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Assessment of thermal 
distribution through an inclined 
radiative‑convective porous fin 
of concave profile using generalized 
residual power series method 
(GRPSM)
R. S. Varun Kumar1, G. Sowmya2, M. C. Jayaprakash3, B. C. Prasannakumara1, M. Ijaz Khan4,5, 
Kamel Guedri6, Poom Kumam7,8*, Kanokwan Sitthithakerngkiet9 & Ahmed M. Galal10,11*

The thermal distribution in a convective‑radiative concave porous fin appended to an inclined surface 
has been examined in this research. The equation governing the temperature and heat variation in fin 
with internal heat generation is transformed using non‑dimensional variables, and the resulting partial 
differential equation (PDE) is tackled using an analytical scheme, generalized residual power series 
method (GRPSM). Moreover, a graphical discussion is provided to examine the consequence of diverse 
non‑dimensional variables including the parameters of convection‑conduction, ambient temperature, 
radiation, heat generation, and porosity effect on the thermal field of the fin. Also, a graph is plotted 
to analyze the variations in unsteady temperature gradient using the finite difference method (FDM) 
and generalized residual power series method (GRPSM). The major result of this investigation unveils 
that as the convection‑conduction parameter scale upsurges, the distribution of temperature in the fin 
diminishes. For the heat‑generating parameter, the thermal distribution inside the fin increases.

Abbreviations
k  Thermal conductivity
Nc  Convection–conduction parameter
α  Angle of inclination
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τ  Time
ε∗  Emissivity
σ  Stefan–Boltzmann constant
g  Acceleration due to gravity
�  Fin taper
K  Permeability
cp  Specific heat
Nr  Radiation–conduction parameter
h∗  Convective heat transfer coefficient
ρ  Density
W  Width of the fin
�  Non-dimensional temperature
t(x)  Local semi-fin thicknesses
φ  Porosity
C  Fin taper ratio
tb  Semi-base thickness
X  Fin’s length (dimensionless)
Q  Internal heat generation parameter (dimensionless)
SH  Porosity parameter
L  Length of the fin
τ ∗  Time(dimensionless)
q∗(T)  Internal heat generation
β  Volumetric expansion index
x  Fin axial distance
T  Temperature

Subscripts
a  Ambient
b  Base
s  Solid
r  Relative quantity

Heat transfer is the transmission of energy induced by temperature variations and if two systems in contact have 
different temperatures, heat transfer occurs until thermal equilibrium is reached. The innovation of effective 
heat transfer liquids with elevated thermal conductivity and heat transfer coefficient is required to improve the 
efficiency of the heat transmission process and to reduce the cost and size of the relevant modules and devices. 
The suspension of tiny solid particulate in liquids is an effective method of increasing the thermal conductivity of 
liquids and thereby enhances the heat transference phenomenon. Using these kinds of liquids, several investiga-
tors explored the features of heat  transferal1–7. On the other side, heat transfer is enhanced using the extended 
surface. Excessive heat is produced in machine parts in several industrial applications, which can lead to a vari-
ety of material flaws. Heat transfer through the extended surface of the apparatus is one strategy for avoiding 
material damage. A fin is an extended surface that is utilized to augment the rate of heat transference from the 
primary surface to the environment. It has extensive technological applications, namely air-cooled craft engines, 
compressors, nuclear reactors, heat exchangers, refrigeration, electrical and electronic apparatuses, and so on. 
Meanwhile, porous material fins have considerable advantages over conventional fins, and their research is one 
of the most comprehensive topics in the field of mass and energy transference. In the heat transferal scrutiny of 
permeable material fins, energy and mass transference of both solid and fluid media must be taken into account. 
Several analyses have been performed to explore efficient and productive methods of heat transferring through 
permeable finned surfaces. Ndlovu and  Moitsheki8 discussed the one-dimensional heat transport and thermal 
aspects in a moveable porous straight fin of the uniform area of cross-section. With the impact of radiative, 
magnetic, and convective mechanisms, Madhura et al.9 depicted the features of the thermal field of a permeable 
longitudinal fin. The sinc collocation method was executed to study the thermal behavior of permeable fin by 
Nabati et al.10 under the influence of magnetic force. With the implementation of analytical procedures, Kundu 
and  Yook11 determined the analytical approximation of the porous fin and thus investigated the heat transfer 
features of the considered fin. Considering the local thermal non-equilibrium model, Buonomo et al.12 researched 
the energy transfer aspects of a permeable rectangular extended surface. Implementing the spectral collocation 
method, Kumar et al.13 described the temperature and energy variation in a permeable trapezoidal extended 
surface with radiation phenomenon.

Fins with a non-uniform cross-sectional area, which contribute to a lighter structure, are recommended in 
airborne and space application fields over heavier rectangular-shaped fins, despite the fact that such lighter fin 
constructions are more complicated and costlier to produce. Aziz and  Fang14 expounded on the thermal varia-
tions inside the straight fin of variable thickness. Further heat transfer aspects are discussed by considering vari-
ous fin profiles namely trapezoidal, rectangular and concave. Using the DTM approach, Torabi et al.15 debriefed 
the thermal performance of radiative-convective concave profiled fin. The heat transference features of the 
concave parabolic extended surface were discussed by  Kang16. Recently, Wang et al.17 employed the technique of 
DTM to examine the aspects of energy dissipation through a permeable fin of the inclined surface. The thermal 
performance and heat flow in a dovetail fin with internal heat production were probed by Goud et al.18. In the 
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presence of convection and radiation, Jagadeesha et al.19 expounded on the thermal performance of a fully wet-
ted semi-spherical fin using a non-Fourier heat conduction model. Several researchers have worked on solving 
ordinary differential equations using various techniques, including the differential transform  method20–24, sinc 
collocation  approach10, finite difference  method25, spectral collocation  method26,27, least square  method28 and 
among others. Several of these methodologies are computationally complex because they are trial-and-error in 
nature or involve complicated symbolic calculations. The residual power series method (RPSM) is one of the 
analytical techniques which is broadly utilized to achieve an approximate solution because it does not necessitate 
any restrictive assumptions or linearization. This method can be employed effectively to the given problems 
and it is easier to achieve accurate approximate solutions without more complications. The RPSM is an innova-
tive approach for procuring analytical Taylor series solutions for linear and nonlinear differential equations. 
As a result of applying the residual error notion, a series solution, as well as a truncated series solution, can be 
obtained. Arqub et al.29,30 applied the RPSM for solving the initial value problems. Using RPSM,  Syam31 discussed 
the solution of the fractional-order Fredholm integrodifferential equation. Az-Zo’bi32 applied RPSM to analyze 
the numerical solution of the time-dependent motion of the van der Waals gas model. Refs.33–38 highlights the 
importance of fluid flow regarding various assumption via different geometries.

The majority of the studies were focused on analyzing the one-dimensional thermal distribution of the 
porous straight fin or fin with a tapered profile, as evidenced by the above investigations. Further numerical and 
analytical solutions are provided in other cases. Also, there are no detailed analyses with analytical solutions on 
the unsteady thermal distribution through a tapered inclined fin. Thus, the principal objective of this analysis is 
to scrutinize the unsteady temperature variance through an inclined concave porous fin with internal heating. 
Moreover, the temperature profile of the fin has been solved analytically using the generalized residual power 
series method (GRPSM).

Mathematical formulation
The unsteady thermal performance of permeable concave fin with convection and radiation is studied. L and 
W are the length and width of the permeable concave fin with base thickness tb . The dissipation of heat to the 
ambient environment occurs due to the effect of radiation and convection at Ta . The fin which is attached to 
an inclined surface at an angle α is considered in this analysis, as demonstrated in Fig. 1. It is assumed that the 
porous medium is saturated with a single phase, homogeneous, and isotropic fluid. Darcy’s model characterizes 
the interaction of a porous medium and fluid media. Another implication involves that the fin’s thickness is small 
in comparison to its length. The temperature inside the fin is also presumed to vary only in the x-direction, with 
the temperature variation in the y-direction being small enough to ignore.

The transient energy transmission with the above-mentioned assumption is stated by the following governing 
equation (Torabi et al.15, and Ma et al.39):

Figure 1.  Physical depiction of an inclined concave parabolic fin.
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where h∗ is the convective heat transfer coefficient, q∗(T) signifies internal heat generation, ρ is the density, σ 
indicates Stefan–Boltzmann constant, g symbolizes acceleration due to gravity, K is the permeability, cp represents 
specific heat, and t(x) =

[

�

(

(

x
L

)2
− 1

)

+ tb

]

 is the local semi-fin thicknesses.
The internal heat generation is presumed to be a function of temperature:

where, qa denotes heat generation at ambient temperature, and ξ is the heat generation parameter. As this analysis 
considers a finite-length fin with an insulated tip, there will be no heat flow through the tip of the fin. Thus, the 
relevant boundary conditions (BCs) for Eq. (1) are:

The appropriate non-dimensional terms involved in this study are:

Equation (1) and BCs are transformed to a non-dimensional form using Eq. (2) and Eq. (4) to yield,

The above equation includes radiation-conduction parameter Nr which is directly associated with the surface 
emissivity, fin taper ratio C that describes the concave tapered profile, convection-conduction parameter Nc is 
the ratio of convention to conduction, internal heat production parameter Q , and porosity parameter SH.

Simultaneously with the help of Eq. (4), Eq. (3) yields,

Fundamentals of GRPSM
Let F be a function of two variables x and t  i.e.F(x, t) and consider the following PDE,

with initial and boundary conditions,

where, � is a differential operator and g denotes the source term.
Assume that the solution of Eq. (7) has the power series in the form shown below

Rewriting the Eq. (7) yields

(1)
ρcptb

∂T

∂τ
=

∂

∂x

[

{

kf φ + ks(1− φ)
}

t(x)
∂T

∂x

]

− (1− φ)h∗(T − Ta)+ (1− φ)t(x)q∗(T)

−
ρf cpgKβf sin (α)

νf
(T − Ta)

2
− σε∗

(

T4
− T4

a

)

,

(2)q∗(T) = qa[1+ ξ(T − Ta)],

(3)

T(x, 0) = Ta,

T(L, τ ) = Tb,

∂T

∂x x=0
= 0.

(4)

τ ∗ =
ksτ

ρcpL2
, kr =

kf

ks
, � =

T

Tb
, X =

x

L
, C =

�
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kstb
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b (L)

2
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νf kStb
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2
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(5)
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�(X, 0) = �a,

�
(

1, τ ∗
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= 1,

∂�

∂X

∣

∣

∣
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X=0
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(7)
∂

∂t
F(x, t)+� F(x, t) = g(x, t), x ∈ Ŵ, t ∈ [0, Z],

(8)
F(x, 0) = F0(x), x ∈ Ŵ

F(x, t) = h(x, t), x ∈ ∂Ŵ, t ∈ Z,

(9)F(x, t) =

k
∑

i=0

Yi(x)t
i , k = 0, 1, 2, 3, . . .
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To evaluate the coefficient functions, Yi(x), i = 0 . . . k , kth residual function is defined as

Reiterating this operation to find the nth-truncated solution yields

Application of GRPSM
Rearrange the Eq. (5) as:

Let the series solution be in the form

Applying the GRPSM to Eq. (13) gives

To obtain the coefficients �k(X), k = 1, 2, 3, . . . ,m , replace k th a truncated series of �(X, τ ∗) in Eq. (15), 
and apply the below derivative formula on Resk(X, τ ∗) (Modanli et al.40),

For simplificantion, the values for the corresponding parameters are taken as Nc = 2 , SH = 0.5 , Nr = 3 , 
�a = 0.2 , kr = 0.1 , C = 0.1 , φ = 0.1 , γ = 0.2 , Q = 0.8 and α = π

/

6 . Upon substituting these values and with 
the use of BCs the coefficients of �k(X), k = 1, 2, 3, . . . , 8 are determined,

(10)
∂
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∣
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Express the above coefficients in a truncation series and M = 0.5937942627 is the value obtained with the 
help of BC. Using the achieved k th truncated series in Eq. (14), the final series solution of the fin problem is 
represented as

Discussion of results
An internal heat generation, natural convection, and radiation impact are taken into account in formulating the 
unsteady thermal model of an inclined concave porous fin. Equation (1) expresses the corresponding balanced 
heat equation and is converted to a PDE using dimensionless terms along with BCs. The obtained equation 
discloses that dimensionless parameters effect the thermal distribution of a porous fin. Subsequently, Eq. (5) is 
derived analytically using the elementary properties of the proposed technique. For the analysis of the inclina-
tion effect, Table 1 is provided to witness the variation in the transient thermal profile �(X, τ ∗) of the inclined 
porous fin with respect to different angles of inclination α . It is detected from this table, that thermal distribution 
diminishes from base to tip of the porous fin for all non-dimensional variables considered in the study Nc = 1 , 
SH = 10 , Nr = 1 , �a = 0.1 , kr = 0.1 , C = 0.1 , φ = 0.1 , γ = 0.1 , Q = 0.8 at different values of inclination angle. 
The thermal profile signifies greater thermal distribution at α = 0 , resulting in a lower rate of heat transfer. 
Meanwhile, as the α value is modified ( α = π

/

6, π
/

3,π
/

2 ), the thermal profile of the fin reveals decreasing 
characteristics at all locations of fin length. The consequence of the aforementioned dimensionless parameters on 
the thermal gradient �(τ ∗,X) of the fin is graphically examined in this section. The nonlinear PDE (Eq. (5)) is 
solved using the finite difference method (FDM) technique in the domain 0 ≤ X ≤ L and 0 ≤ τ ∗ ≤ T . Along with 
uniform mesh, the finite-difference approximation is applied in the direction of X and the step size of time and 
space domains are chosen as �τ ∗ = �X = 0.001 . Further, the present analysis (GRPSM) is compared with the 
numerical result (FDM) as displayed in Fig. 2 and they are found to be in excellent agreement. The significance 
of dimensionless parameters on the temperature deviance of the fin has been portrayed in Figs. 3, 4, 5, 6 and 7.

The impact of convective parameter Nc on the temperature distribution of the concave fin is seen in Fig. 3a for 
SH = 0.5 , Nr = 1 , �a = 0.1 , kr = 0.1 , φ = 0.1 , γ = 0.1 , α = π

/

6 , Q = 0.8 , and τ ∗ = 0.5 by considering different 
C values ( C = 0.1 andC = 0.3 ). It is detected that with a rise in the convective parameter ( Nc = 1, 3, 5 ) thermal 
profile decreases. This is due to the effect of the natural convection on the concave surface of the fin. The convec-
tion will carry the heat on fin surface and hence helps in decreasing the heat and aids in fin cooling. With all the 
considered parameter Nc = 1 , SH = 0.6 , �a = 0.2 , kr = 0.1 , φ = 0.1 , γ = 0.1 , α = π

/

6 , Q = 0.8 , Fig. 3b displays 
the impact of radiative parameter Nr on the thermal performance of the concave fin. The radiative parameter 
exhibits the same nature as that of the convective parameter, i.e., a decrease in temperature profile with increase 
in Nr (2, 4, 6). The radiation effect increases the transfer of heat from fin surface to the surrounding. Therefore, 
the reduction in temperature has been observed with rising in radiation parameter. The significance of ambi-
ent temperature �a(0, 0.3, 0.5) on the fin thermal field of a concave inclined porous fin with Nc = 1 , SH = 0.2 , 
Nr = 1 , kr = 0.1 , φ = 0.1 , γ = 0.1 , α = π

/

6 , Q = 0.8 , and τ ∗ = 0.5 is exhibited in Fig. 4a. The enhancement 
in ambient temperature results in an increase in thermal profile. This is because, �a is the ratio of surrounding 
temperature to base temperature. Hence, with augment in �a there is a decrease in the transmission of heat from 
fin surface to surrounding which leads to the increase in thermal profile. By setting Nc = 2 , Nr = 1 , �a = 0.3 , 
kr = 0.1 , φ = 0.1,γ = 0.1 , α = π

/

6 , Q = 0.7 , and τ ∗ = 0.5 , the effect of SH on � of the fin has been revealed 
in Fig. 4b. The enhancement in SH ( 1, 3, 5 ) leads to the reduction in the temperature profile. This is due to the 
fact that the porosity parameter helps in better interaction of surrounding air with the pores of the fin. Hence 

(22)

�8 = −0.05685639053M+ 0.0004730083722+ 5.751018328M13
− 4.073041686M9

+ 1.318685879M11
− 3.151272005M6

+ 1.069742989M8
+ 7.101219309M10

− 0.4787022153M3
+ 0.09124498829M4

+ 0.3033104496M2
+ 1.101500411M5

+ 2.140222196M7.

(23)
�
(

X, τ ∗
)

= 0.5937942627+ 0.2544108558
(

τ ∗2
)

+ 0.1030198229
(

τ ∗
)4

+ 0.03238695124
(

τ ∗
)6

+ 0.01234307481
(

τ ∗
)8

+ · · · · · · · · · .

Table 1.  Variation of �(X, τ ∗) for various angle of inclination at τ ∗ = 0.5.

X

�(X, τ∗)

α = 0 α =
π
6

α =
π
3

α =
π
2

0 0.762517721 0.746150111 0.734722554 0.730650835

0.1 0.765114321 0.748806389 0.737418358 0.733360298

0.3 0.785633513 0.769877478 0.758858153 0.754927991

0.5 0.825253915 0.810996009 0.800992971 0.797418843

0.7 0.882180478 0.871154813 0.863380424 0.860594648

0.9 0.956000595 0.951191296 0.94777482 0.946545365

1 1 1 1 1
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the porosity parameter helps in the fin cooling effect. The consequences of heat generation parameter Q on the 
� of the fin have been depicted in Fig. 5a with Nc = 1 , SH = 0.3 , Nr = 1 , �a = 0.2 , kr = 0.1 , φ = 0.1 , γ = 0.1 , 
α = π

/

6 , and τ ∗ = 0.5 . Here the augment in Q ( 0, 0.4, 0.8 ) enlarges the thermal value along the axial length of 
the fin because of the presence of internal heat within the fin. The internal heat enhances the fin surface tem-
perature therefore it decreases the rate of cooling from the surface of the fin. Figure 5b explicates the impact of 
τ ∗ on � of the concave porous fin. As theτ ∗ ( 0.2, 0.3, 0.4 ) values increase, the temperature improves remarkably 
under the consideration of Nc = 1 , SH = 0.1 , Nr = 1 , �a = 0.1 , kr = 0.1 , φ = 0.1 , γ = 0.1 , α = π

/

6 , Q = 0.8 . 
Figure 6a and b demonstrate the variation in the unsteady thermal distribution of the concave inclined porous 
fin as a function of time in a three-dimensional (3D) plot for Nc = 1 , SH = 0.1 , Nr = 1 , �a = 0.1 , kr = 0.1 , 
C = 0.3 , φ = 0.1 , γ = 0.1 , α = π

/

6 , and Q = 0.8 . In particular, in Fig. 6a, the value of τ ∗ is picked as 0.1, and 
for this value, a decrement in thermal variation has been discovered, whereas an increment in thermal variation 
is recognized for τ ∗ = 0.3 , as exhibited in Fig. 6b. A comparison of the thermal profile values of the concave 
inclined solid and porous fin has been performed to uphold the significance of modeled fin problem. For a bet-
ter interpretation of the thermal variation of the concave inclined porous and solid fin, Fig. 7a and b are plotted 
when the parameter values are set to Nc = 1 , Nr = 1 , �a = 0.1 , kr = 0.1 , C = 0.1 , γ = 0.1 , α = π

/

6 , Q = 0.8 , 
and τ ∗ = 0.5 . At X = 0 , the thermal field value of the solid fin (SH = φ = 0) is comparatively higher than the 
porous fin (SH = 10, φ = 0.1) and the same behavior is observed at all the considered values of X (0, 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6). Thus, it is deduced that the porous fin helps in thermal dissipation and thereby provides a higher 
heat transfer rate. The effect of the fin taper ratio is recognizable in all of the aforementioned thermal investiga-
tion cases, and it is determined that the temperature inside the fin decreases as the scale of C (0.1, 0.3) increases.

Conclusions
The current study explains transient thermal dispersion in a concave permeable fin exposed to convective-
radiative heat transfer. The governing equation is nondimensionalized by employing non-dimensional terms, 
and the arising PDE is solved analytically using the GRPSM. The consequences of significant non-dimensional 
factors on the temperature gradient are also depicted utilizing graphical portrayal. The following are some of 
the most significant study results of the present research:

• Unlike prior investigation, the heat transfer performance of the fin is effected not only by the radiation and 
convection mechanisms but also by the fin taper ratio, and inclination of the primary surface.

• The thermal dispersal in the porous fin is elevated in increasing time.
• With a greater level of fin taper ratio, the fin undergoes diminishing thermal dispersal.
• As the convection-conduction and porosity parameter values rise, the thermal dispersal in the fin declines.
• The temperature profile of the fin exhibits an enhanced nature for the raised heat-generating parameter.
• The thermal dispersal in the fin drops as the magnitude of the radiation-conduction attribute rises.

Figure 2.  Validation of the present result with the numerical method.
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• It may be highly beneficial to a designer to select the tapered fin design with an inclined vertical surface for 
thermal effectiveness in a practical application such as latent heat thermal energy storage systems.

• GRPSM provides an analytical solution for nonlinear differential equations and the obtained outcomes in this 
research work are in close agreement with numerical ones. The exactness of the proposed method signifies 
that GRPSM is an alternative to other techniques for solving nonlinear PDEs.

Figure 3.  (a) Nature of �(X, τ ∗) for various Nc values (b) Nature of �(X, τ ∗) for various Nr values.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13275  | https://doi.org/10.1038/s41598-022-15396-z

www.nature.com/scientificreports/

Figure 4.  (a) Nature of �(X, τ ∗) for various �a values (b) Nature of �(X, τ ∗) for various SH values.
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Figure 5.  (a) Nature of �(X, τ ∗) for various Q values (b) Nature of �(X, τ ∗) for various τ* values.
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Figure 6.  (a) Nature of �(X, τ ∗) for τ ∗ = 0.1 (b) Nature of �(X, τ ∗) for various τ ∗ = 0.3.
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