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The close interaction 
between hypoxia‑related proteins 
and metastasis in pancarcinomas
Andrés López‑Cortés1,2,3*, Lavanya Prathap4, Esteban Ortiz‑Prado5, Nikolaos C. Kyriakidis5, 
Ángela León Cáceres6, Isaac Armendáriz‑Castillo3,7,8, Antonella Vera‑Guapi9, 
Verónica Yumiceba10, Katherine Simbaña‑Rivera5,11, Gabriela Echeverría‑Garcés3, 
Jennyfer M. García‑Cárdenas3,12, Andy Pérez‑Villa3, Patricia Guevara‑Ramírez3, 
Andrea Abad‑Sojos13, Jhommara Bautista13, Lourdes Puig San Andrés13, Nelson Varela3,14 & 
Santiago Guerrero3,12*

Many primary-tumor subregions exhibit low levels of molecular oxygen and restricted access to 
nutrients due to poor vascularization in the tissue, phenomenon known as hypoxia. Hypoxic tumors 
are able to regulate the expression of certain genes and signaling molecules in the microenvironment 
that shift it towards a more aggressive phenotype. The transcriptional landscape of the tumor favors 
malignant transformation of neighboring cells and their migration to distant sites. Herein, we focused 
on identifying key proteins that participate in the signaling crossroads between hypoxic environment 
and metastasis progression that remain poorly defined. To shed light on these mechanisms, we 
performed an integrated multi-omics analysis encompassing genomic/transcriptomic alterations of 
hypoxia-related genes and Buffa hypoxia scores across 17 pancarcinomas taken from the PanCancer 
Atlas project from The Cancer Genome Atlas consortium, protein–protein interactome network, 
shortest paths from hypoxia-related proteins to metastatic and angiogenic phenotypes, and drugs 
involved in current clinical trials to treat the metastatic disease. As results, we identified 30 hypoxia-
related proteins highly involved in metastasis and angiogenesis. This set of proteins, validated with 
the MSK-MET Project, could represent key targets for developing therapies. The upregulation of 
mRNA was the most prevalent alteration in all cancer types. The highest frequencies of genomic/
transcriptomic alterations and hypoxia score belonged to tumor stage 4 and positive metastatic 
status in all pancarcinomas. The most significantly associated signaling pathways were HIF-1, PI3K-
Akt, thyroid hormone, ErbB, FoxO, mTOR, insulin, MAPK, Ras, AMPK, and VEGF. The interactome 
network revealed high-confidence interactions among hypoxic and metastatic proteins. The analysis 
of shortest paths revealed several ways to spread metastasis and angiogenesis from hypoxic proteins. 
Lastly, we identified 23 drugs enrolled in clinical trials focused on metastatic disease treatment. Six of 
them were involved in advanced-stage clinical trials: aflibercept, bevacizumab, cetuximab, erlotinib, 
ipatasertib, and panitumumab.
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Human cells are highly aerobic and their metabolism rely widely on oxygen supply, matching metabolic demands 
at the tissue, cellular, and mitochondrial level1,2. These highly aerobic cells undergo fundamental shifts in gene 
expression after sensing changes in the oxygen (O2) levels of the microenvironment3. These gene expressions 
are often triggered by metabolic demands, acclimatization or adaptations, causing tissue remodeling, increased 
cell metabolism, and improved physiological preparedness4. In the 90’s, the Hypoxia Inducible Factor (HIF) 
was identified, purified and cloned. HIF is a transcription factor that regulates oxygen-dependent responses and 
consists of two protein subunits: HIF-1α and ARNT3,5,6. HIF-1α is involved in the protective response towards 
hypoxia, but also has an important role in oxygen homeostasis, the response to ischemia, pulmonary hyperten-
sion, preeclampsia, intrauterine growth retardation, and cancer7,8. In 1995, the first full-length clone of the von 
Hippel-Lindau (VHL) tumor suppressor gene was constructed9–12. Subsequently, it was demonstrated in 1999 
that VHL targets HIF-1α for oxygen-dependent proteolysis by a proteasomal mechanism13,14.

Molecular O2 is not only a key nutrient required for aerobic metabolism to maintain intracellular bioener-
getics, but it also works as a substrate for several organic and inorganic reactions. Hypoxia occurs in a variety 
of physiological, as well as, pathological conditions15. Half of all solid tumors are characterized by the dynamic 
gradients of O2 distribution and consumption. As result, the tumor environment consist of hypoxic subregions 
due to changes in tumor metabolism that increase O2 demand or insufficient tumor vasculature that decreases 
O2 supply16–22. Tumor adaptation to this imbalance between O2 demand and supply is associated with increased 
genomic instability, poor clinical prognosis19,23, development of tumor stem cell-protective niches24,25, resistance 
to radio- and chemotherapy26,27, and increased proclivity for distal metastases28–30.

Metastasis is thought to be the end point of neoplastic cell transformation towards autonomous regulation due 
to genetic mutations that mediate cell proliferation and invasion31,32. In fact, the persistence and lethal relapse of 
disseminated cancers are driven by stem-like cells that show the ability to regenerate tumors in distal sites33–36. 
Due to treatment pressure by therapeutic resistance, tumor evolution triggers mitochondrial dysfunction and 
genomic alterations differing substantially between metastatic tumors and primary tumors37. Most cancers can be 
considered curable if the diagnosis occurs before cells are able to spread to secondary tissues; otherwise, cancer 
is often called incurable as available treatments are not able to prevent metastatic colonization38–40. According to 
Welch and Hurst32, the four hallmarks of metastasis are motility and invasion, modulation of the microenviron-
ment, plasticity, and colonization. HIF signaling participates in the metastatic cascade by mediating invasion 
and migration, intravasation and extravasation, establishment of the premetastatic niche, as well as survival and 
growth at the distant site28,41,42.

Although hypoxia is an adverse and targetable prognostic feature in multiple cancer types43,44, an integrated 
multi-omics analysis between hypoxia and metastasis signaling has not been previously carried out. To shed 
light on these mechanisms, we evaluated genomic and transcriptomic alterations of 233 hypoxia-related genes 
(HRGs) and Buffa hypoxia score (HS) per tumor stage and metastatic status across 17 pancarcinomas taken 
from the PanCancer Atlas (PCA) project from The Cancer Genome Atlas (TCGA) consortium. Additionally, 
we generated a protein–protein interactome network and tracked the shortest paths from hypoxic proteins to 
metastatic and angiogenic phenotypes to reveal potential therapeutic targets and drugs for the metastatic disease.

Results
OncoPrint of genomic and transcriptomic alterations.  We analyzed genomic and transcriptomic 
alterations of 6343 individuals with 17 pancarcinomas taken from the PCA project from TCGA consortium45–54. 
Figure  1A shows the OncoPrint of 100,643 alterations (mRNA upregulation, mRNA downregulation, copy 
number variant (CNV) deep deletion, CNV amplification, fusion gene, inframe mutation, truncating mutation, 
and missense mutation) of the 233 HRGs using the cBioPortal database55,56. The PCA-TCGA types were breast 
invasive carcinoma (BRCA) with 991 (15.6%) individuals, colorectal adenocarcinoma (CRC) with 521 (8.2%) 
individuals, lung adenocarcinoma (LUAD) with 501 (7.9%) individuals, prostate adenocarcinoma (PRAD) with 
481 (7.6%) individuals, thyroid carcinoma (THCA) with 478 (7.5%) individuals, lung squamous cell carcinoma 
(LUSC) with 464 (7.3%) individuals, head and neck squamous cell carcinoma (HNSC) with 431 (6.8%) indi-
viduals, stomach adenocarcinoma (STAD) with 399 (6.3%) individuals, bladder urothelial carcinoma (BLCA) 
with 369 (5.8%) individuals, kidney renal clear cell carcinoma (KIRC) with 352 (5.5%) individuals, liver hepa-
tocellular carcinoma (LIHC) with 345 (5.4%) individuals, skin cutaneous melanoma (SKCM) with 258 (4.1%) 
individuals, cervical squamous cell carcinoma and endocervical carcinoma (CESC) with 217 (3.4%) individu-
als, pancreatic adenocarcinoma (PAAD) with 166 (2.6%) individuals, esophageal carcinoma (ESCA) with 163 
(2.6%) individuals, testicular germ cell tumors (TGCT) with 127 (2.0%) individuals, and mesothelioma (MESO) 
with 80 (1.3%) individuals57.

The genes with the highest mean frequency per genomic/transcriptomic alteration were identified as it follows: 
mRNA upregulation in COPS5 (0.204), ELOC (0.175), and ARNT (0.137); mRNA downregulation in SMAD4 
(0.081), MAPK1 (0.044), and TP53 (0.034); CNV amplifications in PIK3CA (0.064), NDRG1 (0.059), and TFRC 
(0.054); CNV deep deletions in STC1 (0.035), ANGPT2 (0.034), and SMAD4 (0.021); putative driver mutations 
in TP53 (0.391), PIK3CA (0.134), and SMAD4 (0.029); fusion genes in ERBB2 (0.006), PRKCA (0.004), and TP53 
(0.002); and all genomic alterations in TP53 (0.476), PIK3CA (0.341), and COPS5 (0.246) (Fig. 1B and Table S1). 
Additionally, the alteration with the highest mean frequency was mRNA upregulation (0.047), followed by CNV 
amplification (0.010), putative driver mutation (0.0033), CNV deep deletion (0.0032), mRNA downregula-
tion (0.003), and fusion gene (0.0004). We performed the Bonferroni correction for multiple comparison test 
to identify statistically significant alterations through the PCA-TCGA. Consequently, we found that mRNA 
upregulation and CNV amplification were statistically significant altered (P < 0.001) across different types of 
alterations (Fig. 2A).
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Figure 1.   Panoramic landscape of genomic and transcriptomic alterations across pancarcinomas from PCA-
TCGA. (A) OncoPrint (mRNA high, mRNA low, CNV amplification, CNV deep deletion, putative driver 
mutation and fusion genes) of the most altered hypoxia-related genes. (B) Ranking of the most altered hypoxia-
related genes per alteration type. TCGA: The Cancer Genome Atlas; BLCA: bladder urothelial carcinoma; 
BRCA: breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical carcinoma; CRC: 
colorectal adenocarcinoma; ESCA: esophageal carcinoma; HNSC: head and neck squamous cell carcinoma; 
KIRC: kidney renal clear cell carcinoma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; 
LUSC: lung squamous cell carcinoma; MESO: mesothelioma; PAAD: pancreatic adenocarcinoma; PRAD: 
prostate adenocarcinoma; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT: 
testicular germ cell tumors; THCA: thyroid carcinoma; CNV: copy number variant.
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Figure 2.   Frequency of genomic and transcriptomic alterations per PCA-TCGA type. (A) Mean frequency per 
alteration type and significant Bonferroni correction (P < 0.001) of mRNA upregulation, CNV amplification, putative 
driver mutation, CNV deep deletion, mRNA downregulation, and fusion gene in comparison with other alterations. 
(B) Ranking of the most altered pancarcinomas from PCA-TCGA according to the mean frequency of alterations, 
and its validation with a pairwise map of significant Bonferroni correction across PCA-TCGA. (C) Ranking of 
the most altered pancarcinomas per alteration type. TCGA: The Cancer Genome Atlas; BLCA: bladder urothelial 
carcinoma; BRCA: breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical carcinoma; 
CRC: colorectal adenocarcinoma; ESCA: esophageal carcinoma; HNSC: head and neck squamous cell carcinoma; 
KIRC: kidney renal clear cell carcinoma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; 
LUSC: lung squamous cell carcinoma; MESO: mesothelioma; PAAD: pancreatic adenocarcinoma; PRAD: prostate 
adenocarcinoma; SKCM: skin cutaneous melanoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell 
tumors; THCA: thyroid carcinoma; CNV: copy number variant.
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Genomic and transcriptomic alterations across pancarcinomas.  Figure 2B shows bean plots rep-
resenting the mean frequency of alterations per pancarcinoma type. The top ten carcinomas with the high-
est mean frequency of genomic/transcriptomic alterations were ESCA (0.089), BRCA (0.080), LUSC (0.080), 
BLCA (0.077), LUAD (0.076), STAD (0.072), LIHC (0.071), CESC (0.069), HNSC (0.067), and CRC (0.066) 
(Table S2 to S18). Additionally, Fig. 2B shows a heatmap of correlation matrix carried out to identify significantly 
altered carcinomas (P < 0.001) by applying the Bonferroni correction test for multiple comparisons. For instance, 
ESCA, BRCA, and LUSC were significantly altered in comparison to TGTC, PRAD, MESO, KIRC, and THCA. 
Lastly, carcinomas with the highest mean frequency per alteration were ESCA (0.056), LUSC (0.053), and MESO 
(0.052) with mRNA upregulation; PRAD (0.006), CRC (0.006), and LIHC (0.005) with mRNA downregulation; 
ESCA (0.019), BRCA (0.018), and BLCA (0.016) with CNV amplification; KIRC (0.007), ESCA (0.006), and 
BLCA (0.005) with CNV deep deletion; CRC (0.005), ESCA (0.005), and MESO (0.005) with putative driver 
mutations; and BRCA (0.0007), LUAD (0.0006), and KIRC (0.0005) with fusion genes (Fig. 2C).

Tumor stages and metastatic status.  Figure 3A shows the mean frequency of genomic/transcriptomic 
alterations across 17 pancarcinomas per tumor stage. The tumor stages with the highest mean frequencies of 
alterations were T4 (0.072) and T2 (0.072), followed by T3 (0.068) and T1 (0.060) (Table S19 to S22). However, 
the Bonferroni correction test for multiple comparisons did not show significant differences (P > 0.05) between 
tumor stages. Figure 3B shows the association between alterations and the tumor stage with its highest mean 
frequency. T2 stage presented the highest mean frequency of CNV amplifications (0.012), CNV deep deletions 
(0.004), and fusion genes (0.0004); T3 stage presented the highest mean frequency of mRNA downregulation 
(0.004); and T4 stage presented the highest mean frequency of mRNA upregulation (0.050), and putative driver 

Figure 3.   Tumor stages and metastatic status. (A) Mean frequency of genomic and transcriptomic alterations 
per tumor stage across 17 pancarcinomas from PCA-TCGA. (B) Mean frequency of each alteration type per 
tumor stage. (C) Mean frequency of genomic and transcriptomic alterations per metastatic status, and its 
validation through the Mann–Whitney U test (P < 0.001). CNV: copy number variant.
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mutations (0.004). Figure  3C shows the mean frequency of alterations per metastatic status. The mean fre-
quency of M0 status was 0.069 (n = 4254), meanwhile, M1 status was 0.072 (n = 263) (Table S23). Finally, the 
Mann–Whitney U test showed that differences in alterations between M0 and M1 were statistically significant 
(P < 0.001).

Hypoxia score.  Buffa et al. used information from in vitro experiments combined with in vivo co-expres-
sion patterns regarding hypoxia-regulated genes and pathways in order to construct the Buffa hypoxia score58. 
That is, higher mRNA abundance signatures indicate higher levels of hypoxia. Therefore, we quantified tumor 
hypoxia levels of 5,249 individuals with 13 pancarcinomas using the mentioned score58. Figure 4A shows the 
Buffa HS mean per cancer type. The most hypoxic pancarcinoma was HNSC (29.6), followed by LUSC (26.8), 

Figure 4.   Hypoxia score. (A) Hypoxia score mean across 13 PCA-TCGA types, and its validation with a 
pairwise map of significant Bonferroni correction (P < 0.001) across. (B) Mean frequency of hypoxia score per 
tumor stage, and its validation with the Bonferroni correction test. (C) Mean frequency of hypoxia score per 
metastatic status, and its validation with the Mann–Whitney U test (P < 0.001). TCGA: The Cancer Genome 
Atlas; BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CESC: cervical squamous cell 
carcinoma and endocervical carcinoma; CRC: colorectal adenocarcinoma; HNSC: head and neck squamous 
cell carcinoma; KIRC: kidney renal clear cell carcinoma; LIHC: liver hepatocellular carcinoma; LUAD: lung 
adenocarcinoma; LUSC: lung squamous cell carcinoma; PAAD: pancreatic adenocarcinoma; PRAD: prostate 
adenocarcinoma; SKCM: skin cutaneous melanoma; THCA: thyroid carcinoma; HS: hypoxia score.
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CESC (21), CRC (17.3), BLCA (14.5), SKCM (5), KIRC (2.2), LUAD (-0.5), PAAD (− 8.5), BRCA (− 9.6), LIHC 
(− 9.7), PRAD (− 26.7), and THCA (− 32.5). Subsequently, we identified highly significant (P < 0.001) levels of 
hypoxia score across 13 pancarcinomas (i.e., HNSC vs THCA) by applying the Bonferroni correction test for 
multiple comparisons. Figure 4B shows box plots related to the Buffa HS mean per tumor stage (T1-T4) in 5,298 
samples of 13 different pancarcinomas. The HS mean in T1 was − 4.6, in T2 was 1.2, in T3 was 0.7, and in T4 
was 14.5. Subsequently, we obtained highly significant differences (P < 0.001) of HS across tumor stages (i.e., T1 
vs T4, T2 vs T4, T3 vs T4) by applying the Bonferroni correction test for multiple comparisons. Finally, Fig. 4C 
shows box plots of Buffa HS in 3800 metastatic samples. The HS mean of samples without metastasis (M0) 
was 1.8 and with metastasis (M1) was 8.3. Consequently, we obtained a significant difference (P < 0.001) of HS 
between M0 and M1 through the Bonferroni correction test.

Protein–protein interactome network.  The PPi network was performed to better understand the con-
nectivity between hypoxia-related proteins and metastatic driver proteins using the String database and the 
Cytoscape software v.3.7.159,60. Metastatic driver proteins were taken from the Human Cancer Metastasis Data-
base (HCMDB), an integrated database designed to analyze large scale expression data of cancer metastasis61. 
Subsequently, we generated the interactome network encompassing 108 nodes and 603 high-confidence interac-
tions (cutoff = 0.9) (Fig. 5). The mean of degree centrality of the PPi network was 11.2, and the top ten hypoxic 
proteins involved in metastasis with the highest degree centrality were AKT1 (43), VEGFA (37), PIK3CA (36), 
PIK3R1 (35), EP300 (29), STAT3 (29), MAPK1 (26), MAPK3 (26), EGF (25), and IGF1 (25) (Tables S24 and 
S25).

Figure 5.   Protein–protein interactome network encompassed by hypoxia-related proteins and metastatic 
proteins. Network of 108 nodes with at least one high confidence interaction (cutoff = 0.9). Darkest nodes 
represent proteins with the highest degrees of centrality and a mean of degree of centrality of 11.2.
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Shortest paths from hypoxia‑related proteins to metastatic and angiogenic phenotypes.  We 
analyzed the 233 hypoxia-related proteins by using CancerGeneNet software in order to find the shortest paths 
to metastatic and angiogenic phenotypes according to Iannuccelli et al62. On the one hand, we found that 99 
(42%) proteins had paths to metastasis, of which, 49 proteins had positive regulation with an average distance of 
3.0 and an average path length of 4.0, 16 proteins had negative regulation with an average distance of 3.5 and an 
average path length of 4.6, and 34 proteins with unknown regulation status had an average distance of 3.2 and 
an average path length of 4.3. The top ten hypoxia-related proteins with the shortest distance to metastasis were 
BACH1 (0.8), AKT2 (1.6), AKT1 (1.6), CAMK2B (1.7), EGFR (1.7), MAPK1 (1.7), MAPK3 (1.7), PRKCA (1.7), 
PRKCB (1.7), and EGF (1.8). The shortest paths from the 99 hypoxia-related proteins to the metastatic pheno-
type are fully detailed in Fig. 6 and Table S26. On the other hand, angiogenesis, the recruitment of new blood 
vessels, is an essential component of the metastatic pathway63. In our study we found 106 (45%) hypoxic-related 
proteins with shortest paths to angiogenesis, of which, 73 had positive regulation with an average distance of 
3.5 and an average path length of 4.4, 20 proteins had negative regulation with an average distance of 3.9 and an 
average path length of 4.4, and 13 proteins with unknown regulation status had an average distance of 3.7 and 
an average path length of 4.7. The top ten hypoxia-related proteins with the shortest distance to angiogenesis 
were TGFA (0.9), TGFB1 (0.9), TGFB2 (0.9), TGFB3 (0.9), THBS1 (0.9), TIMP1 (0.9), TNF (0.9), VEGFC (0.9), 
VEGFA (1.2), and MMP2 (1.7) (Table S26).

Functional enrichment analysis.  Figure 7A shows a Venn diagram encompassing the 73 most altered 
proteins (mean frequency > 0.068) from PCA-TCGA, 108 hypoxic/metastatic proteins with high-confidence 
interactions (cutoff = 0.9) from the PPi network, and 112 hypoxia-related proteins with the shortest paths to 

Figure 6.   Cell overview of pathways with the shortest distance score from hypoxia-related proteins to the 
metastatic phenotype. HRP: hypoxia-related proteins.
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metastatic and angiogenic phenotypes, resulting in 30 essential hypoxia-related proteins highly involved in met-
astatic signaling (Tables S27 and S28).

Figure 7.   Integration of multi-omics approaches and functional enrichment analysis. (A) Venn diagram shows 
30 hypoxic/metastatic/angiogenic proteins significantly expressed in the PCA-TCGA, the protein–protein 
interactome network, and the shortest paths to cancer hallmark phenotypes (metastasis and angiogenesis). (B) 
Circos plot showing that several hypoxia-related proteins promote or suppress cancer hallmark phenotypes. (C) 
Manhattan plot of the functional enrichment analysis showing the most significant GO: biological processes 
related to hypoxia and cell migration, and the most significant signaling pathways with a Benjamini–Hochberg 
FDR q < 0.001. FDR: false discovery rate; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and 
Genomes.
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The hallmarks of cancer constitute an organizing principle for rationalizing the complexities of neoplastic 
disease. Nowadays, there are 14 biological capabilities acquired during the multistep development of human 
tumors64. Figure 7B shows a circos plot encompassing 12 of the 30 essential hypoxia-related proteins already 
characterized as hallmarks of cancer according to the Catalogue of Somatic Mutations in Cancer (COSMIC) 
Cancer Gene Census (CGC) (https://​cancer.​sanger.​ac.​uk/​census)65. As results, invasion and metastasis were 
promoted by EGFR, AKT1, MTOR, NOTCH1, ERBB2, MAPK1, and CDH1; escape from programmed cell 
death was encouraged by AKT1, EGFR, MTOR, NOTCH1, ERBB2, PIK3CA, and MAPK1; changes in cellular 
energetics were stimulated by TP53, AKT1, EGFR, MTOR, NOTCH1, ERBB2, ARNT, MAPK1, and CDH1; 
angiogenesis was endorsed by AKT1, EGFR, MTOR, NOTCH1, PIK3CA, and ARNT; proliferative signaling 
was supported by AKT1, EGFR, MTOR, NOTCH1, ERBB2, and PIK3CA; suppression of growth was promoted 
by TP53, AKT1, and EP300; escape from immune response during cancer was encouraged by EGFR; lastly, cell 
replication towards immortality was stimulated by TP53 and NOTCH1.

Subsequently, we performed a functional enrichment analysis of the 30 essential hypoxic/metastatic pro-
teins obtained from the intersection between the PanCancer Atlas, the PPi network, and the shortest paths to 
metastatic and angiogenic phenotypes analyses. The functional enrichment analysis was performed through 
the g:Profiler software using the human cancer metastasis proteins as background set. We were able to identify 
358 significant gene ontology (GO) biological processes, 99 significant the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) signaling pathways, and 65 significant Reactome signaling pathways66–68. The most significant 
GO biological processes with Benjamini–Hochberg correction and false discovery rate (FDR) < 0.001 were cellu-
lar response to hypoxia and positive regulation of cell migration. The most significant KEGG signaling pathways 
with Benjamini–Hochberg correction and FDR < 0.001 were HIF-1, PI3K-Akt, thyroid hormone, ErbB, FoxO, 
mTOR, insulin, MAPK, Ras, AMPK, and VEGF. Lastly, the most significant Reactome signaling pathways with 
Benjamini–Hochberg correction and FDR < 0.001 were PIP3 activates AKT signaling, PI3K/AKT signaling in 
cancer, signaling by ERBB2, and MTOR signaling (Fig. 7C and Table S29).

Validation of the essential hypoxia‑related genes involved in metastasis.  Memorial Sloan Ket-
tering—Metastatic Events and Tropisms (MSK-MET) is an integrated pan-cancer cohort of tumor genomic and 
clinical outcome data from 25,755 patients with patterns of metastatic dissemination across 50 tumor types69. 
Subsequently, we performed an overall survival analysis comparing patients (n = 18,446) with genomic altera-
tions in the 30 essential hypoxia-related genes versus unaltered patients (n = 7213). As result, the altered group 
had a median overall survival (95% coefficient intervals) of 35.42 (34.86–36.24) months, and the unaltered group 
had a median overall survival of 57.04 (53.59–60.68) months. The log rank test showed a statistically significant 
P-value < 0.001 of overall survival (months) between patients with genomic alterations in the 30 essential HRGs 
and unaltered patients (Fig. 8A).

On the other hand, Fig. 8B shows percentage of samples with alterations in the 30 essential HRGs and its 
respective metastatic site. Metastasis in kidney had the highest percentage of samples with alterations in the 
HRGs (89.5%), followed by breast (88.2%), female genital (88.0%), ovary (82.7%), brain (80.3%), bladder (79.3%), 
intra-abdominal (79.2%), liver (78.9%), pleura (77.7%), adrenal gland (73.4%), bowel (72.8%), skin (71.1%), 
lung (70.5%), lymph (69.1%), mediastinum (68.2%), bone (68.0%), head and neck (66.7%), male genital (66.7%), 
biliary tract (57.6%), and distant lymph node (54.6%). The percentage of altered samples in 20 cancer types 
was statistically significant (P < 0.001; Q < 0.001) versus the percentage of unaltered samples. Lastly, data can be 
accessed through the cBioPortal (http://​www.​cbiop​ortal.​org/​study/​summa​ry?​id=​msk_​met_​2021)69.

Drugs involved in clinical trials focused on metastatic disease.  Figure 9 shows the current status 
of drugs in clinical trials for treatment of metastatic disease according to the Open Targets Platform70. There 
are 23 drugs targeting 10 hypoxic/metastatic proteins that have been analyzed in 211 clinical trials. The cancer 
types with clinical trials focused on metastasis were prostate cancer, colorectal cancer, and melanoma (Fig. 9A). 
EGFR was the target with the highest percentage of clinical trials in process, recruiting or completed, followed 
by ERBB2, VEGFA, IGFR1, NOTCH1, AKT1, AKT2, AKT3, ANGPT2, and PIK3CA (Fig. 9B). Most clinical 
trials were in phase 2 (62%), followed by phase 3 (19%), phase 1 (18%), and phase 4 (1%) (Fig. 9C). Tyrosine 
kinase EGFR family was the target class with the highest percentage of clinical trials (54%), followed by secreted 
protein (41%), tyrosine kinase InsR family (2%), AGC kinase AKT family (1%), and enzyme (1%) (Fig. 9D). 
Antibodies (77%) were the type of drugs focused on metastasis with the highest percentage of clinical trials, 
followed by proteins (13%) and small molecules (13%) (Fig. 9E). Lastly, Fig. 9F diagrams a Sankey plot compar-
ing the number of clinical trials testing metastatic drugs in different cancer types. Bevacizumab (73), cetuximab 
(59), panitumumab (32), and aflibercept (14) were the metastatic drugs with the highest number of clinical trials 
(Table S30).

Discussion
Hypoxia seems to be a potential micro-environmental factor that induces metastasis through the activation of 
the HIF signaling pathway. The potential mechanisms evidenced include the reprogramming of metabolism, 
stem cell phenotype, invasion, vascular facts, suppression of immune system, pre-metastatic niche, intravasation, 
extravasation, and anti-apoptotic activity71. Poor vasculature induces imbalance between pro and anti-angiogenic 
signals, reducing oxygen delivery into tissues. The poor oxygen delivery produces low oxygen tension in tumor 
and stromal tissues72. In the process of tumor metastasis, invasion is observed to be the first step that is activated 
by pro-migratory factors induced by mesenchymal stem cells, collagen network formation, and recruitment of 
macrophages and fibroblasts64,71. Hypoxic tumor microenvironment is suggested to aggravate the metastatic 
initiation through the HIF signaling factor. Hypoxia also triggers the pro-migratory factors and activates the 

https://cancer.sanger.ac.uk/census)
http://www.cbioportal.org/study/summary?id=msk_met_2021)
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extracellular matrix to support the metastatic process42. It is evidenced that the abnormal cancer cell intra and 
extravasation from the vascular structures is activated by the hypoxic tumor environment and the HIF factor 
which regulates the cell to cell endothelial adhesion molecules and promotes tumor metastasis73.

Hypoxia induces a series of biological changes which contribute to tumorigenesis and the metastatic 
phenotype28,74, both of them are associated with resistance to radio- and chemotherapy, anti-cancer drugs, and 
immunotherapy. Thus, understanding the molecular signatures of hypoxia is crucial to identify potential thera-
peutic targets to improve metastatic disease treatments75. In this study, we revealed essential hypoxia-related 
proteins highly involved in metastatic signaling through three approaches that analyze genomic and transcrip-
tomic alterations, protein–protein interactions, and shortest paths from hypoxia to metastatic and angiogenic 
phenotypes.

The first approach consisted in the analysis of 100,643 genomic/transcriptomic alterations (233 HRGs) belong-
ing to 6343 individuals with 17 pancarcinomas. ESCA, BRCA and LUSC were the most altered cancer types, 
whereas MESO, KIRC, and THCA were the least altered. The mRNA upregulation was the most significant 
(Bonferroni correction, P < 0.001) genomic alteration since hypoxic tumors overexpress intracellular signals 
to adapt to the environment16,76,77. Overall, the first approach revealed that 73 HRGs presented frequencies of 
alteration higher than the average (> 0.068). It is important to mention that the 233 hypoxia-related genes were 
collected from gene ontology terms, signaling pathways, the Buffa signature, and publications on high-altitude 
adaptive phenotypes. Nevertheless, a limitation of this study is that we did not perform a manual search and 
curation of publications on individual genes potentially related to hypoxia in order to enrich our initial gene set.

Regarding to genomic/transcriptomic alterations per tumor stage across 17 pancarcinomas, T4 stage presented 
the highest mean frequencies of mRNA upregulation (0.050) and putative driver mutations (0.004). On the other 
hand, the mean frequency of genomic alterations in HRGs was significant in patients with metastasis (0.072) 
in comparison to patients without it (0.069) (Mann–Whitney U test, P < 0.001), meaning that the number of 
genomic alterations in the HRGs increases as tumor stage and metastatic status evolves. Smith et al.have proposed 
this statement through a genetic model in which sequential accumulation of mutations in specific genes (i.e., ACP, 
KRAS, SMAD2, SMAD4, and TP53) drives the transition from healthy epithelia to metastatic colorectal cancer78.

In order to validate the significant differences in alterations of HRGs found in tumor stages and metastatic 
status, we analyzed the Buffa hypoxia score across 13 pancarcinomas58,79. HNSC, LUSC, and CESC were the 
most hypoxic cancer types, whereas LIHC, PRAD, and THCA were the least hypoxic, as previously shown by 
Bhandari et al16. Regarding to tumor stages, T4 presented the highest HS mean (14.5) with significant differences 
(Bonferroni correction, P < 0.001) between T1 vs T4, T2 vs T4, and T3 vs T4. Regarding to metastatic status, the 
Buffa HS mean in patients with metastasis (8.3) was significantly higher (Bonferroni correction, P < 0.001) than 
in patients without it (2.2).

Figure 8.   Validation of the essential HRGs through the MSK-MET project. (A) Comparison of overall 
survival between 18,446 patients with alterations in the 30 essential HRGs highly involved in metastasis and 
7213 unaltered patients, showing a log rank test P < 0.001. (B) Percentage of samples with alterations in the 30 
essential HRGs and its respective metastatic site. CNS: Central nervous system; LN: lymph node; UT: urothelial; 
HRG: hypoxia-related genes; CI: coefficient intervals; MSK-MET: Memorial Sloan Kettering—Metastatic Events 
and Tropisms.
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The second approach was addressed towards a protein–protein interactome network between hypoxia-related 
proteins and metastatic driver proteins. In accordance with Li et al., Ivanov et al., and Wurth et al80–82, protein 
interactions with therapeutic significance can be revealed by the integration of cancer proteins into networks. 
Protein interactions regulate essential signals such as proliferation or metastasis, and thus, represent potential 
targets for drug development and drug discovery. Regarding our networking analysis, we generated an interac-
tome network encompassing 108 nodes and 603 high-confidence edges (cutoff = 0.9) with a mean degree central-
ity of 11.2. Consequently, the second approach revealed 108 highly connected hypoxic and metastatic proteins.

Figure 9.   Overview of clinical trials of drugs focused on metastasis. (A) Percentage of clinical trials per cancer 
type. (B) Hypoxia-related proteins with highest number of clinical trials on metastasis. (C) Phase of clinical 
trials where drugs are involved. (D) Target class. (E) Type of drugs. (F) Sankey plot showing the therapeutic 
targets, cancer types, and drugs involved in clinical trials.
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According to Ianuccelli et al., the value of the third approach permits to bridge the gap between genomic data 
and cancer phenotypes. However, it should be kept in mind that biology is more complex than graph theory. One 
important limitation of CancerGenNet is the finding that for up to 20% of the cancer genes we know little about 
the molecular mechanisms underlying their tumorigenic function62. In this context, the third approach was aimed 
at revealing the shortest paths from HRPs to metastasis83. Therefore, we found that 99 hypoxic proteins had paths 
leading to metastasis from which 49 had positive regulation and 16 had negative regulation. Additionally, the 
third approach was complemented with the analysis of angiogenic paths because the recruitment of new blood 
vessels is an essential component of the metastatic pathway63. Therefore, we identified 106 hypoxic proteins with 
shortest paths to the angiogenesis hallmark, of which, 73 had positive regulation and 20 had negative regulation. 
Then, the compendium of the 112 HRPs with the shortest paths to metastatic and angiogenic phenotypes made 
up the third approach.

An integrative analysis of the most relevant proteins per approach revealed the 30 essential proteins involved 
in the signaling crossroads between hypoxia and metastasis: AKT1, AKT2, AKT3, ANGPT1, ANGPT2, ARNT, 
CDH1, CDKN1B, E2F1, EGFR, EP300, ERBB2, IGF1R, LMNA, MAPK1, MAPK3, MDM2, MTOR, NOTCH1, 
PIK3CA, PRKAA1, PRKCA, RELA, RPS6KB1, SHC1, SMAD4, TGFB2, TP53, TSC2, and VEGFA.

Subsequently, the functional enrichment analysis of these 30 essential proteins revealed that the most sig-
nificant GO biological processes (Benjamini–Hochberg correction FDR < 0.001) related to hypoxia were cel-
lular response to hypoxia and regulation of transcription in response to hypoxia; and related to metastasis were 
regulation of cell migration and blood vessel endothelial cell migration. Additionally, the most significant KEGG 
pathways (Benjamini–Hochberg correction FDR < 0.001) were HIF-1, PI3K-Akt, thyroid hormone, ErbB, FoxO, 
mTOR, insulin, MAPK, Ras, AMPK, and VEGF signaling pathways. On the other hand, it is important to men-
tion that several of these proteins not only play a main role in metastasis but also promote other cancer pheno-
types. For instance, according to the hallmarks of cancer study64 and the COSMIC-CGC database65, AKT1, EGFR, 
ERBB2, MTOR, NOTCH1, and PIK3CA promote the proliferative signaling; AKT1, EP300, and TP53 trigger 
suppression of growth; EGFR stimulates the escaping immune response to cancer; MTOR and TP53 encourage 
cell replicative immortality, AKT1, ARNT, EGFR, MTOR, NOTCH1, and PIK3CA promote angiogenesis; AKT1, 
EGFR, ERBB2, MAPK1, MTOR, NOTCH1, PIK3CA, and TP53 trigger the escaping programmed cell death; and 
AKT1, ARNT, CDH1, EGFR, ERBB2, MAPK1, MTOR, NOTCH1, and TP53 stimulate the change of cellular 
energetics (Fig. 7B). Lastly, 16 of these 30 essential proteins were previously catalogued as cancer driver genes 
according to the Integrative OncoGenomics (IntOGen) database (https://​www.​intog​en.​org/​search)84.

Regarding clinical trials reported on the hypoxic/metastatic essential proteins, the Open Targets Platform 
is an available resource for the integration of proteogenomics and chemical data to aid systematic drug tar-
get prioritization70. In this study we identified 23 drugs targeting 10 hypoxic/metastatic proteins that have 
been analyzed in 211 clinical trials. Six of them (aflibercept, bevacizumab, cetuximab, erlotinib, ipatasertib, and 
panitumumab) were involved in phases III/IV clinical trials. Ipatasertib, erlotinib, lapatinib, neratinib, afatinib, 
sapitinib, gefitinib, tucatinib, linsitinib, and buparlisib are small molecules; aflibercept is a recombinant protein; 
and cetuximab, bevacizumab, panitumumab, futuximab, necitumumab, trastuzumab emtansine, pertuzumab, 
ganitumab, dalotuzumab, brontictuzumab, and MEDI-3617 are monoclonal antibodies. Lastly, the mechanism 
of action of these drugs is fully detailed in Table S31.

From a public health perspective, it is fundamental to recognize the holistic view that multi-omics provide to 
the understanding of cancer; for example, providing accurate selection of patients for the assessment of specific 
therapies. As reported by Atun et al., the cancer burden continues to grow globally, projecting to have around 24.6 
million cases by 203085. Physical health is not the only affected aspect, but millions of people who experience the 
economic, emotional, and social impacts of the disease and the increasing economic cost to the health systems. 
Specifically for low-and-middle income countries, there is a gap in the access to health, including a timely quality 
diagnosis and treatment. Additionally, several studies have highlighted the need to diversify oncological studies 
to populations representing several ethnic groups along with the development of novel strategies to enhance 
race/ethnicity data recording and reporting86–90. In this sense, multi-omics technologies and public–private 
investment related to identifying therapeutic targets improving metastatic disease treatments are crucial to 
reduce inequalities in health and strengthen mechanisms that can improve survival rates of different types of 
cancer. Relevantly, the effective and ethical use of these technologies would contribute to the development of 
knowledge and further explanations around the cause of diseases, with the ultimate aim of reducing morbidity 
and mortality; thus, increasing wellbeing. National health systems should work towards the identification of 
opportunity costs related to multi-omics research investment and its potential benefits on clinical applications 
to help diagnose and/or prevent certain diseases. As also stated by Hassin et al., multi-omics approach offers the 
opportunity to understand the flow of information that underlies disease91. The success of the omics approach has 
to be addressed not only in a technical and/or financial factors-assessment but on the importance of developing 
conceptual research shifts; focused also on the relations between biological factors and the interrelations with 
the social determinants of health.

In conclusion, hypoxia and HIF-dependent signaling play an important role in metastasis tumor progres-
sion. The hypoxic tumor microenvironment influences both the early and late stages of metastasis. Our findings 
suggest that individuals with metastasis present higher frequencies of genomic/transcriptomic alterations and 
Buffa hypoxia score across pancarcinomas from PCA-TCGA. The most altered signaling pathways were HIF-1, 
PI3K-Akt, thyroid hormone, ErbB, FoxO, mTOR, insulin, MAPK, Ras, AMPK, and VEGF. Finally, since cancer 
is a group of complex and heterogeneous diseases, the study of multi-omics approaches is an effective way to 
understand the molecular landscape behind hypoxia and metastasis that revealed 30 potential therapeutic targets 
and 23 drugs to improve metastatic disease treatments. These drugs can be considered for treating metastasis 
after being thoroughly evaluated in specific clinical trials.

https://www.intogen.org/search)
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Methods
Gene/protein set.  We analyzed a set of 233 HRGs encompassed by the KEGG HIF-1 signaling pathway 
(n = 109)92; the GO terms: response to hypoxia (GO:0001666), cellular response to hypoxia (GO:0071456), and 
cellular response to decreased oxygen levels (GO:0036293) (n = 102)66; the hypoxic genes according to Buffa 
et al.(n = 52)58; and the high-altitude adaptive phenotypes in populations from the Andean Altiplano, Semien 
Plateau and the Tibetan Plateau according to Bigham (n = 75)93.

OncoPrint of genomic and transcriptomic alterations.  Genomic and transcriptomic alterations 
(mRNA upregulation, mRNA downregulation, CNV deep deletion, CNV amplification, fusion gene, inframe 
mutation, truncating mutation and missense mutation) were analyzed in 6343 individuals (all with tumor stage) 
from 17 pancarcinomas from PCA-TCGA (BLCA, BRCA, CESC, CRC, ESCA, HNSC, KIRC, LIHC, LUAD, 
LUSC, MESO, PAAD, PRAD, SKCM, STAD, TGCT, and THCA). Omics and clinical data related to tumor stage 
(T1-T4) and metastatic status (M0-M1) were taken from the Genomics Data Commons of the National Cancer 
Institute (https://​portal.​gdc.​cancer.​gov/) and the cBioPortal (http://​www.​cbiop​ortal.​org/)55,56. Lastly, the Mann–
Whitney U test and the Bonferroni correction test for multiple comparisons were performed to determine sig-
nificant differences (P < 0.001) between genomic/transcriptomic alterations, clinical data, and PCA-TCGA type.

Hypoxia score.  The Buffa hypoxia score was analyzed in 5249 tumors from 13 pancarcinomas: HNSC, 
LUSC, CESC, CRC, BLCA, SKCM, KIRC, LUAD, PAAD, BRCA, LIHC, PRAD, and THCA58. An approach for 
deriving signatures that combine knowledge of gene function and analysis of in vivo co-expression patterns 
was used to define a common hypoxia signature in cancer. Hypoxia scores were estimated by obtaining the 
mean expression (log2) of 52 hypoxic genes reported by Buffa et al58,79. Data related to Buffa hypoxia score, 
tumor stage, and metastatic status were taken from the Genomics Data Commons and the cBioPortal55,56. Lastly, 
the Bonferroni correction test for multiple comparisons was performed to determine significant differences 
(P < 0.001) between hypoxia score and clinical data.

Protein–protein interactome network.  The PPi network with high-confidence interactions (cut-
off = 0.9) and zero node addition was created using the human proteome of Cytoscape StringApp59,94, which 
imports protein–protein interaction data from the String database59,95–97. The PPi network was encompassed 
by hypoxia-related proteins and metastatic driver proteins, which were taken from the Human Cancer Metas-
tasis Database (https://​hcmdb.i-​sanger.​com/). HCMDB is an integrated database designed to analyze large 
scale expression data of cancer metastasis61. The degree centrality of a node represents the number of edges the 
node has to other nodes in the network and it was calculated using the CytoNCA app98,99. All nodes and edges 
were organized through the organic layout and visualized through the Cytoscape software v.3.7.160. Lastly, the 
hypoxia-related proteins involved in metastasis signaling were differentiated by colors according to the degree 
centrality.

Shortest paths from hypoxia‑related proteins to metastatic and angiogenic phenotypes.  Can-
cerGeneNet (https://​signor.​uniro​ma2.​it/​Cance​rGene​Net/) is a resource that links proteins that are frequently 
mutated in all cancer types to cancer phenotypes. This resource is based on the annotation of experimental infor-
mation that allows to embed the cancer proteins into the cell network of causal protein relationships curated in 
SIGNOR100. Therefore, this bioinformatics tool allows to infer likely paths of causal interactions linking cancer 
associated proteins to cancer phenotypes such as metastasis and angiogenesis62,83,101. Iannuccelli et al.explained 
that the shortest paths from a specific protein to cancer phenotypes was programmatically implemented using 
the shortest path function of igraph R package, obtaining a distance score and a path length score83,102. Hence, 
we analyzed the shortest paths from our hypoxic proteins to metastatic and angiogenic phenotypes to better 
understand the association to these hallmarks of cancer62,64.

Functional enrichment analysis.  The enrichment analysis gives scientists curated interpretation of pro-
tein sets from omics-scale experiments57,66,103. Essential hypoxic and metastatic proteins were analyzed by using 
g:Profiler version e101_eg48_p14_baf17f0 (https://​biit.​cs.​ut.​ee/​gprof​iler/​gost) to obtain significant annotations 
(Benjamini–Hochberg FDR < 0.001) related to GO biological processes, KEGG signaling pathways, and Reac-
tome signaling pathways66,68,92. The functional enrichment analysis was performed using the Human Cancer 
Metastasis proteins as background set, and annotations were visualized through Manhattan plots. Lastly, signifi-
cant terms related to hypoxia, metastasis, and oncogenic signaling pathways were manually curated.

Drugs involved in clinical trials focused on metastatic disease.  The Open Targets Platform (https://​
www.​targe​tvali​dation.​org) is comprehensive and robust data integration for access to and visualization of poten-
tial drug targets associated with several cancer types and metastasis. Additionally, this platform shows all drugs 
in clinical trials associated with hypoxic/metastatic proteins, detailing its phase, type of drug, action type, and 
target class70.

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files).
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