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Study on emergency escape route 
planning under fire accidents 
in the Burtai coal mine
Jia Jinzhang1,2 & Wang Fengxiao1,2*

Developing an effective safety emergency plan for coal mines is crucial to prevent and reduce 
accidents, as well as improve the emergency response capability. This paper identifies and 
analyzes potential accident hazards in the Burtai coal mine through a comprehensive and practical 
investigation of risk factors. Based on a mathematical model of a mine fire disaster relief algorithm, 
the MATLAB software is used to conduct numerical simulations of the dynamic spreading process of 
the fire smoke. Several escape routes are determined based on the simulation results, including the 
main escape route at the working face of coal mining, the main escape route at the working face of 
tunneling, and the main escape route against the reverse wind in the main inclined shaft, the auxiliary 
adit, and the main air intake roadway. The results presented in this study can provide guidance for 
improving fire emergency escape and rescue plans of the Burtai coal mine.

The coal industry is a top high-risk industry with poor production conditions and a constantly changing operat-
ing environment. Many types of disasters and hazards such as floods, fires, gas, coal dust, and roof accidents can 
cause severe threats to the production safety of coal mines. Coal mine safety issues are the top priority in the 
national production  safety1–4. Therefore, establishing an effective safety emergency plan is important for providing 
an appropriate response to an accident, escape, and rescue. When an accident occurs, providing a fast, orderly, 
and effective escape and rescue plan is necessary to ensure a rapid control of the accident and timely achieve 
self-rescue, mutual rescue, and disaster escape so as to minimize casualties and property  losses5–9.

Underground mining is the main method of coal extraction in China and many other coal-producing coun-
tries. In recent years, with a continuous increase in mining depth, the possibility of various disasters, such as 
gas explosions, eruptions, gas outbursts, and mine floods, has  increased10,11. When a major disaster occurs in 
a mine, it can severely hurt underground workers and even threaten their  lives12,13. Fire, vehicle collisions, and 
rockfalls are the most common emergencies in mineral and metal underground  mines14,15. In most areas of a 
mine, fire can affect roof stability and produce toxic gases, thus causing hypoxic conditions and making sponta-
neous escape and rescue operations  impossible16,17. Mine rescue operations take a certain time regardless they 
are carried out by mine rescue teams or local rescue services and emergency medical services. There are time 
delays because the rescue team has to go into remote mines, arrange rescue operations, and navigate in complex 
environments to reach the accident site, which can be far underground. When a disaster happens, a large amount 
of toxic gases is generated, and the presence of fire and wind pressure can even accelerate gas diffusion. There-
fore, workers must be evacuated rapidly from a disaster site to the safe zone. However, underground mines have 
complex structures with limited escape routes. These factors impose significant difficulties to escape planning 
and realization. Therefore, to reduce the death rate from accidents and ensure worker safety, it is critical to plan 
an escape route  ahead18–23.

The Mine Safety Technology and Training Committee has recommended that mine workers must possess 
the following qualifications to ensure effective escape and rescue in the case of emergency: escape knowledge, 
ability to determine an evacuation route for a specific mine, and general knowledge about escape and rescue for 
decision making in  emergency24,25. A lack of these qualifications can severely affect mining safety. At the very first 
moment of an emergency, understanding the current situation can significantly improve escape and rescue. A 
rescue route refers to an optimal route for the rescue personnel to enter the disaster area from a safe area, whereas 
an escape route refers to an evacuation route for the underground personnel to leave the dangerous  area26,27.

At present, most researches on the planning of emergency escape routes are mostly carried out with indoor 
buildings as the research object. The geological structure of the mine is complex and the tunnels are crisscross, 
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so the existing indoor disaster escape route research conclusion has little application value in the coal mine. The 
existing research on coal mine emergency escape route planning is mostly carried out from the existing safety 
management regulations. Through continuous improvement of emergency management system and continuous 
safety training, it aims to enable underground workers to master more disaster escape and escape skills as much 
as possible, so as to improve the success rate of emergency disaster escape. Every mine and every emergency 
situation are unique, and the causes of different coal mine accidents are different. For different mines, a certain 
disaster may lead to different consequences. Therefore, the research on emergency disaster escape route of mine 
fire should be carried out for a specific mine. The research results obtained in this way are universal and valuable.

In this work, we analyzed potential accidents of the Burtai coal mine and establishes a mathematical model to 
simulate the dynamic fire propagation process of a smoke flow. Based on the simulation results of the constructed 
model, optimal escape routes are determined. The results obtained from this work can provide guidance for fire 
emergency planning of the Burtai coal mine.

Burtai coal mine overview and accident hazard analysis
Burtai coal mine overview. The Burtai coal mine is a super-size mine located in Inner Mongolia, China, 
with an area of 192.8559  km2 and an average elevation of 1300 m. The Burtai coal mine has complex terrain, 
including many crisscrossing valleys. The geological reserve of its coal seam is 3.3 billion tons, and its recoverable 
reserves account for 1.85 billion tons. According to the annual mining yield estimation of 20 million tons, the 
service life of this mine will be 71.3 years. There are a total of ten recoverable coal seam layers in this mine. The 
currently mined layers are as follows: 2–2 in the first layer and 4–2 in the second layer. The coal seam dip angle 
is 1°–3°. The coal seam thickness is in the range of 0.87–7.32 m, with an average value of 3.78 m. The resource 
reserve utilization thickness is in the range of 0.87–7.24 m, with an average value of 3.67 m. The recoverable 
thickness in the bifurcation area is between 0.90 and 5.00 m, with an average value of 2.28 m. The recoverable 
thickness in the combined area is between 0.87 and 7.24 m, with an average value of 5.90 m. The thickness of the 
coal seam changes regularly with a tendency of thickening in the middle and thinning in the southeast and west, 
i.e., thickening in the combined area and thinning in the bifurcation area.

Accident hazard analysis. Several mining approaches have been adopted in the Burtai coal mine, includ-
ing inclined shaft, adit, and vertical shaft. Also, partition extraction ventilation is used in this mine. Initially, 
five shafts were arranged, including the main inclined shaft, an auxiliary adit, a Sundingholuo air intake shaft, 
an industrial square air return inclined shaft, and a Sundingholuo air return shaft. The first three shafts induct 
air, and the last two shafts return air. The total air volume of the mine is 15,212  m3/min; the total air intake and 
return volumes are 15,241  m3/min and 15,482  m3/min, respectively. Inverted ventilation for the entire mine is 
achieved by using multiple main fans with fan reversal. The coal mining method is comprehensive mechanized 
coal mining along the long wall. The roof is managed by using the total straddle method. Further, tunneling is 
achieved by using continuous shearers, anchor diggers, and comprehensive diggers. Finally, shuttle cars and 
conveyors are used to transport coal.

According to the gas grade certification of the Burtai coal mine in 2021, the relative gas emission is 0.88  m3/t, 
and the absolute gas emission is 23.99  m3/min. The relative and absolute emissions of carbon dioxide are 0.41 
 m3/t and 11.01  m3/min, respectively. The mine has a low gas level without outburst danger related to coal and 
gas. The coal dust explosion indices of the 2–2 coal and the 4–2 coal are 33.82% and 36.55%, respectively, which 
indicates high explosive properties. The spontaneous combustion tendency grades of the 2–2 coal seam and the 
4–2 coal dust fall in class II spontaneous combustion, and the ignition period is usually 1–3 months. When there 
is floating coal in the roadway with poor ventilation, spontaneous combustion may occur. Moreover, a coal dust 
explosion can be caused by a gas explosion, electrical equipment detonation, friction sparks, impact sparks, a 
fire caused by electric welding, and spontaneous coal combustion.

Depending on the type of coal mined and the conditions of the working face, the fire may spread rapidly, 
intensify and burn for a long time. Because of this, the normal and safest choice is self-escape29. For miners, it is 
very difficult to find a reasonable and safe emergency escape route in such a complex underground environment.

Table 1 indicated four possible affecting factors based on pathfinding and communication problems of 
possible environmental conditions under which mine escaping can occur. The environmental conditions will 
detect the most appropriate technology to be used and various limitations on the escaping. For pathfinding and 
decision-making, what matters is visibility and words, which may not always be possible in the process of self 
 escape30. Therefore, it is necessary to analyze and plan the emergency escape route in advance through numeri-
cal simulation, so as to provide guarantee and support for underground workers to make reasonable choices in 
emergency situations.

Table 1.  Possible factors affecting escape.

Affecting factor 1 Affecting factor 2 Affecting factor 3 Affecting factor 4

No visibility No speech No Tactile No sign signal communication
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Mathematical model of mine fire rescue algorithm
Based on the analysis on the potential hazard sources above and factors affecting the escape routes of Burtai coal 
mine, combined with the reality of Burtai coal mine, a fire emergency escape simulation algorithm for the coal 
mine is proposed and described as follows:

First, an average walking speed of a mine worker is calculated. The walking speed of a mine worker at a 
moment t is given by:

where v(t) is the walking speed of a worker at a moment t in m/s; v0 denotes the normal walking speed (m/s); kt 
is the walking speed variation with time; k1 denotes the impact coefficient of a roadway slope, and 0 < k1 < 1 when 
the roadway slope is J > 0, k1 = 1 when J = 0, and k1 > 1 when J < 0; k2 represents the impact coefficient of roadway 
obstacles, and k2 = 1 when either there are no obstacles on a roadway or obstacles do not affect workers’ walking, 
and 0 < k2 < 1 when there are obstacles on a roadway and they affect workers’ walking; k3 is the impact coefficient 
of the roadway shape, and 0 < k3 < 1 when the roadway shape is unfavorable for walking; otherwise, k3 = 1.

The time spent by a worker passing through a roadway is given by:

where l(i) is the length of roadway i (m), and v(i) the average speed of the worker passing through the roadway 
i (m/s).

The time required by the smoke front to pass through a roadway i is obtained by:

where vf (i) is an average velocity of the smoke front passing through the roadway i (m/s).
In a directed graph G = (V, E), V is a collection of nodes, and V = {v1, v2, · · · vm} ; m denotes the number of 

nodes, and m = |v| ; E is the collection of branches, and E = {e1, e2, · · · en} ; n is the number of branches, and 
n = |E| . In a directed graph G, Gw is the polluted area, and other sub-graphs represent safe areas and are denoted 
as Gs

28, showing the following relationship with the polluted area:

In the escape process, workers may follow the wind direction or run against the wind direction. Therefore, a 
depth-first search (DFS) method based on an undirected graph should be used to determine an escape  route31. 
The collection of nodes from the ending node of the current branch to the pathways in a safe area is denoted by 
Ps and expressed as:

When a fire occurs, the front of the fire smoke flow may spread to a certain location ξ in a branch ek through 
different paths. The set of these pathways is denoted by Pf (ek , ξ) and expressed as follows:

The path Pfq(ek , ξ) and time tfq(ek , ξ) of the front of the fire smoke flow that first spreads to a location ξ in a 
branch ek are respectively given by:

where tf (ξ) is the time needed for the front of the smoke flow to spread (s); xf  is the residual distance of the 
smoke flow (m); v

f
(k, x) denotes an average spreading velocity of the front of the smoke flow at the residual 

distance xf  of the current branch ek (m/s); f  is the number of branches before the branch ek on the smoke flow 
spreading path Pi(Pi ∈ Pf ) ; tf (j) represents the time needed for the smoke front to pass through a roadway j (s).

An escape route is determined as a collection of escape pathways Pesc selected from the collection of safe 
pathways Ps, which can be expressed as follows:

(1)v(t) = v0
kt

k1k2k3
,

(2)t(i) =
l(i)

v(i)
,

(3)tf (i) =
l(i)

vf (i)
,

(4)Gs = G − Gw .

(5)Ps = {Pi|V
−(Pi) = vt , (vj , vt) = ef ;V

+(Pi) = vk , vk ∈ V(Gs)}.

(6)Pf (ek , ξ) = {Pi|V
−(Pi) = vt ,V

+(Pi) = ξ , (vf , vt) = ef }.

(7)Pfq(ek , ξ) = {Pi|tf (Pi) < tf (Pk),Pi ∈ Pf (ξ), Pk ∈ Pf (ek , ξ)},

(8)tf (ek , ξ) =
xf

vf (k, xf )
+

f
∑

j=0

tf (j),

(9)tfq(ek , ξ) = t(Pfq(ek , ξ)),

(10)Pesc = {Pi|tr(ek , ξ) < tfq(ek , ξ), ek ∈ Ps},
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where tr(ek , ξ) is the time needed for workers to reach a location ξ in a branch ek (s); tfq(ek , ξ) is the shortest time 
needed for the smoke flow to reach the location ξ (s); ek denotes a branch in the collections Ps and Pf (ek , ξ) ; x 
is the remaining distance of escape (m); v(k, x) denotes an average walking speed of workers to reach the dis-
tance x of the current branch ek (m/s); f is the number of branches before branch ek on the current escape path 
Pi(Pi ∈ Pesc) ; t

(

j
)

 the time needed for workers to pass through a roadway j (s).
The best escape route is the shortest path in the collection of all feasible escape paths from the fire location 

to any node in the safe areas, and it is defined as follows:

where t(Pi) is the time needed for workers to pass Pi(s) , and |Pi| is the scale of Pi , i.e., the number of branches in Pi.
Based on the established mathematical model, the simulations are conducted using MATLAB software. 

First, the simulation calculation program was written, and then the simulation calculations were performed, as 
shown in Fig. 1.

(11)tr(ek , ξ) =
x

v(k, x)
+

r
∑

j=0

t(j),

(12)Popt = {Pi|t(Pi) < t(Pk),Pi ∈ Pesc , Pk ∈ Pesc},

(13)t(Pi) =

|Pi |
∑

j

t(ej) (ej ∈ Pi),

Figure 1.  Numerical calculation process.
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Analysis of simulation results
A ventilation network diagram was drawn according to the overall structure of the Burtai coal mine, as shown in 
Fig. 2. A ventilation network topology of the Burtai coal mine was constructed based on the diagram displayed 
in Fig. 2, as shown in Table 2.

Based on the monthly ventilation report of the Burtai coal mine, the simulation data of the dynamic spread-
ing process of the smoke flow in a fire were obtained, as shown in Table 3. Accurate construction of ventilation 
network extension and supplement relationship is crucial to the establishment of a ventilation network graph 
because it defines the correctness of the ventilation network graph. The ventilation network graph reflects the 
branches and circuits of the whole mine and is the basis for determining a disaster escape  route32. Based on 
the mathematical model of the mine fire spreading process and actual ventilation network data, the dynamic 
calculation of mine fire spread was conducted. According to the simulation results, fire source parameters, and 
personnel location, the main disaster escape routes were obtained. The main steps to determine an optimal escape 
route by numerical simulation are shown in Fig. 3.

The ventilation network diagram of the Burtai coal mine is shown in Fig. 4. According to the numerical 
simulation results and Fig. 4, the main escape routes can be determined for disasters that occur at the coal min-
ing working face and the tunneling working face, as well as in the main inclined shaft, auxiliary adit, and the 
main air intake roadway.

There are three main disaster escape routes at the coal mining working face, which are as follows (All escape 
routes below can be found in Fig. 4):

Route 1: 22,103 (1) comprehensive mining face → 22,103 transport chute → 2–2 auxiliary coal transport 
roadway → auxiliary transport adit → ground;

Route 2: 22,103 (2) comprehensive mining face → 22,104 transport chute → 2–2 auxiliary coal transport 
roadway → auxiliary transport adit → ground;

Figure 2.  Ventilation network diagram of the Burtai coal mine.

Table 2.  Topological relation of ventilation network in Buertai Coal Mine.

Branch Starting node Ending node Branch Starting node Ending node Branch Starting node Ending node

1 1 6 14 10 11 27 16 5

2 6 7 15 10 11 28 3 17

3 7 8 16 15 11 29 17 13

4 7 8 17 10 15 30 12 18

5 7 8 18 11 9 31 18 19

6 7 8 19 15 11 32 19 11

7 7 8 20 15 11 33 19 20

8 8 9 21 2 12 34 19 20

9 9 4 22 12 13 35 20 21

10 6 10 23 13 14 36 19 21

11 10 11 24 14 15 37 19 21

12 10 11 25 14 16 38 21 16

13 10 11 26 11 16 39 17 18
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Route 3: 42,102 comprehensive mining face → 42,102 transport chute → 4–2 auxiliary coal transport road-
way → 4–2 dark auxiliary coal transport adit → 2–2 auxiliary coal transport roadway → auxiliary transport 
adit → ground.

There are six main disaster escape routes at the tunneling working face, which are as follows:
Route 1: 12,101 transport chute tunneling face → 12 auxiliary coal adit → 2–2 auxiliary coal transport road-

way → auxiliary transport adit → ground;
Route 2: 12,101 return air chute tunneling face → 12 auxiliary coal adit → 2–2 auxiliary coal transport road-

way → auxiliary transport adit → ground;
Route 3: 22,201 return air chute tunneling face → central auxiliary transport roadway → 2–2 coal auxiliary 

transport roadway → auxiliary transport adit → ground;
Route 4: 22,202 retreat chute tunneling face → central auxiliary transport roadway → 2–2 coal auxiliary 

transportation roadway → auxiliary adit → ground;
Route 5: 42,103 transport chute tunneling face → 42,103 transport chute → 4–2 auxiliary coal transport 

roadway → 4–2 dark auxiliary coal transport adit → 2–2 auxiliary coal transport roadway → auxiliary transport 
adit → ground;

Table 3.  Simulation data of dynamic spreading process of fire smoke in Buertai Coal Mine.

Branch Starting node Ending node
Branch 
length/m

Flow rate/
m3·s-1

Truncation 
area/m2 Slope

Average 
density/kg·m3 Perimeter/m

1 1 6 500 112 15 0.7 1.102 13

2 6 7 50 25 12 0.3 1.102 10

3 7 8 120 6 10 0.3 1.104 9

4 7 8 120 7 10 0.1 1.105 9

5 7 8 120 5 10 0.2 1.102 9

6 7 8 120 3 10 0.1 1.103 9

7 7 8 120 4 10 0.1 1.105 9

8 8 9 300 25 12 0.2 1.121 10

9 9 5 367 116 15 0.1 1.161 13

10 6 10 65 87 12 0.8 1.101 10

11 10 11 160 6 10 0.1 1.102 9

12 10 11 160 54 10 0.2 1.102 9

13 10 11 160 4 10 0.3 1.103 9

14 10 11 160 9 10 0.1 1.102 9

15 10 11 160 9 10 0.1 1.103 9

16 15 11 160 5 10 0.2 1.105 9

17 10 15 38 5 12 0.3 1.101 10

18 11 9 78 91 12 0.2 1.121 10

19 15 11 129 5 10 0.1 1.120 9

20 15 11 126 5 10 0.1 1.110 9

21 1 12 460 28 15 0.8 1.101 13

22 12 13 34 10 12 0.1 1.102 10

23 13 14 38 14 12 0.1 1.102 10

24 14 15 32 10 12 0.2 1.103 10

25 14 16 340 4 10 0.3 1.112 9

26 11 16 45 10 12 0.1 1.138 10

27 16 5 378 15 0.7 0.7 1.140 13

28 1 17 656 34 15 0.6 1.101 13

29 17 13 56 4 10 0.1 1.101 9

30 12 18 129 18 10 0.1 1.101 9

31 18 19 45 48 10 0.1 1.102 9

32 19 11 345 4 10 0.1 1.105 9

33 19 20 89 10 10 0.1 1.106 9

34 19 20 89 23 10 0.1 1.108 9

35 20 21 67 33 10 0.1 1.109 9

36 19 21 235 6 10 0.1 1.110 9

37 19 21 235 5 10 0.1 1.120 9

38 21 16 68 44 12 0.1 1.136 10

39 17 18 18 30 12 0.2 1.104 10
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Route 6: 42,104 return air chute tunneling face → 42,103 transportation chute → 4–2 auxiliary coal transport 
roadway → 4–2 dark auxiliary coal transport adit → 2–2 auxiliary coal transport roadway → auxiliary transport 
adit → ground.

There are four main disaster escape routes from the fire with the reversed wind in the main inclined shaft, 
the auxiliary transport adit, and the main air intake roadway, which are as follows:

Route 1: staff in the 2–2 coal and panel 1 → 2–2 coal return air roadway → industrial square return air inclined 
shaft → ground;

Route 2: staff in the 4–2 coal → 4–2 coal return air roadway → 4–2 dark coal return air inclined shaft → 2–2 
coal return air roadway → industrial square return air inclined shaft → ground;

Route 3: staff in the 2–2 coal and panel 2 → central auxiliary transport roadway → 32# connected roadway 
grid bypass → central return air roadway to wait for rescue;

Route 4: staff at the bottom of the air intake vertical shaft → central auxiliary transport roadway → 32# con-
nected roadway grid bypass → central return air roadway to wait for rescue.

Figure 3.  Modeling process of the best disaster escape route.

Figure 4.  Schematic diagram of the ventilation network of the Burtai coal mine.
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Conclusions
Based on a self-established mathematical model of a mine fire disaster relief algorithm, numerical simulations 
of a dynamic spreading process of the fire smoke are conducted, and the main disaster escape route in the Burtai 
coal mine is determined. The main conclusions of this study can be drawn as follows:

(1) Potential accidents and hidden danger of the coal mine are identified based on the geographical location, 
geological conditions, and actual production situations of the Burtai coal mine.

(2) A mathematical model of a mine fire rescue algorithm is constructed for the hidden danger and potential 
accidents. This model is used to conduct numerical simulation on the dynamic spreading process of the 
fire smoke flow in the Burtai coal mine.

(3) Several escape routes are determined based on the simulation results, including the main escape route at 
the coal mining working face, the main escape route at the tunneling working face, and the main escape 
route against the reverse wind in the main inclined shaft, auxiliary adit, and the main air intake roadway.

In future work, the main disaster escape routes in all mining areas of the Burtai coal mine could be deter-
mined, and technical support for improving the emergency rescue plan of the coal mine could be provided.

Received: 19 April 2022; Accepted: 23 June 2022

References
 1. Amyotte, P. Some myths and realities about dust explosions. Process Saf. Environ. Prot. 92(01), 292–299 (2014).
 2. Jia, J. et al. Propagation characteristics of the overpressure waves and flame fronts of methane explosions in complex pipeline 

networks. Geomat. Nat. Haz. Risk 13(01), 54–74 (2022).
 3. Azam, S. & Mishra, D. Effects of particle size, dust concentration and dust-dispersion-air pressure on rock dust inertant require-

ment for coal dust explosion suppression in underground coal mines. Process Saf. Environ. Prot. 126(01), 35–43 (2019).
 4. Wang, C., Yang, S. & Li, X. Simulation of the hazard arising from the coupling of gas explosions and spontaneously combustible 

coal due to the gas drainage of a gob. Process Saf. Environ. Protect. 118(01), 296–306 (2018).
 5. Li, X. et al. Modified stochastic petri net-based modeling and optimization of emergency rescue processes during coal mine 

accidents. Geofluids 1(01), 1–13 (2021).
 6. Saleh, J. & Cummings, A. Safety in the mining industry and the unfinished legacy of mining accidents: Safety levers and defenses-

in-depth for addressing mining hazards. Saf. Sci. 49(06), 764–777 (2011).
 7. Zhang, X., Li, S. & Zhang, X. Evaluation of emergency rescue ability based on RS-IPA: Evidence from coal mining firms. Nat. 

Hazards 106(03), 1915–1929 (2021).
 8. Fu, G. et al. Accidents analysis and prevention of coal and gas outburst: Understanding human errors in accidents. Process Saf. 

Environ. Prot. 134(01), 1–23 (2020).
 9. Halim, A. & Brune, J. Do refuge chambers represent a good strategy to manage emergencies in underground coal mines?. Min. 

Metall. Explor. 36(06), 1191–1199 (2019).
 10. Wang, J. et al. Safety pre-control of stope roof fall accidents using combined event tree and fuzzy numbers in China’s underground 

noncoal mines. IEEE Access 8(01), 177615–177622 (2020).
 11. Shi, S. & Li, R. Research and application of AHP-GT model of gas explosion accident evolution risk assessment in coal mine. J. 

Coal Sci. Eng. 35(07), 1137–1141 (2010).
 12. He, Z. et al. A process mining approach to improve emergency rescue processes of fatal gas explosion accidents in Chinese coal 

mines. Saf. Sci. 111(01), 154–166 (2018).
 13. Xi, J., Cliff, D. & Wu, Z. A comparison of underground coal mine emergency management in China and Australia. Int. J. Emerg. 

Manag. 13(04), 343–349 (2017).
 14. Xu, Y. et al. Analysis and lessons of a mine water inrush accident resulted from the closed mines. Arab. J. Geosci. 13(14), 1–10 

(2020).
 15. Zhao, X. et al. A dynamic rescue route planning method based on 3D network in mine water inrush hazard. Geomat. Nat. Haz. 

Risk 10(01), 2387–2407 (2019).
 16. Zhang, W. et al. A riskassessment of a water-sand inrush during coal mining under a loose aquifer based on a factor analysis and 

the fisher model. J. Hydrol. Eng. 25(08), 1–12 (2020).
 17. Whittaker, J., McLennan, B. & Handmer, J. A review of informal volunteerism in emergencies and disasters: Definition, opportuni-

ties and challenges. Int. J. Disaster Risk Reduc. 13(01), 358–368 (2015).
 18. Hansson, S. Promoting inherent safety. Process Saf. Environ. Prot. 88(03), 168–172 (2010).
 19. He, Z. et al. A process mining approach to improve emergencyrescue processes of fatal gas explosion accidents in Chinese coal 

mines. Saf. Sci. 111(01), 154–166 (2019).
 20. Huang, S. & Dinavahi, V. Fast distribution network reconfiguration with graph theory. IET Gener. Transm. Distrib. 12(13), 3286–

3295 (2018).
 21. Li, C. et al. Establishment of spatiotemporal dynamic model for water inrush spreading processes in underground mining opera-

tions. Saf. Sci. 55(01), 45–52 (2013).
 22. Qi, Y. et al. Spatiotemporal development of mine water inrush and its mechanism—a case study in Ganhe coal mine, Shanxi, China. 

Arab. J. Geosci. 10(19), 1–8 (2017).
 23. Zuecco, G. et al. Quantification of subsurface hydrologic connectivity in four headwater catchments using graph theory. Sci. Total 

Environ. 646(01), 1265–1280 (2019).
 24. Mine Safety Technology and Training Commission. Improving Mine Safety Technology and Training: Establishing Us Global Leader-

ship (National Mining Association, 2006).
 25. Moshood, O. Towards an emergency preparedness for self-rescue from underground coal mines. Process Saf. Environ. Prot. 149(01), 

946–957 (2021).
 26. Li, L. et al. Anatomy ofmine rescue teams’ casualty incidents: A basis for medical emergency preparedness and injury prevention. 

Disaster Med. Public Health Prep. 13(04), 695–699 (2019).
 27. Dong, L. et al. Research on the optimal escape path algorithm in mine water bursting hazard. J. Comput. Methods Sci. 18(01), 

229–246 (2018).
 28. Chen, H. et al. Comparative study on the strands of research on the governance model of international occupational safety and 

health issues. Saf. Sci. 122(01), 1–14 (2020).



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13074  | https://doi.org/10.1038/s41598-022-15437-7

www.nature.com/scientificreports/

 29. Perry, R. & Lindell, M. Preparedness for emergency response: guidelines for the emergency planning process. Disasters 27(04), 
336–350 (2003).

 30. Helsloot, I. & Ruitenberg, A. Citizen response to disasters: A survey of literature and some practical implications. J. Contingen. 
Crisis Manag. 12(03), 98–111 (2004).

 31. Chen, M. et al. Emergency rescue capability evaluation on urban fre stations in China. Process Saf. Environ. Prot. 135(01), 59–69 
(2020).

 32. Zhang, X. & Wang, Y. Discussion on unstable heat transfer coefficient between fire smoke flow and surrounding rock. J. North-
eastern Univ. 1(01), 3–6 (1996) (in chinese).

Acknowledgements
This work was partly supported by the National Natural Science Foundation of China (Grant number 52174183), 
and the Natural Science Foundation of Liaoning Province (Grant number 2019-MS-162).

Author contributions
J.J.: Formal analysis and contributed to the conception of the study. F.W.: Manuscript preparation and writing 
original manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Study on emergency escape route planning under fire accidents in the Burtai coal mine
	Burtai coal mine overview and accident hazard analysis
	Burtai coal mine overview. 
	Accident hazard analysis. 

	Mathematical model of mine fire rescue algorithm
	Analysis of simulation results
	Conclusions
	References
	Acknowledgements


