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Identification of pyroptosis‑related 
long non‑coding RNAs 
with prognosis and therapy in lung 
squamous cell carcinoma
Yi Zhang1,7, Yuzhi Wang2,7, Xiaoqing Yin3,7 & Yi Huang1,4,5,6*

Pyroptosis is a type of programmed cell death with an intense inflammatory response. Previous 
studies have shown that pyroptosis plays an important role in the pathogenesis and progression 
of lung cancer. However, the prognostic value and drug targets of pyroptosis‑related lncRNAs in 
lung squamous cell carcinoma (LSCC) have never been studied. In the present study, we identified 
1468 pyroptosis‑related lncRNAs in LSCC by performing Pearson correlation analysis between the 
pyroptosis‑related genes and the lncRNAs from The Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) database. The whole set was divided into a training and a test set with a 1:1 ratio. 
Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were 
conducted to establish an 11 multilncRNA signature in the three sets. The signature divided LSCC 
patients into the low‑risk and the high‑risk groups. Kaplan–Meier analysis and receiver operating 
characteristic (ROC) indicated that the prognostic signature had a promising predictive capability 
for LSCC patients. Besides, the association of microenvironment and immunotherapy response with 
signature was also analyzed. Moreover, 28 potential compounds targeting signature were screened 
as possible drugs to treat LSCC. Finally, a nomogram model was constructed to offer the quantitative 
prediction and net benefit for the prognosis of LSCC patients. In conclusion, the 11 pyroptosis‑related 
lncRNAs and their signature may be promising prognostic factors and therapeutic targets for patients 
with LSCC.

Lung cancer is the foremost cause of cancer-associated deaths worldwide and ranks first in terms of morbidity 
and mortality of all cancer  types1. It can be classified into small cell lung cancer (SCLC) and non-small cell lung 
cancer (NSCLC) according to the histopathological presentation of tissues. NSCLC is further divided into lung 
adenocarcinoma (LUAD), lung squamous cell carcinoma (LSCC), and large-cell lung cancer (LCLC)2. LSCC 
constitutes 25–30% of all cases of lung cancer, which is primarily caused by tobacco  smoking3. Compared with 
LUAD, LSCC has a poor clinical prognosis, and its 5-year survival rate is less than 15%4. The main methods of 
treating lung cancer include traditional chemotherapy, radiation therapy, targeted therapy and surgery. However, 
surgical resection is only feasible for treating early-stage lung cancer in most cases, and some patients do not 
achieve a curative response to chemotherapy and radiotherapy owing to drug resistance and severe side effects. 
Therefore, comprehending the molecular mechanisms underlying tumorigenesis and tumour progression to 
identify novel biomarkers and therapeutic targets is critical for improving early diagnosis, therapeutic effects 
and prognosis in patients with LSCC.

Pyroptosis, inflammation-induced programmed cell death with high specificity, is a new type of programmed 
cell  death5. It involves pore formation in the plasma membrane, swelling of the cell and rupture of the cell 
membrane, followed by massive leakage of cytosol. Pore formation is associated with cellular death, swelling 
and rupture of the plasma membrane and infiltration of cytosolic  contents6,7. Recent studies have suggested 
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that pyroptosis plays a role in the genesis and progression of various cancers, and activating pyroptosis to treat 
tumours has significant therapeutic  potential8. Several relevant studies have shown that prodrugs, such as ber-
berine, euxanthone and alpinumisoflavone, activate pyroptosis and kill hepatic cell carcinoma cells through 
caspase-1-dependent  pyroptosis9–11. DPP8 inhibitors promote pyroptotic cell death in human acute myeloid 
leukaemia cells and suppress tumour progression in mouse models, suggesting its potential utility as a therapeutic 
 agent12. In addition, pyroptosis has recently been recognised to function as an important factor in lung cancer. In 
a study, the mRNA and protein levels of P53 were positively correlated with pyroptosis in patients with NSCLC, 
and P53 may promote pyroptosis through its direct binding and activation of  NLRP313. Moreover, Teng et al. 
reported that polyphyllin VI isolated from Trillium tschonoskii maxim triggers caspase-1-mediated pyroptosis 
in A549 and H1299 cells by activating the ROS/NF-κB/NLRP3/GSDMD signalling  axis14. These studies indicate 
that pyroptosis may effectively treat lung cancer and improve patient outcomes.

Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules that contain more than 200 
nucleotides without protein-coding  function15. They are involved in various biological behaviour processes in 
eukaryotes, and their abnormal expression is associated with the pathophysiological process of various tumours, 
including cell growth, differentiation and invasion and drug  resistance16,17. However, the role of lncRNAs in regu-
lating pyroptosis in lung cancer development remains to be elucidated. Therefore, pyroptosis-related biomarkers 
should be identified through high-throughput sequencing to guide the diagnosis, prognosis and treatment of 
patients with LSCC.

In this study, we identified pyroptosis-related lncRNAs using the The Cancer Genome Atlas (TCGA) database 
and constructed a multi-lncRNA signature via bioinformatic and statistical analyses for the prediction of survival 
in patients with LSCC. In addition, we investigated the relationship between the pyroptosis-related lncRNA 
signature and microenvironment to enhance the understanding of the occurrence and development of LSCC. In 
addition, we discovered candidate drugs targeting the signature to predict immunotherapy responses. Eventu-
ally, we established a nomogram for the quantitative prediction of overall survival (OS) for patients with LSCC.

Materials and methods
Data collection and processing. RNA-sequencing data, somatic mutation data and relevant clinical 
information of patients with LSCC were downloaded from TCGA Data Portal (https:// portal. gdc. cancer. gov/). 
Patients (n = 475) were included for subsequent analysis if their follow-up time was more than 28 days and were 
randomly divided into the training (n = 239) and test sets (n = 236) in a ratio of 1:1. lncRNA and mRNA expres-
sion data were categorised depending on the annotations provided by the GENCODE  project18. In addition, the 
independent dataset GSE81089, transcriptome profiles and clinical information of 195 tumour samples based 
on the platform GPL16791 were acquired from the Gene Expression Omnibus (GEO) dataset (http:// www. ncbi. 
nlm. nih. gov/ geo/). The baseline clinical characteristics of patients were collected in the Table 1. All methods 
were carried out in accordance with relevant guidelines and regulations.

Exploration of pyroptosis‑related lncRNAs. The 33 pyroptosis-related genes were acquired from sev-
eral previous  studies19–22, which are presented in Table S1. To identify the potential lncRNAs associated with 
pyroptosis, we conducted Pearson’s correlation analysis on pyroptosis-related genes and lncRNAs. The thresh-
olds were set as follows: correlation coefficient (|R|) > 0.4 and P-value < 0.001.

Identification and validation of a pyroptosis‑related lncRNA prognostic signature for 
LSCC. To screen pyroptosis-related lncRNAs associated with survival, univariate Cox regression was per-
formed with P < 0.05 as the criteria. The least absolute shrinkage and selection operator (LASSO) regression 
with fivefold cross-validation analysis was employed to further filter the variables from the results of the uni-

Table 1.  Clinical characteristics of the TCGA cohort.

Characteristics Groups Number (percentage)

Age
 < 60 90 (19%)

 > 60 380 (81%)

Gender
Male 353 (74%)

Female 122 (26%)

T
T1–T2 386 (81%)

T3–T4 89 (19%)

N
N0 301 (64%)

N1–N3 169 (36%)

M
M0 395 (96%)

M1 16 (4%)

Stage
Stage I–II 384 (81%)

Stage III–IV 87 (19%)

Cancer status
Tumor free 318 (71%)

With tumor 129 (29%)

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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variate Cox analysis. Subsequently, a pyroptosis-related lncRNA signature was established using multivariate 
Cox proportional hazards analysis. The risk score was calculated for each patient as follows: risk score = β1 
(lncRNA1) × expr (lncRNA1) + β2 (lncRNA2) × expr (lncRNA2) + ⋯ + βn (lncRNAn) × expr (lncRNAn), where 
βn is the coefficient of lncRNAs, and expr is the expression of lncRNAs. Based on the median risk score in the 
training set, patients in the three sets were divided into the low- and high-risk groups. Another independent 
GEO cohort with 195 patients was used for validating the signature. The Kaplan–Meier log-rank test was per-
formed to estimate the survival difference between the high- and low-risk groups. Eventually, time-dependent 
receiver operating characteristic (ROC) curves were used to evaluate the prognostic value of the signature. We 
obtained the expression of lncRNAs in the signature from GSE81089 and calculated the risk score of each patient 
using the same method in the TCGA cohort. Moreover, we screened for some lncRNA signatures from previous 
studies and compared their performance with that of the signature established in this study by estimating the 
AUC values in ROC  curves23,24.

Functional enrichment analysis. Differentially expressed genes between the high- and low-risk groups 
were identified using the ‘limma’ package in R. The cut-off was set at false discovery rate (FDR) < 0.05 and 
|log2foldchange (FC)|≥ 1. Gene Ontology (GO)25 and Kyoto Encyclopedia of Genes and Genomes (KEGG)26 
annotations were examined using the gene set enrichment analysis (GSEA) software (version 4.1). Gene sets 
with more than 20 genes and less than 500 genes were included for GSEA analysis.

Tumour microenvironment and immune response analysis. The mutation data were processed and 
viewed using the ‘maftools’ package in R. The tumor mutation burden (TMB) of patients was calculated from 
tumor-specific mutation  genes27. The estimation of stromal and immune cells in malignant tumor tissues using 
expression data (ESTIMATE) algorithm was used to estimate immune scores (immune, stromal and ESTIMATE 
scores), which reflected the ratio of stromal and immune cells in each sample. In addition, tumour purity was 
estimated. The Single-sample gene set enrichment analysis (ssGSEA) algorithm with the ‘SVA’ package in R 
was used to assess the relative abundance of 16 tumour-infiltrating immune cells and 13 immune cell func-
tions. Potential 27 immune checkpoint genes were also obtained from previous studies. The association between 
tumour stemness and the signature was assessed using Spearman correlation analysis. The tumor immune dys-
function and exclusion (TIDE) algorithm was employed to predict the individual likelihood of immunotherapy 
 response28.

Screening of potential compounds targeting the signature. Genomics of Drugs Sensitivity in Can-
cer (GDSC) is an online database that contains data on various anti-cancer drugs based on multiple cell  lines29. 
To screen for potential drugs for LSCC, we estimated half-maximal inhibitory concentration (IC50) of com-
pounds from the GDSC database (https:// www. cance rrxge ne. org/) using the pRRopheticPredict function with 
ridge regression.

Construction of a nomogram. To screen for independent predictors of outcomes based on the clinico-
pathological characteristics, we implemented univariate and multivariate Cox regression analyses parameters 
including age, sex, tumour location, Tumor–Node–Metastasis (TNM) stage and cancer status. P < 0.05 was con-
sidered statistically significant. Based on independent predictors, a nomogram was constructed to quantitatively 
predict the survival probability of patients with LSCC. The concordance index (Cindex) plot, calibration cures 
and decision curve analysis (DCA) were used to assess the predictive performance and benefit of the nomogram.

Cell culture. A normal lung epithelial cell line (BEAS-2B) and LSCC cell lines (H226, SK-MES-1) and were 
purchased from the American Type Culture Collection (Manassas, Virginia, USA). SK-MES-1 cell line was cul-
tured in a Dulbecco’s modified Eagle’s (DMEM) medium (Hyclone, Thermo Fisher Scientific, Waltham, USA) 
with 10% Fetal bovine serum (FBS, MilliporeSigma, Burlington, MA, USA), and BEAS-2B and H226 cell lines 
were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Hyclone, Thermo Fisher Scientific, 
Waltham, USA) with 10% FBS. All cell lines were incubated at 37 °C, 5% CO2.

Tissue samples. We collected 20 pairs of LSCC cancerous tissue and matched para-cancerous samples from 
surgical patients in the Fujian Provincial Hospital. Samples were handled by RNA preservation solution and 
stored at − 80 °C until RNA extraction. The ethics committee of Fujian Provincial Hospital approved this study 
(Ethics Approval Number K2021-11-012).

Reverse transcription and quantitative real‑time polymerase chain reaction (qRT‑PCR). Total 
RNA for cell lines and tissue samples was isolated using Trizol reagent (Invitrogen; Thermo Fisher Scientific, 
USA). Then cDNA was synthesized using Prime-Script RT Kit (Promega Corporation, Madison, USA) for 
reverse transcription and Promega SYBR-Green PCR Master Mix (Promega Corporation, Madison, USA) for 
qRT-PCR on Roche LightCycler480 II real-time PCR system (Roche, Germany). The values of Ct were calculated 
with the 2−ΔΔCt method and normalized to the expression levels of β-actin. All PCR tests were conducted at 
least three times. The primer sequences used in this study are shown in Table S2.

Statistical analyses. All calculations and visualizations were performed using Perl and R statistical soft-
ware (version 4.0.5). Differences between the groups were analysed using the Chi-square or Fisher test for cat-
egorical variables and Wilcoxon test for continuous variables. Kaplan–Meier survival curves in different groups 

https://www.cancerrxgene.org/
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were compared using the log-rank test. Differences were considered statistically significant at P < 0.05 unless 
specified otherwise.

Ethics approval and consent to participate. Ethics approval was sought and approved from the Ethics 
Committee of Fujian Provincial Hospital (Ethics Approval Number K2021-11-012). The patients/participants 
provided their written informed consent to participate in this study.

Results
Identification of pyroptosis‑related lncRNAs with significant prognostic value in LSCC. In 
the expression matrix, 19,658 probes and 14,049 probes were annotated to mRNAs and lncRNAs, respectively, 
according to the Ensemble database (https:// www. ensem bl. org/). A total of 1468 pyroptosis-related lncRNAs 
were identified via Pearson correlation analysis of pyroptosis-related genes and lncRNAs with the standard 
threshold of |R|> 0.4 and P < 0.001. Of these pyroptosis-related lncRNAs, 63 were significantly correlated with 
the OS of patients with LSCC via univariate Cox regression and Kaplan–Meier analyses. A total of 63 lncRNAs 
were significantly differentially expressed between normal and adjacent tissues (Fig.  1A). The co-expression 
relationship between prognostic pyroptosis-related lncRNAs and genes is illustrated in Fig. 1B.

Construction of the pyroptosis‑related lncRNA prognostic signature. First, patients were ran-
domly divided into the training (n = 239) and test (n = 236) sets. To further enhance the reliability and utility 
of the signature, LASSO–Cox regression with a fivefold cross-validation analysis was used to select optimal 
features (Fig. 2A,B). Subsequently, 28 pyroptosis-related lncRNAs were selected for multivariate Cox propor-
tional hazard regression analysis. Finally, we constructed a signature based on 11 pyroptosis-related lncRNAs 
to predict the OS of patients with LSCC in the training set (Fig. 2C). The patients were categorised into the 
high- and low-risk groups based on the intermediate-risk scores (Fig. 3A–C). In addition, Kaplan–Meier sur-
vival curves showed that patients in the low-risk group had better clinical outcomes than those of patients in 
the high-risk group (Fig. 3D). In addition, the AUC values of ROC for the signature at 1-, 3- and 5-year were 
0.73, 0.753 and 0.773, respectively (Fig. 3E). To further assess the robustness and accuracy of the signature, we 
built the same signatures in the test and whole sets using the same algorithm and divided patients into the high- 
and low-risk groups based on the same cut-off values (Fig. 4A–F). Similarly, the mortality rate in the high-risk 
groups was higher than that in the low-risk groups in the test and whole sets (Fig. 4G,H). The AUC values for 1-, 
3- and 5-year were 0.726, 0.734, and 0.691, respectively, in the test set and 0.727, 0.744 and 0.723, respectively, 
in the whole set (Fig. 4I,J). To verify the reliability of the signature, we established the same signature using 
the GSE81089 dataset according to the aforementioned formula. The survival curve revealed that the signature 

Figure 1.  Identification of pyroptosis-related lncRNAs in LSCC patients. (A) Heatmap for expression of 
pyroptosis-related lncRNAs in normal and tumor tissue. (B) Gene co-expression network of candidate lncRNAs 
and pyroptosis-related genes. lncRNA long non-coding RNAs, LSCC lung squamous cell carcinoma.

https://www.ensembl.org/
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exhibited good performance in predicting prognosis (Fig. 4K). Moreover, we compared the survival prediction 
ability of the signature with two recently reported lncRNA-based signatures for LSCC using the same TCGA 
cohort. As depicted in Fig. 4L, the established signature with the biggest AUC value of ROC at 5-year OS had 
better prediction efficacy than that of ZhenglncSig and HulncSig. Furthermore, the association between the 
signature and clinicopathological features was analysed. The risk scores were found to be significantly correlated 
with sex, N stage, cancer status and survival status (Fig. 5). To demonstrate the applicability of the signature, we 
further performed subgroup survival analysis for the whole set using the following clinicopathological features: 
age, sex, TNM stage, stage and cancer status. As a result, except for M0 and stage III–IV groups, patients in the 
high-risk group had significantly worse outcomes than those of patients in the low-risk groups for each sub-
group (Fig. 6). Collectively, these results indicate the effectiveness and robustness of the established signature in 
predicting the survival of patients with LSCC.

Biological function and pathway analyses. We performed GO and KEGG pathway analyses between 
the high- and low-risk groups using the GSEA algorithm. GO term enrichment analysis indicated that the high-
risk group was mainly enriched in actin filament bundle, collagen catabolism pathways, collagen-containing 
extracellular matrix, collagen metabolism pathways and myeloid leukocyte migration, whereas the low-risk 
group was mainly enriched in DNA-templated transcription elongation, ribonucleoprotein complex biogen-
esis, RNA splicing, transcription elongation from RNA polymerase and splicing via transesterification (Fig. 7A). 
The results of KEGG analysis revealed that the high-risk group was involved in complement and coagulation 
cascades, cytokine receptor interaction, ECM receptor interaction, haematopoietic cell lineage and leukocyte 

Figure 2.  Construction of the pyroptosis-related lncRNA prognostic signature in LSCC patients. (A) Selection 
of the optimal parameter (lambda) via 5 times cross-validation. (B) LASSO coefficient profiles of 28 pyroptosis-
related lncRNAs. (C) 11 lncRNAs were identified for constructing A signature by multivariate Cox ratio hazard 
regression analysis. lncRNA long non-coding RNAs, LSCC lung squamous cell carcinoma, LASSO least absolute 
shrinkage and selection operator.
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transendothelial migration, whereas the low-risk group was involved in basal transcription factors, citrate cycle 
(TCA cycle), lysine degradation, RNA degradation and spliceosomes (Fig. 7B).

Estimation of tumour microenvironment and immunotherapy response using the signa‑
ture. We obtained data on mutation distribution and TMB based on the mutation data of the whole set. The 
top 20 genes with the highest mutation frequency in the two groups are shown in Fig. 8A,B. The TMB of patients 
was higher in the low-risk group than in the high-risk group (Fig. 8C). In addition, we performed correlation 
analysis to examine the association of signature with TMB and tumour stem cells, and the results suggested 
that the risk score was significantly negatively correlated with TMB, DNA stemness scores and RNA stemness 
scores (Fig. 8D–F). Furthermore, we identified whether TMB could predict the prognosis of patients with LSCC. 
According to the median value of TMB, patients were divided into the high- and low-TMB groups. Patients in 
the high-TMB group had a worse outcome than those in the low-TMB group (Fig. 8G). Moreover, a combination 
of the risk score and TMB effectively discriminated between patients with good and poor prognoses (Fig. 8H). 
To investigate differences in the immune status between the high- and low-risk groups, we computed immune, 
stromal and ESTIMATE scores and tumour purity using the ESTIMATE algorithm and evaluated immune cell 
infiltration and related functions via ssGSEA analysis (Fig. 9A). We found that the high-risk group had higher 
immune, stromal and ESTIMATE scores but lower tumour purity than that of the low-risk group (Fig. 9B–E). 
Importantly, both the number and functions of immune cells were elevated in the high-risk group than in the 
low-risk group (Fig. 9F,G). Given the significance of immune checkpoints to immunotherapeutic agents, we 
compared differences in the overall expression of 27 immune checkpoints. As shown in Fig. 9H, differences were 
observed in the expression levels of CD40LG, CTLA4, HAVCR2 and PDCD1 between the two groups. Further-
more, we used the TIDE database to investigate whether the signature could serve as an immunotherapeutic 
biomarker and found that patients in the low-risk group responded better to immunotherapy compared with 
patients in the high-risk group (Fig. 9I).

Identification of potential compounds targeting the signature. Chemotherapy is a powerful ther-
apeutic approach for patients with lung cancer, particularly among those with advanced TNM  stages30. There-
fore, we identified novel candidate drugs by calculating IC50 values of compounds based on the GDSC database. 
We identified 28 compounds with significant differences in IC50 values between the two groups (Fig. S1). These 
compounds exhibited greater sensitivity to the patients in the high-risk group than to patients in the low-risk 
group.

Establishment of a prognostic nomogram. To determine the independent prognostic factors of LSCC, 
univariate and multivariate Cox regression analyses were conducted on the whole set. Univariate Cox regression 
analysis demonstrated that sex, T stage, cancer status and risk score were correlated with the overall survival rate 

Figure 3.  Prognostic analysis of signature in the TCGA training set. (A) The distribution of risk scores. (B) 
Patient distribution of survival status in the high-risk and low-risk groups. (C) The heatmap showing expression 
profiles of the 11 pyroptosis-related lncRNAs. (D) Survival analysis in the high-risk and low-risk groups. (E) 
ROC curve for 1, 3, and 5 year OS predictions based on the signature. TCGA  The Cancer Genome Atlas, lncRNA 
long non-coding RNAs, ROC receiver operating characteristic, OS overall survival.
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of patients with LSCC (Table 2). However, multivariate Cox regression analysis revealed that only sex, cancer 
status and risk score had independent prognostic significance for LSCC (Table 2). Based on these independ-
ent prognostic factors, a nomogram was constructed to predict the 1-, 3- and 5-year OS of patients with LSCC 
(Fig. 10A). The C index of the nomogram for different years was always higher than that of other single inde-
pendent prognostic factors, suggesting the nomogram could better predict the prognosis of LSCC (Fig. 10B). 

Figure 4.  Prognostic analysis of signature in the validation cohorts. (A,B) The distribution of risk scores in the 
TCGA validation set and entire set. (C,D) Patient distribution of survival status in the high-risk and low-risk 
groups in the TCGA validation set and entire set. (E,F) The heatmap showing expression profiles of the 11 
pyroptosis-related lncRNAs in the TCGA validation set and entire TCGA set. (G,H) Survival analysis in the 
high-risk and low-risk groups for the TCGA validation set and entire set. (I,J) ROC curve for 1, 3, and 5 year 
OS predictions based on the signature the TCGA validation set and entire set. (K) Kaplan–Meier analysis of 
high-risk and low-risk patients for GSE81089 set. (L) ROC curves for 5 year OS predictions by our signature and 
previously reported signatures. TCGA  The Cancer Genome Atlas, lncRNA long non-coding RNAs, ROC receiver 
operating characteristic, OS overall survival.

Figure 5.  Relationship between the signature and clinicopathological features. *P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 6.  Kaplan–Meier survival curves of LSCC patients in different clinical subgroups. (A) Age (≤ 60 
or > 60 years old). (B) Sex (female or male). (C) T (T1–2 or T3–4). (D) N (N0 or N1–3). (E) M (M0 or M1). (F) 
Stage (I–II or III–IV). (G) Cancer status (tumor free or with tumor). TCGA  The Cancer Genome Atlas, LSCC 
lung squamous cell carcinoma, TNM tumor-node-metastasis.

Figure 7.  GSEA analysis between the high-risk and low-risk group in the TCGA whole set. (A) Signature was 
associated with gender, N, cancer status and status. (A) GO term enrichment analysis. (C) KEGG pathways 
analysis. TCGA  The Cancer Genome Atlas, GSEA gene set enrichment analysis, GO Gene Ontology, KEGG 
Kyoto Encyclopedia of Genes and Genomes.
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The calibration curve for predicting 1-, 3- and 5-year OS demonstrated a sufficient agreement between nomo-
gram prediction and actual observation (Fig. 10C). In addition, the DCA curve revealed that the nomogram had 
higher net benefits for a range of threshold probabilities (Fig. 10D).

Validation of the expression of 11 pyroptosis‑related lncRNAs. To evaluate the differences in 
the expression of the 11 lncRNAs that form the signature in various LSCC cell lines and clinical samples, we 
detect the expression levels of the 11 lncRNAs quantified by qRT-PCR. As shown in Fig. 11A, all lncRNAs were 
obvious highly expressed in the tumor cell lines. Besides, we found that AC138035.1, C10orf55, AP005899.1, 
AC008734.1, AL021154.1 and AC130462.2 were upregulated in tumour tissues than those in adjacent normal 
tissues, whereas MIR3945HG was downregulated (Fig. 11B). The results revealed that most of the expression of 
lncRNAs could be validated in LSCC cell lines and tissues.

Figure 8.  Somatic mutations analysis and the association between risk score and the tumor microenvironment 
in the TCGA whole set. (A,B) Waterfall plots showing the mutation information of the top 20 genes with the 
highest mutation frequency in low-risk and high-risk groups. (C) Distribution of TMB in two groups. (D–F) 
Relationship between risk score and TMB, DNAss and RNAss. (G,H) Kaplan–Meier survival curves revealed 
the prognostic value of TMB with or without combination with the risk score. TCGA  The Cancer Genome Atlas, 
TMB tumor mutation burden, DNAss DNA stemness scores, RNAss RNA stemness scores.
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Discussion
LSCC is a common type of malignant tumour with a high burden of mortality, causing approximately 400,000 
deaths worldwide every  year1. In recent years, numerous studies have been conducted to explore the diagno-
sis, progression, prognosis and treatment of  LSCC31,32. Some traditional tumor markers have been applied in 
screening, occurrence and prognosis prediction for  LSCC33, including squamous cell carcinoma antigen (SCC), 
carcino-embryonic antigen (CEA), cytokeratins21-2 and neuron specific enolase (NSE). However, owing to the 

Figure 9.  Estimation of the immune status and response to immunotherapy based on the signature in the high-
risk and low-risk groups. (A) Heatmap of immune cell infiltration. (B–E) Violin plots for the immune score, 
stromal score, ESTIMATE score, and tumor purity. (F–H) Boxplots of immune cells score, immune-related 
functions score and immune checkpoints expression. (I) Prediction of immunotherapy response according to 
TIDE score. ESTIMATE estimation of stromal and immune cells in malignant tumour tissues using expression 
data, TIDE tumor immune dysfunction and exclusion. *P < 0.05, **P < 0.01, ***P < 0.001.

Table 2.  Univariate and multivariate Cox analysis of the clinicopathological features and signature with OS. 
Significant value is given in bold.

Characteristics

Univariate Cox Multivariate Cox

HR (95% CI) P value HR (95% CI) P value

Age 1.217 (0.853–1.737) 0.278

Gender 1.769 (1.249–2.505) 0.001 1.54 (1.082–2.194) 0.017

T 1.435 (1.042–1.976) 0.027 0.99 (0.708–1.385) 0.954

N 1.025 (0.785–1.339) 0.856

M 2.066 (1.017–4.198) 0.045 1.783 (0.872–3.644) 0.113

Cancer status 2.915 (2.247–3.781)  < 0.001 2.664 (2.033–3.49)  < 0.001

Risk score 0.493 (0.376–0.646)  < 0.001 0.534 (0.404–0.707)  < 0.001
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relatively low sensitivity and specificity of these biomarkers, the actual effectiveness in clinical settings is less 
satisfactory. The rapid development of high-throughput sequencing has provided valuable data for studying the 
mechanism of cancer, and studies are increasingly focussing on identifying biomarkers with non-coding RNAs 
to predict the prognosis and therapeutic efficacy of  LSCC34,35.

Pyroptosis, a new paradigm of programmed cell death and a promising area of research, is functionally 
involved in diverse diseases such as atherosclerosis, neurodegeneration and  tumours20,36,37. As a large and impor-
tant group of non-coding RNAs, lncRNAs play a crucial role in different aspects of carcinogenesis and have 
emerged as a new type of biomarker in the diagnosis and prognosis of  patients38. Several recent studies have 
investigated the regulatory effect of lncRNAs on pyroptosis. For example, the lncRNA MEG3 induces pyroptosis 
through activation of the NLRP3  inflammasome39. MEG3 knockdown suppresses the activation effect of DDP 
on NLRP3/caspase-1/GSDMD pathway-mediated pyroptosis and alters the inhibitory effect of DDP on tumour 
proliferation and metastasis in triple-negative breast  cancer40. Xu et al. discovered that the lncRNA XIST can 
promote tumour growth and mediate drug-resistant behaviour in NSCLC by decreasing the nuclear transfer of 
SMAD2, thus inhibiting pyroptosis by suppressing the transcription of  NLRP341. Most studies on pyroptosis 
in cancer have focussed on coding RNAs but lack systematic analysis on the clinical value of pyroptosis-related 
lncRNAs for  LSCC42,43. Therefore, it is necessary to construct a signature based on pyroptosis-related lncRNAs 
for predicting the prognosis and immunotherapy response and identifying potential target drugs in large cohorts.

Figure 10.  The nomogram model for the prediction of prognosis for the TCGA whole set. (A) Nomogram 
contained gender, cancer status and risk to predict survival. (B) Concordance index graph of nomogram 
in different years. (C) Calibration curve for nomogram in 1-, 3-, 5-year OS. (D) Decision curve analysis for 
nomogram in 1-, 3-, 5-year OS. TCGA  The Cancer Genome Atlas, OS overall survival.
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In this study, we constructed and validated a novel and an efficient pyroptosis-related lncRNA prognostic 
signature for LSCC based on the TCGA dataset. Patients with LSCC were divided into the high- and low-risk 
groups based on the median risk score. The Kaplan–Meier survival curves revealed that the signature could 
distinguish between patients with a good prognosis and those with a poor prognosis in the training, test, whole 
and GSE81089 sets. The AUC values calculated from the ROC curves in the TCGA cohort suggested that the 
signature had a good predictive ability for OS of patients with LSCC. Furthermore, compared with the previously 
reported lncRNA-based signatures, the signature established in this study showed a better performance of sur-
vival prediction in the same LSCC cohort. These results supported the efficacy and robustness of the established 
signature. We further found that the signature was significantly associated with sex, N stage, cancer status and 
survival status. Moreover, the signature and relevant clinical features may be efficient and independent prognostic 
factors. In addition, a nomogram was established to predict the 1-, 3- and 5-year survival rates quantitatively 
and intuitively, which may offer net benefits in clinical settings. Besides, the expression of theses dysregulated 
lncNRAs in the signature was validated by qPCR in LSCC cell lines and tissues.

Among the lncRNAs used to establish the signature, LINC00482 is overexpressed in bladder cancer tissues 
and cells, and silencing LINC00482 may inhibit the proliferation, migration and invasion of bladder cancer 
by repressing the expression of MMP15 by targeting  FOXA144. Chen et al. found that patients with head and 
neck squamous cell carcinoma with high C10orf55 expression showed worse disease-free survival than that 
of patients with low C10orf55  expression45. It is worth mentioning that AC104785.1 was also identified as an 
autophagy-related lncRNA by a similar method, the expression of AC104785.1 was negatively correlated with 
bladder cancer  prognosis46. This suggests that some lncRNAs may play a role in multiple programmed cell death 
but require further functional verification. To the best of our knowledge, other lncRNAs were identified for the 
first time. Therefore, more studies should be conducted to examine the clinical roles and underlying pyroptotic 
mechanisms of these novel lncRNAs in LSCC.

Successful treatment of LSCC is a significant challenge for modern medicine. With the rapid development 
of cancer treatment technology, both molecular therapy and immunotherapy hold great promise for the treat-
ment of patients with  NSCLC47. However, no significant breakthrough has been achieved in developing accurate 
indicators that can identify patients who may benefit from immunotherapy. TMB refers to the total number of 
somatic mutations in specific regions of a tumour  genome48 and has emerged as a predictor of immunotherapy 
response in various types of  cancer49. In this study, we reported that TMB values were higher in the low-risk 

Figure 11.  The expression validation of the lncRNAs in the signature. (A) Expression levels of 11 pyroptosis-
related lncRNAs in the normal lung epithelial cell line BEAS-2B and two LSCC cell lines (A549, NCI-H1975) 
by RT-qPCR. (B) Expression levels of 11 pyroptosis-related lncRNAs in LSCC tissues and matched para-
cancerous tissues by RT-qPCR. lncRNA long non-coding RNAs, LSCC lung squamous cell carcinoma, RT-qPCR 
quantitative real-time polymerase chain reaction. *P < 0.05, **P < 0.01, ***P < 0.001.
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group than in the high-risk group and were negatively correlated with risk scores. Whether used alone or in 
combination with risk scores, TMB can help to differentiate patients with LSCC with good prognosis from 
those with poor prognosis. Furthermore, the immune microenvironment can substantially interfere with the 
efficiency of  immunotherapy50; therefore, we examined the immune status in different risk groups and found 
that the high-risk group had a higher number of infiltrating immune cells and stronger immune function than 
that of the low-risk group. In addition, significant differences were found in the expression of most immune 
checkpoints between the two groups. The TIDE algorithm is a computational framework designed to predict 
the immunotherapy response by stimulating the mechanisms of immune evasion used by tumours 26. In this 
study, the TIDE algorithm suggested that patients in the low-risk group had a better response to immunotherapy. 
Chemotherapy is an important treatment strategy for lung cancer, although targeted therapy and immunotherapy 
have currently become more  popular51. We identified 28 novel candidate compounds targeting the signature 
from the GDSC project data. These findings indicated that the signature may help to identify effective immune 
markers and therapeutic targets for anti-tumour treatment.

However, this study has several limitations. First, some clinical information, such as operation methods, was 
not available in TCGA database, which may lead to bias and errors. Second, this research focused on retrospective 
analysis based on public databases and only was involved in expression validation. In addition, due to different 
properties for LSCC cell lines and small number for tissue samples, not all lncRNAs expressed levels were in 
agreement with results in the database. Therefore, prospective and independent datasets with large sample sizes 
are required to further confirm the pyroptosis-related lncRNA signature. Third, the underlying mechanism of 
lncRNAs in modulating pyroptosis in LSCC remains unclear. Despite these limitations, this study demonstrated 
the feasibility and effectiveness of the signature and suggested avenues for future studies on molecular mecha-
nisms of lncRNAs and clinical studies on pyroptosis-related lncRNAs in LSCC.

Conclusion
We identified pyroptosis-related lncRNAs and constructed a signature for predicting the prognosis of LSCC using 
large sample size. In addition, the signature identified not only novel chemotherapeutic drugs for adjuvant treat-
ment but also patients who may be sensitive toward immunotherapy. Therefore, the pyroptosis-related lncRNA-
based signature may serve as a potential clinical biomarker and therapeutic target for patients with LSCC.

Data availability
The datasets generated and/or analyzed in the current study all obtained from public databases. This data can be 
found here: https:// portal. gdc. cancer. gov/ and https:// www. ncbi. nlm. nih. gov/ geo/.
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