the expected 
utility of exposed individuals. Similarly to Eq. (2), we formulate the Bellman’s equation for exposed and asymp-
tomatic individuals

where PEi = 1− e−κ stands for the probability of progressing from the Ei health class to either Ai or I, with 
respective probabilities σ and 1− σ , and where the expected utility of asymptomatic individuals is given by,

with PAiR = 1− e−γ representing the probability of recovery.
We assume the absence of symptoms leads exposed and asymptomatic individuals to perceive themselves (and 

be perceived by others) as susceptible individuals, therefore becoming a source of uncertain information. This 
is incorporated in their corresponding immediate utilities on Eqs. (5) and (6), by using the term u(CSi

t ) , where 
susceptible, exposed, and asymptomatic individuals within the same risk group choose their contact rates in the 
same way. In other words, we track individual risk-avoidance efforts over health-classes except while infected 
and recovered.

Symptomatic and recovered individual behavior. Since our model for disease progression does not consider 
potential reinfections, we assume there is no incentive for symptomatic and recovered individuals to adapt their 
behavior. It follows that symptomatic and recovered individuals make the daily number of contacts that maxi-
mizes their net benefits. The expected utility of symptomatic individuals, Vt(I) , is given by the Bellman’s equa-
tion,

while the expected utility of recovered individuals, Vt(R) , is formalized by,

where PIR = 1− exp−γ is the recovery probability.
Note that symptomatic and recovered individual utility expectations represent static problems, since they 

only depend upon the recovery rate and can be explicitly solved. Although we have not explicitly included a 
potential contact rate reduction of symptomatic individuals, for instance, due to altruism or sanctions, we can 
model it by limiting the maximum contacts available for this subpopulation.

Results
Since the proposed behavior model is not amenable to an analytical solution, we numerically explore the impli-
cations of adaptive behavior and uncertain information on the epidemic dynamics. We use the final epidemic 
size as a metric to assess the impact of behavioral responses on different behavioral and epidemiological sce-
narios. In the absence of appropriate behavioral data, we assume that individuals make an average of b = 50 
contacts per day. Future utility is discounted at the rate of 5% per year ( δ = 0.99986 ), and the utility function 
parameter value is assumed to be ν = 0.122, 24. The discount rate δ affects the decisions made during the plan-
ning horizon by weighting future decisions during the Markov Decision Process. Intuitively, high discount rates 
bias the decision-making process towards valuing the present more than the future and the potential future 
consequences. In counterpart, the utility function parameter ν modulates the immediate utility obtained as 
well as the benefits (loss) of increasing (reducing) contacts. Intuitively, reducing ν decreases the utility loss of 
decreasing contacts, leading to high reductions of the contact rates. In the Supplementary Information, we show 
that variations on the daily average contacts (b), and the discount rate ( δ ) parameters, modify the sensitivity of 
the behavioral response, but do not change our qualitative results. Given that the early phase of the epidemic is 
mainly driven in the absence of behavioral responses, we calibrate the behavior model by making the constant 
contacts model’s basic reproductive number (R0) to be consistent with early disease dynamics of the COVID-
19 pandemic reported in literature. Particularly, since we assumed a totally naïve population, the initial stage of 
the epidemic is driven in the absence of sanitary recommendations and in the absence of behavioral responses. 
Therefore, we assumed that at the early phase of the epidemic, the risk of infection is not perceived, and we 
computed the basic reproductive number assuming a population of risk-takers, ( p = 1 ). Exposed individuals 
are assumed to exhibit a 5-day incubation period ( κ = 1/5 ), during which they can transmit the disease with 
a reduced infectiousness of ρ = 0.2538. Infected individuals recover and cannot infect others on average after 
9 days ( γ = 1/9 ) of symptom  onset52. For our baseline parameters we assume 50% ( σ = 0.5 ) of the infections 
become  asymptomatic34, 35, with relative infectiousness of α = 0.453, 54. These baseline parameters with a per-
contact likelihood of infection β = 0.01324 generate a basic reproductive number of 2.455, 56. Finally, we assume 

(4)PS2E2
(

CS2
t

)

= 1− exp

(

−ǫβCS2
t

ρ(CE1
t E1 + CE2

t E2)+ α(CA1
t A1 + CA2

t A2)+ CI
t I

∑

h C
h
t h

)

.

(5)Vt(Ei) = u(CSi
t )+ δ

[

(1− PEi )Vt+1(Ei)+ PEi
(

σVt+1(Ai)+ (1− σ)Vt+1(I)
)]

,

(6)Vt(Ai) = u(CSi
t )+ δ

[

(1− PAiR)Vt+1(Ai)+ PAiRVt+1(R)
]

,

(7)Vt(I) = u(C∗
t )+ δ

[

(1− PIR)Vt+1(I)+ PIRVt+1(R)
]

,

(8)Vt(R) = u(C∗
t )+ δVt+1(R),



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11276  | https://doi.org/10.1038/s41598-022-15444-8

www.nature.com/scientificreports/

risk-evaders reduce their infection risk relative to risk-takers by adopting safe behaviors, the reduced likelihood 
of infection of risk-evaders is incorporated by a factor 0 ≤ ǫ < 1 . The set of parameters used in our numerical 
experiments, unless otherwise indicated, is collected in Table 1.

Heterogeneous adaptive responses may increase the attack rate. In this section we show there 
is a trade-off between the reduced infection risk by individuals adopting precautionary measures, i.e., the risk-
evaders (RE, denoted by S2,E2 and A2 ), and the non-compliant individuals, whom we refer to as the risk-takers 
(RT, denoted by S1,E1 and A1 ). Moreover, we show that this trade-off is dependent on the proportion of asymp-
tomatic cases. In Fig. 3 we show selected simulations of the disease dynamics for the constant contacts model 
(dashed), and for the adaptive behavior model (solid), assuming a scenario where RE reduce their infection risk 
by 30% ( ǫ = 0.7 ). In panel (A) we assume 33% of the population are RT ( p = 0.33 ), while in panel (B) we assume 
66% of the population are RT ( p = 0.66 ). As expected, our simulations in panel (A) show that the epidemic is 
mainly driven by infections in the RE population. Interestingly, despite the high prevalence levels in the RE 
population, the behavioral responses of the RT and the RE populations produced in this scenario are similar. 
Both populations reduce their respective contact rates, CS1

t  and CS2
t  , by around 20% during the peak time. On the 

other hand, panel (B) shows a faster and earlier epidemic with a higher peak, mainly driven by infections in the 
RT population. In this scenario, the behavioral responses produced diverge significantly. While RT individuals 
reduce their contacts by 20% during the peak time (similar to the scenario in panel (A)), RE individuals reduce 
their contacts by around 40% during the peak time.

The scenarios chosen assume highly distinct population structures in terms of the risk-taker and risk-evader 
populations ( p = 0.33 and p = 0.66 ), which in turn produce contrasting disease dynamics (propagation speed 
and peak size), ultimately inducing different behavioral responses among the S1 and S2 populations.

Table 1.  Baseline parameters for the constant contacts and adaptive behavior model.

Par. Description Value Ref

ν1 ( ν2) Risk-takers (risk-evaders) utility function shape parameter 0.1 (0.05) 22

τ1 ( τ2) Risk-takers (risk-evaders) planning horizon 14 (14) Assumed

δ Discount factor (5% annual rate) 0.99986 22

b Maximum number of contacts per day 48 22

β Likelihood of infection 0.01325 22, 55, 56

κ Incubation rate 1/5 38

γ Recovery rate 1/9 52

ρ Exposed ind. infectiousness scalar factor 0.25 Assumed

α Asymptomatic ind. infectiousness scalar factor 0.4 53, 54

ε Risk-evaders infectiousness scalar factor 0.7 53

σ Proportion of asymptomatic ind. 0.5 34, 35

p Proportion of risk-taker individuals Variable Assumed

Figure 3.  Variations in the proportion of RT individuals impact disease dynamics and behavioral responses. 
Disease dynamics under constant contacts model (dashed curves) and under adaptive behavior model (thick 
curves). The scenarios where 33% (A) and 66% (B) of the population are high-risk takers show distinct disease 
dynamics, inducing differential behavioral responses ( CS1

t  and CS2
t  ) as a function of the risk perception. The set of 

parameters used are those in Table 1.
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Figure 3 show that while both scenarios exhibit reduction of contacts due to behavioral adaptations to avoid 
infection risk, the level of contact reduction is sensitive to the population’s composition, since this impacts the 
prevalence levels attained. Moreover, our simulations suggest that the higher the prevalence levels reached—
given by predominance of the risk-taker population—the stronger the behavioral response of the risk-evader 
population.

Intuitively, the extent to which efforts from the risk-evaders effectively reduce the epidemic burden depends 
on the proportion of risk-takers in the population. We now explore the trade-off between the risk reduction by 
RE individuals ( ε ), and the proportion of risk-takers (p). Notice that this trade-off is shown only on the attack rate 
produced for the behavioral response model. Figure 4 shows that, for the constant contacts model, the attack rate 
is always below the baseline scenario (p = 0, ε = 1) , monotonically decreasing as either ε or p decreases. This is an 
expected result, since the homogeneous assumption of the constant contacts model results in similarly weighting 
the potential risk reduction by RE individuals, and the increased infection risk that RT individuals pose to others.

However, by modeling the group-specific heterogeneous behavioral responses, we capture novel insights on 
the impact of RT’s infectiousness and adaptive contact rates. For the adaptive behavior model, the attack rate 
attained in the presence of risk-takers may overcome the reduction of cases due to the RE individuals efforts, 
which ultimately takes the attack rate above the baseline scenario. In other words, there is trade-off between the 
increased expected activity and the infection risk of RT individuals that balance the reduction of cases due to RE 
efforts. Particularly, the trade-off shown on the attack rate is a function of the proportion of RT in the population 
(p), and the RE infection risk reduction ( ε).

Risk misperception modulates the trade-off between risk-takers and risk-evaders. The role of 
asymptomatic individuals on the spread of COVID-19 has been mostly studied from the perspective of the silent 
infections  produced31–33. Recently, Espinoza et al. studied the potential impact that behavioral responses based 
on infection risk misperceptions posed by asymptomatic individuals produce on the epidemic  burden25. Here, 
we focus on the role of asymptomatic cases on modulating the trade-off produced by the RE and RT populations. 
Particularly, we focus on how the presence of asymptomatic cases leading to risk misperceptions exacerbate the 
impact of RT individuals.

Given that the asymptomatic/symptomatic ratio, and the potential infectiousness of COVID-19 asymptomatic 
individuals is uncertain, we explore the impact that the proportion of asymptomatic cases has on the trade-off 
between the RE infection risk reduction and the proportion of RT in the population. Figure 5 exhibits the attack 
rates obtained by assuming different proportions of asymptomatic cases ( σ = 0.25, 0.5 and σ = 0.75 ), for the 
different scenarios of RE efforts ( ε ), and for varying proportions of RT individuals (p).

We focus on the impact that varying the proportion of asymptomatic cases has on the (p, ε) trade-off exhib-
ited in the attack rate. In general, the lower the proportion of asymptomatic cases, the higher the attack levels 
attained. However, the lower the proportion of asymptomatic cases, the lower the proportion of RT individuals 
required to take the attack rate above the baseline level.

Our results highlight the importance of addressing differential behavioral responses during an epidemic. We 
show that in a population composed of two risk-groups, the consequences of differential adaptive behavioral 
responses can be characterized by the trade-off between the efforts to reduce infection risk and the proportion of 
the population not following precautionary behaviors. Moreover, our results highlight that risk-taker individuals 
play a dual role in the epidemic burden: besides the higher risk of infection these individuals pose to others, the 
high contact rates associated to this population may produce more cases than that expected using the analogous 
constant contacts model.

Disease reporting drives behavioral responses strengths. We study the impact that differential test-
ing capacity has on the perceived infection risk and on the behavioral responses produced. Similar to other 
epidemic models including human behavioral  responses3, 57, our previous simulations assume a framework of 
complete information, however this may not be achievable for large epidemics. In reality, the risk perceptions 

Figure 4.  Risk-takers may increase the attack rate under adaptive behavioral response with uncertain 
information. Attack rate as a function of the proportion of both high-risk takers (p) and reduced risk of 
infection of the risk-evaders subpopulation ( ε ). The set of parameters used are those in Table 1.
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during an epidemic, and consequently the induced behavioral responses, depend upon the region-specific sur-
veillance efforts. We explore the impact of distinct surveillance regimes by varying the level of disease prevalence 
observed through testing. This is incorporated in our behavior model, by including the scalar factor 0 ≤ ϕ ≤ 1 
in the incidence terms of Eq. (1). In this way, the surveillance level modifies the perceived probability of infec-
tion in the Bellman’s equations by only perceiving a fraction of the infectious population, ultimately affecting 
the behavioral decision chosen. In most countries, reporting is biased towards the identification of symptomatic 
 individuals58. For simplicity, in our model we assume reporting impacts the perceived infection risk by reducing 
the overall perceived disease prevalence level. We incorporate a scalar factor that modulates the perceived infec-
tious subpopulations (exposed, symptomatic and asymptomatic), proportional to its size. In other words, we do 
not incorporate the bias produced by mostly reporting symptomatic individuals. Figure 6 shows the impact of 
different levels of reporting on the contact rates of the risk-takers and risk-evaders. Our simulations show that 
behavioral responses of both risk-groups are highly sensitive to changes in reporting levels. Moreover, risk-
evaders’ behavioral responses dramatically reduce as the level of reporting decreases.

Our next simulations explore the effects of different reporting levels ( ϕ ) on the attack rate attained for the 
adaptive behavior model, for populations composed of different proportions of risk-takers (p). Figure 7 shows 
that for the adaptive behavior model, the impact of risk-takers on the attack rate depends upon the reporting 
levels. Particularly, the extent to which behavioral responses decrease the attack rate depends on the reporting 
levels. For high reporting levels ( ϕ ≈ 1 ), the attack rate shows a concave up shape to increments in the proportion 

Figure 5.  The trade-off between RE’s risk-reduction and the proportion of RT individuals depends on the 
proportion of asymptomatic cases. Attack rates obtained with the constant contacts model, and with the 
adaptive behavior model, for the scenarios where 25%, 50%, or 75% of infections are asymptomatic. The (p, ε) 
regions where the attack rate is increased compared to the baseline scenario ( p = 0, ε = 1 ) is modulated by the 
presence of asymptomatic cases. The set of parameters used are those in Table 1.

Figure 6.  Risk-group contact rates for different reporting levels. Risk-taker and risk-evader contact rates for 
levels of reporting of 25% , 50% and 100% . The risk-evaders’ contact rate is more sensitive to changes in the 
reporting levels, compared to risk-takers’ contact rate. The set of parameters used are those in Table 1.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11276  | https://doi.org/10.1038/s41598-022-15444-8

www.nature.com/scientificreports/

of risk-takers. In counterpart, for low reporting levels, the attack rate shows a concave down shape to increments 
in the proportion of risk-takers.

Particularly, Fig. 7B shows that, as expected, the higher the reporting level (ϕ) , the lower the attack rate 
attained for similar population structures (corresponding values of p). Moreover, the concavity of the attack 
rate curves with reporting ( ϕ > 0 ), suggest that reporting increases population’s robustness to increments of 
the risk-takers population. Figure 7C depicts the trade-off between reporting and the proportion of risk-takers 
in the population, taking as a reference the attack rate attained for a population with no risk-takers and no 
reporting ( ϕ = p = 0 ). Interestingly, in populations mainly composed by risk-evaders ( p ≈ 0 ), low reporting 
levels ( ϕ ≈ 0 ) overcome the impact of risk-takers. However, for the scenario of a population with majority of 
risk-takers, very high reporting levels are needed to mitigate the impact of risky behavior on the attack rate. The 
important result here is that, in the presence of behavioral responses low testing levels may be compensated by 
a population adopting safe behaviors. On the other hand, high reporting levels may compensate risky behaviors 
in a population mainly composed by risk-takers.

Our simulations help us to get insight on the weakening effect of under-reporting on the adaptive behavioral 
responses based on risk perception. Moreover, our results shed light on the disease dynamics produced by NPIs 
aimed to modify individuals behavior, and the role of surveillance efforts. Given that only a fraction of the epi-
demic is perceived through testing, the impact of risk misperception modulating individual behavioral responses 
increases as reporting decreases. In this scenario, risk misperception not only arises due to pre-symptomatic and 
asymptomatic individuals, but also due to the region-specific testing limitations. It follows that low reporting 
levels in regions with very limited testing rates, would lead to weak behavioral responses even if the population 
is mainly composed of risk-evaders.

Optimal planning horizons minimizing the attack rate. While the heterogeneous living conditions 
can modulate behavioral choices leading individuals to adopt high- or low-risk behaviors, these also may impose 
limitations on the way individuals plan ahead and seek for the optimal future behavior. Our model of behav-
ioral responses assumes each risk-group seeks for the contact rates that maximize their expected utility over 
independent planning horizons. While both optimization processes are intrinsically connected, we let each risk-
group assess the potential future outcomes based on its own planning horizon. In this section we explore the 
impact that the planning horizons of the two risk groups, τ1 and τ2 , have on the attack rate.

In Fig. 8, we show selected scenarios of the attack rate for the adaptive behavior model, as a function of the RT 
planning horizon ( τ1 ), and the RE planning horizon ( τ2 ). We consider three scenarios: where the population is 
mostly composed by RE ( p = 0.33 ), where the population is balanced with both risk-groups ( p = 0.5 ), and where 
most of the population are RT ( p = 0.75 ). Our simulations show that depending on the population structure in 
terms of the RE/RT, there exists a combination of planning horizons that minimizes the attack rate. Moreover, 
the selected simulations show that the impact of varying the RT and the RE planning horizons is not symmetric, 
regardless of the RT/RE proportions. This is an expected result, given the different behavioral responses across 
risk-groups due to distinct infection risk perceptions.

Moreover, consistent with our simulations in Fig. 3, the attack rate under adaptive behavioral responses is 
more sensitive to changes in the planning horizon of RE individuals than for RT ones. In other words, unless 
the population is mainly composed of RT individuals ( p = 0.75 ), increments in the planning horizon of the RE 
individuals ( τ2 ) impact the attack rate more than the corresponding increment of the RT population’s planning 
horizon ( τ1).

Discussion
We focus on a behavioral aspect extensively documented during the COVID-19 pandemic, the population’s 
heterogeneous behavioral responses. While the effectiveness of non-pharmaceutical interventions (NPIs) has been 
thoroughly  studied12, 59, behavioral polarization and heterogeneous adherence to recommended policies have 
been widely  reported60, 61. Political or ideological reasons, economic stress, or the lack of reasonable alternatives 

Figure 7.  Attack rate for different reporting levels. (A) shows the attack rate as a function of the reporting 
level ( ϕ ), and the proportion of the population behaving as risk-takers (p). (B) shows the non-linear effect of 
increasing the proportion of risk takers in the population, for different values of reporting. (C) shows the trade-
off between the proportion of risk-takers and the surveillance effort (p,ϕ) , such that the attack rate attained in 
the scenario of no surveillance and no risk-takers 

(

(p,ϕ) = (0, 0)
)

 , remains constant. The set of parameters used 
are those in Table 1.
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are aspects leading people to maintain social interactions despite the risk of COVID-19  infection45, 62. The evi-
dence to date shows that behavioral polarization is pervasive worldwide. The multiple aspects reducing NPIs 
compliance seem to be reinforced in scenarios where mandates rely on a decentralized governance system. For 
instance, before vaccines were widely available in the U.S., mask mandates were independently and unevenly 
enforced at different levels across  counties63. Despite public health experts endorsed the effectiveness of mask 
wearing in multiple times, mask wearing mandates along with the effectiveness of masks were the center of 
national  debate64. Another example is vaccine hesitancy, which has a long history of being an enormous challenge 
to control diseases  worldwide65. Even though multiple vaccines against SARS-CoV-2 are currently available, 
mostly in developed countries, vaccine hesitancy continues to be a challenge in the containment of the ongoing 
COVID-19  pandemic66. Compliance to social distancing mandates has also shown polarized responses. Multiple 
social aspects like economic stress, epidemic politicization, or lack of trust in public health authorities have been 
reported as factors that reduce social distancing  adherence67.

To reveal the importance of heterogeneous behavioral responses, we study the co-evolving dynamics of 
heterogeneous adaptive human behavior and disease transmission. We find that adaptive behavioral responses 
produced by the perceived risk of infection dynamically modify the group-specific contact rate, which modulates 
the epidemic dynamics. Our results exhibit a trade-off between the efforts to avoid infection by the risk-evader 
population, and the proportion of risk-taker individuals with relaxed infection risk perceptions. This trade-off 
defines a threshold in terms of the final epidemic size. Heterogeneous behavioral responses in a structured popu-
lation may increase or reduce the final epidemic size, relative to final size attained by the analogous population 
exhibiting homogeneous behavioral responses. In other words, in a structured population, the privately optimal 
behavioral responses may lead to an increase in the final size of the epidemic.

On the other hand, our simulations show potential impacts of biased adaptive behavioral responses, for 
instance, due to uncertainty about the true health status of individuals. Given that most social interactions are 
subject to immediate evaluation of the infection risks, individuals respond to easily observable cues—specifically 
the presence or the absence of  symptoms68. It follows that understanding of infection risk is assumed to be deter-
mined by vulnerability  cues37 and the absence of these signals would lead to, at best, a weak behavioral response 
to individuals exhibiting mild or no symptoms. The impact of risk misperception on the contact rate due to the 
perceived lack of symptoms in the asymptomatic population has the potential to balance or to be surpassed by 
the increasing contact rates of asymptomatic individuals, producing more secondary infections. Our simulations 
show that group-specific optimal behavioral responses and planning horizons may differ among individuals, 
depending on the associated risk of infection. We found that risk assessment, information accuracy, and willing-
ness to follow precautionary behaviors markedly impact epidemic outcomes. We found the set of optimal plan-
ning horizons to be dependent on the population structure in terms of risk-takers and risk-evaders individuals.

We let differential risk perceptions induce heterogeneous adaptive behavioral responses among risk-taker 
and risk-evader individuals. To model the independently chosen but interconnected behavioral responses, our 
model of adaptive behavior couples a set of Markov decision processes, formalized via Bellman’s equations. Our 
model of adaptive behavioral response is based on a projection of the system’s future state up to a specific plan-
ning horizon. Individuals seek to balance the cost and benefits of social interactions over the planning horizon, 
subject to their group-specific risk perception. To model individual adaptive behavior during an ongoing epi-
demic, we use a decision-making framework that incorporates the private benefits and costs of social interac-
tions. Individuals are assumed to be naive to the impact their decisions impose on others, they do not realize the 
external costs and benefits of their behavior. Consequently, the role of empathy or social group affinities are not 
incorporated in the decision-making process. Another critical aspect of the behavioral model is the symmetric, 
uni-dimensional and single peaked utility function, widely used in economic  theory69, which allows us to focus 
on the costs and benefits of social interaction decisions while defining a single preferred contact rate. We model 
optimal decision-making solely as a function of infection risk aversion. We recognize that many other factors 
influence the decision-making process in the ongoing pandemic, where these may be characterized as the balance 

Figure 8.  There is a set of planning horizons minimizing the attack rate. The figure shows attack rate level 
curves as a function of the risk-takers and risk-evaders planning horizons, τ1 and τ2 , respectively. Differences 
in group-specific infection risks ( β and ǫβ ) and group-specific risk assessment modify the optimal planning 
horizon. The set of parameters used are those in Table 1.
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of independent risks, accumulated knowledge and projected  benefits11, 70. Politicization of the epidemic and the 
limited capacity to respond by those with low incomes is partially reflected in the population’s structured behav-
ioral responses. Nonetheless, we aim to get insights on the impact that heterogeneous adaptive human behavior 
produces on the system dynamics by using a parsimonious mechanistic model. Thus, effective control measures 
intended to induce behavioral responses should address the potential heterogeneous compliance levels and their 
implications. For instance, the trade-off between reducing risk efforts and the proportion of the population fol-
lowing risky behaviors may be adjusted by enforcing individual-level incentives.

Conclusions
In this paper, we studied the impact of heterogeneous adaptive human behavior on epidemics from the perspec-
tive of complex adaptive systems. That is, in our model, the individual behavioral responses and the epidemic 
dynamics are intertwined. The changing risk of infection drives behavioral adaptations, which in turn modulates 
the epidemic evolution. Besides the differential behavioral response induced by individuals’ health status, we 
assume heterogeneous living conditions lead to differential risk perceptions that ultimately modulate behavioral 
choices among the risk-groups populations. We assume the population under study is structured by two risk-
groups, exhibiting differential sensitivity to the changing infection risk. The paradigm in our model of human 
adaptive behavior is given by the trade-off between increasing contacts and the differential risk of infection that 
these carry for the subpopulations.

Our results suggest that in a population consisting of two risk-groups, the extent to which adaptive behavior 
ameliorates the epidemic burden, depends upon the proportion of the population highly sensitive to the infection 
risk. Moreover, disparities between risk perception among risk-groups lead to larger epidemics, compared to the 
ones obtained when risk sensitivity is homogeneous in the population. This highlights the complex underlying 
mechanisms that lead to highly diverse epidemiological outcomes in regions exhibiting dramatic differences in 
living conditions. The impact of available information on the behavioral responses was also considered. By assum-
ing different surveillance scenarios, we found that reporting plays a key role on promoting timely and accurate 
behavioral responses. Moreover, the population structure poses a trade-off between the reporting levels and the 
proportion of the population sensitive to the infection risk. In other words, similar epidemic sizes can be attained 
in both scenarios: (i) where the majority of the population is risk sensitive, but the surveillance level is low, and 
(ii) where the majority of the population is not risk sensitive and the surveillance level is high. Our work show 
epidemiological consequences of heterogeneous adaptive human behavior in terms of the expected final epidemic 
size. However, we also emphasize the importance of addressing population heterogeneity driving differential 
behavioral responses and the emergent trade-offs. Finally, we show that sources of misinformation can lead to 
inaccurate assessment of the epidemiological landscape, thus counteracting the benefits of behavioral adaptations.

We conclude with a few directions for future work. A first obvious extension is to consider additional groups. 
Second, extension of the model to represent adaptive behavior during various phases of an epidemic is of inter-
est—in other words, the notion of risk perception is not held constant throughout the epidemic. This can of 
course be done computationally, but needs to be based on social and behavioral theories. Third, extending the 
model to networked systems would be interesting but poses new computational challenges. In a networked 
system, each individual can plan and adapt based on the local information. But computationally, this becomes 
challenging as adaptive behavior now needs to be computed on a per node basis.
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