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Integrated socio‑environmental 
vulnerability assessment of coastal 
hazards using data‑driven 
and multi‑criteria analysis 
approaches
Ahad Hasan Tanim1, Erfan Goharian1* & Hamid Moradkhani2

Coastal hazard vulnerability assessment has been centered around the multi‑variate analysis of geo‑
physical and hydroclimate data. The representation of coupled socio‑environmental factors has often 
been ignored in vulnerability assessment. This study develops an integrated socio‑environmental 
Coastal Vulnerability Index (CVI), which simultaneously combines information from five vulnerability 
groups: biophysical, hydroclimate, socio‑economic, ecological, and shoreline. Using the Multi‑Criteria 
Decision Making (MCDM) approach, two CVI (CVI‑50 and CVI‑90) have been developed based on 
average and extreme conditions of the factors. Each CVI is then compared to a data‑driven CVI, which 
is formed based on Probabilistic Principal Component Analysis (PPCA). Both MCDM and PPCA have 
been tied into geospatial analysis to assess the natural hazard vulnerability of six coastal counties 
in South Carolina. Despite traditional MCDM‑based vulnerability assessments, where the final 
index is estimated based on subjective weighting methods or equal weights, this study employs an 
entropy weighting technique to reduce the individuals’ biases in weight assignment. Considering the 
multivariate nature of the coastal vulnerability, the validation results show both CVI‑90 and PPCA 
preserve the vulnerability results from biophysical and socio‑economic factors reasonably, while the 
CVI‑50 methods underestimate the biophysical vulnerability of coastal hazards. Sensitivity analysis 
of CVIs shows that Charleston County is more sensitive to socio‑economic factors, whereas in Horry 
County the physical factors contribute to a higher degree of vulnerability. Findings from this study 
suggest that the PPCA technique facilitates the high‑dimensional vulnerability assessment, while the 
MCDM approach accounts more for decision‑makers’ opinions.

Abbreviations
CVI  Coastal vulnerability index
CVI-50  CVI with 50th percentile weight
CVI-90  CVI with 90th percentile weight
DEM  Digital elevation model
gSSURGO  Gridded soil survey geographic database
HVI  Hydroclimate vulnerability index
GEE  Google earth engine
GIS  Geographic information system
GPM  Global precipitation measurement mission
PC  Principal component
PCA  Principal component analysis
PPCA  Probabilistic principal component analysis
PVI  Physical vulnerability index
KMO  Kaiser–Meyer–Olkin
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LRR  Linear rate of regression
MCDM  Multi criteria decision making
ML  Machin learning
NOAA  National Oceanic and Atmospheric Administration
NHC  National Hurricane Center
NHAS  No. of historical and archeological site
NWS  National Weather Service
NWR  National Wildlife Refugee
TOPSIS  Technique for order performance to ideal solution
SAR  Synthetic aperture radar
SC GAP  SC gap analysis program
SCDHEC  South Carolina Department of Health and Environmental
SoVI  Social vulnerability index
SEVI  Socio-economic vulnerability index
SLR  Sea level rise
SWH  Significant wave height
SLOSH  Sea, lake, and overland surges from hurricanes
USGS  US Geological Survey
USDA  United States Department of Agriculture
VH  Vertical–horizontal
VV  Vertical–vertical

Coastal regions face various challenges including tropical cyclones, severe storms, shoreline erosion, tsunamis, 
sea level rise (SLR), and coastal flooding, which collectively lead to more unprecedented adverse consequences 
on coastal regions’ ecosystems and socio-economic conditions. More frequent occurrences of hurricanes, coastal 
floods, high tides, and waves deteriorate the coastal ecosystem, and negatively affect economic welfare and 
people’s health, albeit of different degree and  magnitude1,2. The ecosystems’ health and the coastal regions’ 
natural hazards vulnerability have been impacted by complex interactions among the connected social and bio-
physical subsystems. These social-environmental systems are facing various sorts of challenges and risks such 
as climate  change3, population growth and  urbanization4,5, ecological  disturbance3, climate uncertainties and 
discrepancies in urban and rural socio-economic  conditions6, unsustainable  management7, and conflicts and 
 fights8. Each of these challenges can be the topic of emergent research, which often roots in different types of 
socio-environmental  relationships9. Thus, the long-term sustainability of coastal socio-environmental systems 
are tied to comprehensive and integrated vulnerability assessment of sub-systems, and then collective adaptive 
planning and management for the future.

The damages caused by recent  hurricanes10, such as Katrina (2005), Sandy (2012), Matthew (2016), and 
Irma (2017), highlight the need for the rearrangement of urban planning, natural conservation, and emer-
gency management  strategies11 and call for more proactive approaches to evaluate the vulnerability of coastal 
systems through a new lens. This requires a simultaneous and compound analysis of socio-environmental and 
biophysical  aspects10,12. Hurricanes are one of the most devastating and cascading coastal hazards, and the sys-
tem’s vulnerability to hurricanes should be investigated in a multivariate  approach13. Hurricane is composed of 
destructive multi-events, including heavy rain, storm surge, flood, strong wind, and landslides. Likewise, the 
complex feedback and simultaneous effects of biophysical and socio-environmental factors on vulnerability of 
the system requires a multivariate analysis approach, in which the vulnerability index is estimated by the collec-
tive effect of all factors. This allows decisionmakers and land planners to look at the vulnerability of the system 
as a co-existence of all vulnerability factors associated with the various sub-systems in coastal  regions14,15. These 
factors, with respect to their quantitative and qualitative characteristics, can be classified into different groups, 
namely physical characteristics, hydroclimate, environmental factors, and socio-economic perspective and the 
shoreline vulnerability (Table 1). The shoreline vulnerability, involving coastal forcing factors, also required for 
a comprehensive coastal vulnerability assessment.

Various studies have attempted to quantify the vulnerability of coastal systems during the last few decades 
by combining various sets of parameters and doing single- and multi-variate analysis (Table 1). Almost all 
these studies follow some basic steps including scaling, weighting, and combining elements from one or more 
categories of coastal vulnerability factors. However, each study has used a unique method at each step. These 
methods are discussed in the “Coastal vulnerability assessment method and index” and their advantages and 
shortcomings are discussed.

Coastal vulnerability factors. Most studies described in Table 1 have evaluated the coastal systems’ vul-
nerability by focusing on factors from biophysical factors (coastal forcing and physical characteristics groups), 
such as hurricane pressure, wind velocity, precipitation intensity, coastal flood risk, slope, elevation, land use/
land cover, proximity to valuable structures, mean tide ranges, significant wave height, surge height, morpho-
logical erosion etc. (e.g. Refs.8,9). Coastal vulnerability evolves beyond just the magnitude of hazards. As sug-
gested, vulnerability assessment should target identifying exposed communities that are not only susceptible 
to the coastal hazards but also more sensitive to the damages from these  hazards16. To render a comprehensive 
vulnerability framework, a multi-dimensional framework, which combines a set of physical, socio-economic, 
and ecological factors, is required to achieve this goal and enhance conventional  approaches16–20. The socio-
environmental factors are less employed for vulnerability assessment of coastal natural  hazards9,14,20–23. Socio-
economic factors must be considered to represent the adaptive capacity of exposed coastal systems to natural 
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hazards. Recently, many studies (e.g., Refs.18,24,25). have tended to incorporate human and ecosystem dimensions 
in their vulnerability assessment framework with respect to the impacts of coastal environmental variability 
and hazards on populated coastal regions The socio-economic factors involve social status (income, wealth, and 
education), cultural aspects, risk perception, political conditions, and institutions for assessing the efficiency of 
disaster responses, sustainable livelihood options, and post-disaster recovery  plans26. The demographic charac-
teristics (race, gender, ethnicity) and health care systems that can provide more information about community 
resilience facing natural  disasters19. Aggregation of exposure with socio-economic23 and ecological factors can 
lead to an integrated hazard assessment framework and fill the gaps. Therefore, this study aims to aggregate the 
exposure of socio-economic, ecological with relevant hazard stimuli from hydroclimate, physical vulnerability 
classes to develop a multi-variate coastal vulnerability assessment framework and provide a novel and informa-

Table 1.  Summary of literature review for the vulnerability analysis of natural hazard.

Method Selected criteria Weighting Scaling Amalgamation Location

System interconnectivity 
 analysis43

Total 58 social and biophysi-
cal variables were selected 
based on literature

Participation coefficient Z-scores Multiplex network analysis Canadian arctic region

Fuzzy TOPSIS and Delphi 
 technique35

Social, economic and 
hydrologic Delphi Triangular fuzzy number Fuzzy TOPSIS South Han River

Spatial trend analysis of Net 
primary  productivity52

Climate change, ecological 
and hydrothermal factors Equal weight Normalization Multiplication of sensitivity 

and adaptability Tibetan Plateau

Multivariate spatial cluster-
ing  technique53

Current and future hurri-
cane flood risk, Socioeco-
nomic and ecological factors

Equal weight Normalization Risk analysis East coast, USA

PCA  methods2 Tornado intensity and 
societal exposure F-scale of tornado Z-scores Additive method Texas

Integrated vulnerability 
 analysis22

Coastal forcing, charac-
teristics, biophysical and 
socio-economic

Expert Knowledge based Equal weight Additive method Azores archipelago

Deterministic and probabil-
istic  model41 Land cover and elevation

Spatial prediction using 
sequential Gaussian Simula-
tion

Manhattan, New York

Bayesian belief  network37 Landuse, hydrological fac-
tors and IDF Expert Knowledge based

Expectation maximiza-
tion and gradient descent 
algorithms

Toronto, Canada

ANN and  RF54 Socio-economic, hydrocli-
mate, Physical

RF to predict the damage 
cost and vulnerability clas-
sification

Southeast U.S

Convolutional Neural 
network and  SVM42

Physical and Geologi-
cal characteristics, Flood 
historical location as the 
triggering factors

Spatial prediction using 
trained CNN and SVM Shangyou, China

Support vector machine 
(SVM)40

altitude, aspect, slope, cur-
vature, stream power index, 
topographic wetness index, 
sediment transport index, 
topographic roughness 
index, distance from river, 
geology, soil, surface runoff, 
and land use/cover (LULC)

Frequency ratio (FR) 
method Normalization of FR Spatial prediction Malaysia

Random-forest (RF) and 
boosted-tree  models39

Flooded area, Physical 
characteristics (Elevation, 
Slope, Distance from the 
river, Slope length factor, 
Topographic Wetness Index, 
Stream power index, Plan 
curvature), Landuse map, 
Soil drainage, Geology

Drop of the node impurity 
for the classification or the 
substitution estimate for the 
regression

Weighted sum the predictor 
importance Spatial prediction Seoul, South Korea

Multi‐Criteria Decision Sup-
port  Systems25

Socio-economic, Fatalities, 
Flood defense system, 
evacuation system

AHP scale Weighted sum Analytic Network Process Tokai, Japan

Bayesian  network38
Hydro-geology, Socio-
economy, Climate, Flood 
protection

AHP, constant sum and 
Entropy Normalization Bayesian Network Chungnam and Chungbak 

provinces, South Korea

AHP33 Physical, Geotechnical and 
Social Expert knowledge based Saaty’s scale Additive method Odisha coast, India

Integrated vulnerability 
 assessment31

Shoreline forcing, Coastal 
characteristics, and Socio-
economic

Equal weight Subjective scaling Adding all sub-index and 
then normalization Ireland

Integrated vulnerability 
 assessment32

Shoreline forcing, coastal 
characteristics and socio-
economic

Equal weight Subjective scaling Gornitz method Odisha coast

Testing the utility function 
of factors  amalgamation30

Exposure, sensitivity and 
coping Sensitivity analysis Min–max standardizations Six Additive and multiplica-

tive functions South Korea
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tive integrated index. In addition to these factors’ considerations of shoreline vulnerability must be assessed in 
order to support coastal defense systems because human actions and oceanic forces continuously exert pressure 
on the  shoreline27.

Spatial heterogeneity and uncertainty of weights in MCDM. Spatially homogenous weights in vul-
nerability functions of MCDM lead to underestimation of importance and underrepresentation factors, such as 
adaptive capacity, which varies over large spatially distributed area, and over time as well. Spatial heterogene-
ity of weight stems from geographical and socio-economic diversity in different regions; thus, should be reflected 
in the spatial factors’  weight28. To get the final CVI, and for amalgamation of the factors into one index, the 
indices from each vulnerability group and their relative weights in MCDM need to be combined. Traditionally, 
two approaches in geospatial analysis are used, including (1) additive methods (summation of the consisting 
 factors29,30, and (2) multiplicative factor amalgamation  formula29. While using this formula, there still exist a gap 
between a theoretically obtained vulnerability index i.e., CVI and the actual degree of vulnerability in a system. 
In the MCDM approach, the values of factors within and among vulnerability groups should be combined, which 
historically has been done by assigning equal  weights31,32 or performing surveys to find relative importance of 
factors and their corresponding weights (e.g.,  AHP33). Using equal weights for the additive factor amalgamation 
method to obtain the final CVI is not able to prioritize most sensitive vulnerability factors and  groups34. The gap 
is the consequence of the fact that existing approaches assign spatially homogenous weights within and over a 
particular region. It is important to verify the subsequent vulnerability index and the spatial consistency of the 
vulnerability function for constant and varying weights throughout the region and how this alters the overall 
results. Still, there is a need to capture the effect of varying and uncertain weights on vulnerability maps and 
perform a stochastic estimation of validation of maps to reduce the uncertainty associated with a coastal vulner-
ability index estimation. For this purpose, this study aims to develop a heterogeneous spatial weighting method 
for multi-criteria decision-making and preform uncertainty analysis of corresponding weights to form a prudent 
vulnerability index for various spatial scales and extents.

Coastal vulnerability assessment method and index. First, for the sake of simplicity and consist-
ency, let’s call the vulnerability product and introduced indicator by previous studies as Coastal Vulnerability 
Index (CVI). Current vulnerability assessment methods are mainly developed by some sorts of a Multi-Criteria 
Decision Making (MCDM) approach. MCDM method can be engaged to obtain the relative importance among 
the chosen variables based on either subjective or objective weighting technique. MCDM such as Analytical 
Hierarchy Process (e.g. Refs.25,33), Fuzzy Technique for Order Performance to Ideal Solution (TOPSIS) (e.g. 
Ref.35), and Delphi  technique35 can be engaged. Alternatively using statistical models like Principal Component 
Analysis (PCA) (e.g., Refs.2,36), Bayesian belief network (e.g., Refs.37,38, or by leveraging machine learning models 
(e.g. Refs.39,40), deterministic inundation modeling (e.g. Ref.41,), convolutional neural network (e.g., Ref.42), and 
network analysis (e.g., Ref.43) can be used for obtaining CVI (Table 1).

The MCDM methods have been used widely for qualitative and quantitative evaluation of decision criteria 
under different management alternatives (Table 1). After selecting the decision criteria, the MCDM methods fol-
low three major steps of weighting, scaling, and amalgamation. In subjective weighting often selecting, prioritiz-
ing, and evaluating criteria are associated with biases arising from humans’ perception and inadequate support of 
information and evidence. Similarly, in absence of definite preferences and expert or decision makers judgments, 
objective weight determination methods are also reliable, but these are based on mathematical models. The 
MCDMs’ objective weighting is a data driven approach that relies on large amount of information to prioritize 
the vulnerability hotspots, but potentially disregards the importance of rest of  information44. This issue can be 
addressed by using multivariate statistical approaches and Machine Learning (ML) algorithms, such as PCA.

ML models are powerful tools to visualize and sort out communicable information from rich datasets. 
PCA method aims to reduce the dimensionality of datasets and at the same time minimizes information loss. 
This method has been used for assessing socio-economic and environmental  vulnerability45–47, flash flood 
 vulnerability18,28,31, and urban environmental  vulnerability48. Besides that, fine scale CVI analysis has several 
challenges including presence of missing values requires advanced spatial interpolation method, the normaliza-
tion of factors requires a continuous scale rather than a discrete scale to capture precise degree of  vulnerability49. 
One shortcoming of applying PCA to large spatial datasets is how one should deal with missing values. To over-
come this issue, the Probabilistic Principal Component Analysis (PPCA) applies an Expectation–Maximization 
(EM) algorithm to estimate missing  values50. Therefore, PPCA can be preferred in spatial vulnerability studies, 
since the PPCA can represent continuity of spatial datasets along with importance of information. Still, very 
few studies attempted to assess the coastal vulnerability using PPCA method, especially at smaller grid levels.

Current CVI development approaches e.g., Refs.2,15,21,32,33 mainly rely on analyzing biophysical hazard drivers, 
with the final CVI consisting of geographical and hydroclimate factors to determine the degree of coastal vulner-
ability. However, coastal vulnerability is also impacted by socio-economic and environmental conditions. Thus, 
a more comprehensive CVI should simultaneously combine information about socio-economic and ecological 
aspects of a coastal area along with vulnerability from biophysical hazard  drivers9,16,18,19,22,23,27,31,36,49,51. Moreover, 
the factors that contribute to the vulnerability of coastal land and shorelines are different in nature and should 
be selected accordingly. After selecting a group of vulnerability factors, their information and values should 
be combined into a single index. Traditional methods mainly rely on subjective weighting methods which are 
associated with uncertainty in weight assignment which is biased by experts’ judgement and experience. Finally, 
most of the previous vulnerability assessments have not been truly validated against data from past events, nor 
cross-validated by other methods.
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Considering the limitations of existing methods, two methods: MCDM and PPCA, are utilized in this study 
to establish an integrated CVI. To perform coastal vulnerability study in a more comprehensive way, a wide list 
of socio-economic, environmental, geographical and hydroclimate factors are gathered. These factors are then 
hand-picked for MCDM, or selected for PPCA through statistical importance. The uncertainty associated with 
selecting appropriate weights for factors is handled using objective weighting and sensitivity analysis for MCDM 
and data driven objective weighting for PPCA. Because weights may change over space and time, the spatial 
heterogeneity of weights among different vulnerability groups is explored by sensitivity analysis. In addition, CVI 
assessment using the PPCA method has a unique potential to deal with missing geospatial values, which have 
historically been an obstacle for determining the spatially varying importance of factors and creating fine scale 
vulnerability maps. Finally, the integrated CVIs, estimated by MCDM or PPCA, are validated against observed 
coastal hazard vulnerability and historical damages to justify their competence in predicting vulnerability.

In summary, the first objective of this study is to develop an integrated framework for the vulnerability 
assessment of coastal regions by including factors from four general groups of (Hydroclimate, Physical, Socio-
Economic, and Ecological), and a unique fifth group for shoreline vulnerability to natural hazards. The second 
objective is to perform uncertainty analysis of the spatial MCDM and heterogeneous spatial weighting in MCDM 
to evaluate the rationality of the obtained CVI over various spatial scales and extents. The third objective is to 
apply a data driven geospatial PPCA method for coastal vulnerability assessment. For this purpose, 20 vulner-
ability indicators in five vulnerability groups are picked to determine the spatial vulnerability of the coastal 
counties of SC. Finally, past coastal hazard inundation maps and costs of fatalities are compiled to validate the 
CVIs obtained from both methods.

Methodology
The coastal vulnerability concept demonstrates which degree of vulnerability of a socio-environmental systems 
exposed to coastal hazard drivers, and it depends on a complex feedback between biophysical hazard drivers and 
the socio-environmental  exposures55,56. Earlier concepts of vulnerable places to natural hazard in geospatial anal-
ysis focused on geographical hotspots where the likelihood of natural hazard events are  high20. However, more 
recent definition is extended to include the impact assessment of environmental components in order to reflect 
the adaptive capacity of a community. This study acquired datasets from various sources (Table 2) to determine 
the combined effects of factors from physical, hydroclimate, ecological and socio-economic vulnerability groups.

This study presents the development of a multi-variate vulnerability index with emphasis on two main aspects 
of costal vulnerability, biophysical and the socio-environmental vulnerability. The biophysical vulnerability fac-
tors refer to those which describe geophysical and hydroclimate characteristics of a coastal system over an 
extended time period. The socio-environmental vulnerability aspect consists of social, economic, and ecologi-
cal features. Here, the socio-environmental vulnerability factors represent the demographics and ecological 
characteristics of a coastal system, such as SC’s coastal regions. Thus, the proposed CVI for coastal systems can 
(1) measure the degree of vulnerability where the system is exposed to biophysical hazards, and (2) measure 
the degree of socio-economic and ecological vulnerability of exposed places. Furthermore, shorelines in coastal 
systems have their own distinct vulnerability characteristics since the vulnerability of the shoreline is mainly 
associated with oceanographic forces. A total of 15 factors are selected to represent the coastal vulnerability and 
5 factors are chosen for shoreline vulnerability (Table 2).

This study propose formation of a new CVI concept based on two different approaches (Figs. 1, 2), MCDM 
(“Multi-criteria decision-making”) and PPCA (“Probabilistic principal component analysis”). For this, each raster 
layer consists of about 69 million cells with 30-m resolution over the study region. Fuzzy logic-based normaliza-
tion and entropy weighting techniques have been used in MCDM to estimate the relative importance of the spatial 
factors for different vulnerability groups. The overlay and sensitivity analysis are conducted using R packages 
and ArcGISv10.5. The primary steps needed to obtain a CVI using MCDM methods are presented as follows:

1. Relevant vulnerability factors are selected. After collecting data of relevant spatial factors, these factors are 
assigned to their representative groups.

2. All data is converted into Geographic Information System (GIS) format. Then, all GIS datasets are converted 
into raster layers, such that small scale spatial changes can be visualized and studied, using a consistent 
projection system (here we have used WGS 1984 Web Mercator Auxiliary Sphere).

3. The spatial data interpolation is done if the data is required to be transformed from point shapefile to raster 
datasets. ArcGIS Inverse Distance Weighting (IDW) Interpolation tool has been used to interpolate the 
missing values for MCDM. The PPCA method can deal with the missing information using its internal 
probability model. All geospatial datasets are maintained/generated at a similar spatial scale, here 30 m, to 
use consistent normalization and factor amalgamation process.

4. The degree of vulnerability of each factor for the MCDM method is determined by Fuzzy logic-based nor-
malization approach (“Scaling with Fuzzy membership function”). This method converts the values of all 
vulnerability factors to a similar and comparable scale of 0–1.

5. The importance of various spatial factors in a vulnerability group is quantified by the entropy-weight. Mul-
tiplying the weights of each factor with the fuzzy normalized layer and summing up all the factors in a 
vulnerability group results in the vulnerability index of a group.

6. After getting each group’s vulnerability index value, an additive vulnerability function is applied to combine 
the vulnerability index of all groups into a unique final CVI.

7. The weights associated with vulnerability groups’ index is analyzed with sensitivity analysis to find the rank-
ing percentile of weights for each vulnerability group. For example, CVI-50 and CVI-90 represent the 50th 
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and 90th percentile weights, respectively. In other words, CVI-50 represents a normal vulnerability situation, 
whereas the CVI-90 depicts a severely venerable scenario.

8. Finally, in order to validate estimated CVIs, a validation dataset has been obtained from Sentinel-1 satel-
lite post processed flood hazard data inventory as well as historical events’ cost of fatalities. The validation 
datasets are compared with the CVI-50, CVI-90, and later PPCA methods, to evaluate the accuracy of vul-
nerability assessment using each method.

 

Scaling with Fuzzy membership function. After preparing the raster datasets and determinants’ infor-
mation, Fuzzy set theory is applied to scale the spatial factors based on their importance. While, the Boolean 
logic accepts binary values for the classification probability, fuzzy set theory considers the probability of a factor 
as a membership scale between 0 to  159. This study exploits fuzzy logic and its associated functions for factor 
normalization. Various studies have categorized vulnerability factors into dissimilar ranges to define the degree 
of vulnerability in a discrete scale. Collective consequences of underestimating or overestimating the degree 
of vulnerability and its factors in a discrete scale may lead to underestimation or overestimation of the actual 
vulnerability value and class. Fuzzy logic-based method significantly improves the skill of normalization over 
min–max, Z-scores, and other traditional normalization  methods60. For sub-class scale vulnerability analysis, 
fuzzy-based normalization quantifies the importance of a factor as a continuous function, whereas conventional 
normalization techniques require reclassification of the data histogram that reduce the natural variability. The 
main advantages of using fuzzy logic-based factor normalization are the ability to determine the degree of vul-
nerability using a non-linear data transformation function, the reduction in the uncertainty of discrete scale 
factor normalization, and the precise indexing of a vulnerability group after summing up all the factors using 
additive factor  amalgamation49,60–62.

The relative importance of a pixel value, individual factor vulnerability, will be assigned by a fuzzy member-
ship index. The fuzzy membership function assigns 0 to a non-member pixel, and 1 to a full member. For the 
values between 0 to 1, three fuzzy functions: (1) Fuzzy large, (2) Fuzzy small, and (3) Fuzzy linear are used to 

Table 2.  Sources of data acquired for coastal vulnerability analysis.

Sl Vulnerability group Indicators Product Web source

1

Hydroclimate

No. of coastal hazard events NOAA Storm event database NOAA (https:// www. ncdc. noaa. gov/ storm 
events/)

2 Hurricane track density
National Hurricane Center (NHC) National 
Oceanographic Atmospheric Administration 
(NOAA)

NHC (https:// www. nhc. noaa. gov/ data/ hurdat)

3 Surge height
NOAA SLOSH model Maximum Envelopes of 
Water (MEOW). For historical surge peak and 
their locations, MOMs (Maximum of MEOW) 
composite images

NOAA (https:// slosh. nws. noaa. gov/)

4 Rainfall intensity Global Precipitation measurement (GPM) GPM (https:// gpm. nasa. gov/)

5 Sea level rise NOAA SLR viewer https:// coast. noaa. gov/ slr/

6

Physical

Landuse USDA land cover map https:// datag ateway. nrcs. usda. gov/

7 Available water storage USDA 10 m resolution soil map https:// datag ateway. nrcs. usda. gov/

8 Elevation US Department of Agriculture (USDA) 30 m 
resolution Digital Elevation model https:// datag ateway. nrcs. usda. gov/

9 Distance from coast

10

Socio-economic

Social Vulnerability Index (SoVI)45

11 No. of Historical and Archeological structures 
(NHAS)

12 Cost of fatalities NOAA storm event database https:// www. ncdc. noaa. gov/ storm events/

13

Ecological

Species richness SC Gap Analysis  Project57 57

14 Shellfish harvesting SCDHEC https:// apps. dhec. sc. gov

15 Turtle SCDHEC

16

Shoreline

Rate of shoreline change
US Geological Survey (USGS) National Assess-
ment of Shoreline Change Project  dataset58. The 
Linear Rate of Regression (LRR) method dataset 
engaged in this study

https:// pubs. usgs. gov/ of/ 2005/ 1326/ gis- data. 
html

17 Tide range NOAA tide gauges https:// tides andcu rrents. noaa. gov/ map/ index. 
html

18 Significant wave height
National Data Buoy Center https:// www. ndbc. noaa. gov/

MetOcean https:// app. metoc eanvi ew. com/ hindc ast/

19 Coastal slope NOAA coastal bathymetry https:// maps. ngdc. noaa. gov/ viewe rs/ bathy 
metry/

20 Beachfront stability SCDHEC

https://www.ncdc.noaa.gov/stormevents/
https://www.ncdc.noaa.gov/stormevents/
https://www.nhc.noaa.gov/data/hurdat
https://slosh.nws.noaa.gov/
https://gpm.nasa.gov/
https://coast.noaa.gov/slr/
https://datagateway.nrcs.usda.gov/
https://datagateway.nrcs.usda.gov/
https://datagateway.nrcs.usda.gov/
https://www.ncdc.noaa.gov/stormevents/
https://apps.dhec.sc.gov
https://pubs.usgs.gov/of/2005/1326/gis-data.html
https://pubs.usgs.gov/of/2005/1326/gis-data.html
https://tidesandcurrents.noaa.gov/map/index.html
https://tidesandcurrents.noaa.gov/map/index.html
https://www.ndbc.noaa.gov/
https://app.metoceanview.com/hindcast/
https://maps.ngdc.noaa.gov/viewers/bathymetry/
https://maps.ngdc.noaa.gov/viewers/bathymetry/
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Figure 1.  Schematic of the MCDM framework for integrated coastal vulnerability analysis.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11625  | https://doi.org/10.1038/s41598-022-15237-z

www.nature.com/scientificreports/

transform the factor value to an index value (Table 3). Equations (1) and (2) show the Fuzzy large ( µ1(i) ) and 
Fuzzy small (µ2(i)) functions. The Fuzzy linear membership function uses a linear transformation between the 
lowest value of a histogram, as the minimum limit of zero, and the highest value of a histogram, as the maximum 
limit of one. The Fuzzy linear function is applied where each quartile range in histogram has equal or uniform 
distance.

where i is the raster value of a certain vulnerability indicator, f1 and f2 are respectively spread and midpoint 
from the raster histogram. Fuzzy large function is applied when the range between each quartile is unequal and 
Fuzzy small function is chosen where vulnerability indicator has a negative correlation with overall vulnerabil-
ity. Whenever the histogram and frequency distribution of a vulnerability factor are found bimodal or random, 
the break values categorize the data distribution into five vulnerability classes: high, moderate high, moderate, 
moderate low and low vulnerable (Table 3). For the fuzzification of the elevation factor, the flooding area of SLR 
and storm surge is considered as a function of the elevation.

Table 3 lists the assumptions used to categorize each vulnerability component into 5 vulnerability classes. 
Jenks-optimization-based natural break method is applied to obtain the five categories of the vulnerability: 
high, moderate high, moderate, moderate low, and low. Shoreline changes are assessed in terms of erosions and 
depositions, using USGS data. The shoreline change rate can be caused by erosion or accretion. While accretion 
is not considered a vulnerable situation, its rate is excluded from the estimation of shoreline changes by setting 0 
as the margin of Fuzzy linear function. The shoreline erosion rate within 0–5 m/year in histogram is considered 
for the fuzzification. Afterward, the Fuzzy small function is applied to the shoreline erosion rate in order to relate 
higher rate of erosion with higher vulnerability values. Then, the rate of shoreline change is classified into five 
vulnerability classes, and a Fuzzy small function estimates corresponding vulnerability index. The coastal slope 
histogram has a random distribution and Jenks optimization based natural break method is applied to classify 
the coastal slope (Table 3).

The elevation map is categorized into different vulnerability classes based on susceptibility of flood caused by 
storm surge height and SLR with respect to the morphology of the area. In general, the low-lying lands adjacent 
to coast are more susceptible to flooding. To represent the impact of SLR, the digital elevation model (DEM) 
maps are categorized based on NOAA-SLR projections to identify impacted areas by different SLR projections. 
The projected SLR in SC coast is anticipated to be around 0.1–0.6 m by the year  210063. Hence, inundated area 
projected by NOAA under the scenario of 0.1–0.6 m SLR are identified as vulnerable areas to SLR for this study 
(Table 3). About 28.6% of total coastal area, including waterbodies, will be likely to be flooded by 2100 under the 
0.6 m SLR (Table 3). The Map Algebra tool of ArcGIS is engaged to identify the vulnerability class of each pixel 
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1

1+

(

i
f 2

)−f 1
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i
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Figure 2.  Probabilistic Principal Component Analysis based vulnerability analysis flowchart.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11625  | https://doi.org/10.1038/s41598-022-15237-z

www.nature.com/scientificreports/

Factor Fuzzy function Range Vulnerability class Rationale

Shoreline

Rate of shoreline change (m/year) Fuzzy linear and Fuzzy small

High

Shoreline erosion cause land loss

Moderate high

Medium

Moderate low

Low

SWH (m) Fuzzy large 1.4–4.6 Extreme wave height result faster coastal 
inundation

Tide range (m) Fuzzy large 2.5–3.7

When storm surge arrives in high tide, 
the tide-surge interaction produces 
higher storm surge height than a shore-
line section having lower tide height. 
Thus, high tide range increases the surge 
height probability

Beachfront stability Fuzzy small
Stable Low Unstable beachfront are more vulner-

able to coastal hazardUnstable Very low

Coastal slope Fuzzy small

0–0.06 High

Mild coastal slope enhance coastal 
flood risk

0.06–0.14 Moderate high

0.15–0.26 Medium

0.27–0.56 Moderate low

0.57< Low

Hydroclimate

No. of coastal hazard events Fuzzy large 0–166
The numbers of coastal hazard events 
shows hazard previous footprint on dif-
ferent counties

Cyclone track density (Wind speed in 
30 km radius) Fuzzy linear 0–51.45 High cyclone activity on a coastal sec-

tion indicates high vulnerability

Surge height (m) Fuzzy linear 0–8 When storm surge height increases the 
area of coastal inundation will be more

Rainfall intensity (mm/h) Fuzzy linear 0.28–0.42 High rainfall intensity can be considered 
as more vulnerable

Ecological factors

Shellfish harvesting area  (km2) Fuzzy large 0.2–1109

Larger shellfish harvesting areas indicate 
more sensitive ecosystems. Coastal 
hazards have negative consequences on 
areas of shellfish harvesting. The higher 
the area of shellfish harvesting, the 
higher the chance of damages caused by 
a coastal hazard to fisheries community

Turtle sites (km) Fuzzy large 1–36
Presence of large number of turtle 
sites is high ecological vulnerability 
indicators

Species distribution Fuzzy large 0–241 Higher the species richness the ecosys-
tem is more vulnerable to coastal hazard

Socio-Economic

SoVI Fuzzy linear 1–5 High SoVI indicates an area is more 
vulnerable and less coping capacity

NHAS Fuzzy linear 0–430
Historical and Archeological site faces 
great risk of vulnerability because the 
life span of structural durability already 
expired in many places

Cost of fatalities ($Million) Fuzzy linear 0–4.32 The higher the cost of fatalities the 
higher the degree of vulnerability

Physical

Elevation (m) Fuzzy small

0–0.3 High

Coastal vulnerability decreases with 
increasing elevation

0.3–0.6 Moderate high

0.61–2.99 Moderate

3–7.99 Moderate low

8< Low

Curve number Fuzzy linear

16–45 Low

Landuse having high curve number 
shows higher potential of generating 
rainfall runoff and more vulnerable

46–62 Moderate low

63–74 Moderate

74–82 Moderate high

82–95 High

Average water content in soil (cm) Fuzzy small 0–54.04
High water content in soil increase flood 
vulnerability by reducing the infiltration 
capacity

Distance (km) K means clustering and Fuzzy Small

0–21.44 High

Proximity to coast increases the level of 
vulnerability to places and infrastruc-
tures

21.45–41.9 Moderate high

42–63.9 Moderate

64–87.9 Moderate low

88–118.5 Low
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of SLR susceptible area. The area inundated by 0.3 m of SLR is regarded as a highly vulnerable area based on its 
elevation under more probable coastal floods. The area inundated by 0.3–0.6 m SLR is considered a moderate-
high flood risk zone as they will be less affected by SLR and by considering their relative elevation. The area in 
DEM corresponding to the surge height of 0.61–3 m is defined as moderately vulnerable (Table 3). The historical 
highest recorded height of a surge in SC coast is about 8 m; thus, the area with elevation above 8 m are assigned 
as low vulnerable areas, as they are less susceptible to coastal flooding caused by storm surges (Table 3).

The region’s soil type and land cover maps are obtained from gSSURGO soil maps to classify the hydrologic 
soil groups (Table 2). The impact of landuse on coastal vulnerability is represented by SCS curve numbers 
determined based on USDA guidelines (USDA 1999) and classified using Jenks optimization based natural 
breaks methods into vulnerability classes. A Euclidean distance map is generated to classify the area into five 
vulnerability zones based on distance.

Multi‑criteria decision‑making. Entropy‑based weighting method. There are a variety of objective 
weighting algorithms available including  TOPSIS64, entropy concept,  Dominance65, and  Maximin66. Here, Lexi-
cographic ordering technique or Entropy-based  weighting67 has been used in this study to assign weights due to 
its capability in assignments based on quantitative inhomogeneity among the multiple vulnerability indicators. 
The entropy-based weighting is assigned to the vulnerability indicators to get the vulnerability of five groups (Ta-
ble 2). After using fuzzy membership function to show the degree of factors’ value membership with the regards 
to its vulnerability, the performance matrix of j number of factors is normalized using Eq. (1).

where, i (1 to m) is the index or raster value after fuzzification of a vulnerability factor, and j (1 to n) is the number 
of factors in each sub-group. Pij implies to the normalized payoff of factor i under j criterion of vulnerability. For 
each vulnerability sub-group, the entropy ( Ej ) of normalized performance is determined using Eq. (2):

After calculating the Ej , the entropic weight ( Wj ) is estimated by normalizing the values over the j criterion 
(Eq. 3).

Vulnerability aggregation. In this stage, four vulnerability groups obtained using objective weighting are joined 
using intragroup weighting. The vulnerability index of each group, e.g., Physical Vulnerability Index (PVI), Eco-
logical Vulnerability Index (EVI), Socio-Economic Vulnerability Index (SEVI) is calculated using an additive 
weighted vulnerability function. Vulnerability index of each vulnerability group is determined using Eq. (6)

where SI refers to vulnerability index of each group (HVI, PVI, EVI, and SEVI) and Wj is the weight obtained 
using Eq. (5). Here, SI results an index within a range between 0 to 1 because both performance index ( Pij) and 
entropy weight ( Wj) in Eq. (6) have corresponding values within a range between 0 to 1. Equation (6) has The 
CVI is then can be estimated based on a set of intragroup weights (ak, bk, ck, and dk) which are for k county (Eq. 7).

HVI is the Index resulting from hydroclimate vulnerability, PVI is the Index resulting from combining all 
physical vulnerability indicators, EVI is the Index resulting from ecological vulnerability indicators, SEVI is the 
Index resulting from socio-economic vulnerability indicators. The intragroup weights of are determined using a 
sensitivity test for different combinations of weights in a range between 0 to 1. The sum of the intragroup vulner-
ability weights is maintained 1. In this study, HVI, PVI and EVI have 30 m spatial resolution whereas the SEVI 

(3)Pij =
rij

∑m
i=1 rij

,

(4)Ej = −k

m
∑

i=1

Pij · lnPij;where : k =
1

lnm
.

Wj =
dj

∑n
j=1 dj

;

where : dj = 1− Ej .

(5)
n

∑

j=1

Wj = 1.

(6)SI =

n
∑

j=1

Pij ×W
j
,

(7)CVI = HVI × ak + PVI × bk + EVI × ck + SEVI × dk .

Table 3.  Rationale of chosen vulnerability indicators and assigned Fuzzy functions.
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is derived at census block level. The CVI-50 and CVI-90 vulnerability map has resolution 30 m. The PPCA map 
is rendered at 1 km spatial grid resolution.

Sensitivity of weights. The sensitivity analysis is performed by enumerating the weights of each group of vul-
nerability, i.e., EVI, HVI, PVI and SEVI for different counties. The weights are changed between 0 to 1 with 0.05 
intervals, while the sum of weights is maintained at 1, for each county (Eq. 7). Total 730 different combinations 
of weights were tested to identify the different percentiles of vulnerabilities and their associated sets of weights.

Two vulnerability maps are aimed to develop based on average and extreme conditions of vulnerability. 
The average and extreme conditions are represented with 50th percentile weights of each county (CVI-50), 
and CVI-90 for 90th percentile weights of each county respectively. Thus, based on Eq. (7), the weights of CVI 
factors are spatially varying from one county to another to account the heterogeneity of spatial weights and fac-
tor importance. The shoreline section has no other overlapping of vulnerability group, and its CVI is similarly 
calculated using Eq. (6). The shoreline section is analyzed separately, and then integrated with the coastal land 
section using “Mosaic” tool in ArcGIS. Mosaic tool is used to combine two or more neighboring raster datasets 
into a single entity. However, before joining both land and shoreline part both sections are renormalized in 0–1 
scale using min–max standardization to have a consistent CVI definition on both sections.

Probabilistic principal component analysis. PCA is a multivariate statistical method to transform a 
set of uncorrelated factors to correlated factors, as one principal component (PC), by performing an orthogonal 
transformation. First, PC maintains the highest possible variance, while the next PCs have the following vari-
ances from the constraint. The PCA makes linear combination of the actual factors at reduced dimension that 
allows a better interpretation of given factors in terms of their importance. The PCA is widely used for dimen-
sionality reduction to obtain a simplified and consolidated index (e.g., Refs.36,44,50,68). PCA perform multivariate 
analysis based on eigenvector. In spatial analysis, the reduced number of factors, components of PCA, are the 
factor values for each pixel. After transformation of the original factors, PCA assigns a score and loadings for 
each factor to form new PCs. The loading is the weight of transformation for converting the original factor values 
into a component score. The probabilistic principal component analysis (PPCA) is a multivariate data analysis 
technique that combines classical linearized projection and probability model. The extended PCA  model50 and 
applied maximum likelihood procedure based on Gaussian probability model allow the PCA method to estimate 
the missing data in observation datasets.

Prior to PCA analysis the Kaiser–Meyer–Olkin (KMO) test is performed to measure the sampling adequacy. 
KMO criterion ranges between 0–1, in which a sample with KMO > 0.5 provides satisfactory result. The datasets 
used in this study provides a KMO of about 0.72, which shows the reasonable performance of data for PPCA 
analysis. Another pre-processing criterion is the Bartlett’s test of Sphericity. In this test the level of significance 
with p-value should be less than 0.5 for PPCA analysis. The datasets result of 0 in Bartlett’s test of Sphericity indi-
cates the sample can be used for PPCA analysis. The PPCA method has also been used to develop a data driven 
CVI in this study. This method has been originally adopted from Ref.36 and has been modified and enhanced 
here as it is shown in Fig. 2 and described as follows:

1. First, the Spearman correlation coefficient is estimated for all the vulnerability indicators using Fuzzy nor-
malized raster datasets. The correlation coefficient is required to see the highly correlated input variables. 
Then, the PPCA is performed using the fuzzy normalized input variables.

2. Using PPCA, five principal components are retained using Kaiser  criterion69. Based on the criterion, the 
components with eigenvalues greater than 1 are retained.

3. To decrease the number of variables which are used for the vulnerability assessment, the varimax rotation 
method has been applied. The varimax rotation maximizes the sum of the variances between the squared 
loadings. Correlations between variables and factors are referred as ’loadings.’ So, smaller sets of variables 
have higher factor loadings, while the remaining variables will get a lower factor loading. This causes varimax 
rotation to retain only a few key variables in estimation of the CVI.

4. In this step, the influence of the resulting components on coastal vulnerability are interpreted by assigning 
signs to each component. The positive or negative signs have been added manually to each of the compo-
nents based on their dominant (the effect of high-loading factors in each component) influence (negatively 
or positively) on the overall vulnerability. When a higher level of a high-loading variable demonstrates low 
vulnerability or vice versa, the corresponding factor’s score is adjusted by multiplying it by − 1, for example 
further distances from coast decreases the coastal vulnerability. When low or high values of a factor influ-
ence the coastal vulnerability in the same way (e.g., higher track density increase the coastal vulnerability), 
the absolute value of the corresponding factor is used.

5. The final CVI is then determined by combining the selected component scores and the explained variance 
in a weighted sum  function36.

6. Finally, obtained CVIs from the PPCA method are normalized using min–max standardizations to represent 
vulnerability values in a range of 0–1.

Sampling the validation datasets. In order to validate the final CVIs from MCDM and PPCA methods, 
and to assess their agreements with actual degree of vulnerability, information about historical flooding events is 
obtained from Sentinel-1 imagery, a geo-big data platform, is used to retrieve a total of 23 Level 1 Ground Range 
Detected Sentinel-1 Synthetic Aperture Radar (SAR) images. The imageries are acquired during hurricane sea-
son of Atlantic Ocean, May–November of the year 2016–2019. Sentinel-1 VH/VV polarization band is used in 
this study to detect the flooded pixel. In order to prepare the satellite information for the validation of coastal 
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vulnerability, several preprocessing steps are done, (1) updating orbit metadata, (2) thermal noise removal, (3) 
radiometric calibration (backscatter intensity), and (4) terrain correction or orthorectification using SRTM 30 m 
DEM. Further, the unitless backscatter intensity images were transformed and reproduced into calibrated, for 
standard SAR image representation by normalized backscattering coefficient ( σ ) values in decibel unit. Further, 
the ESA’s SNAP Sentinel-1 toolbox was used for incidence angle correction and speckle noise reduction by using 
an adaptive sigma Lee filter (7 × 7).  Following70 in SAR images a threshold between flooded and non-flooded 
pixel is calculated. A reference image (R) for representative of dry period is selected for each year, then the 
absolute difference between reference image (R) and flooded image (F) is determined following Eq.  (8). The 
threshold to identify the flooded pixels is estimated using Eq. (9) 70

Here, µ and σ represents mean and standard deviation from absolute difference image ( d) . kf  is a coefficient and 
1.5 is selected based on  recommendations70.

Finally, a composite band by clustering SAR images of each year between 2016 and 2019 is formed with an 
algebraic expression in GEE with a condition that shows the cumulative flood probability of each year. The surge 
height information was also overlayed to determine the flood severity. Thus, each pixel of the composite images 
is considered as the flood susceptibility condition on that geographical coordinate. A total of 340 random pixels 
were sampled to validate the final vulnerability map of SC coast. Additionally, the socio-economic validation 
of CVI was done by using the cost of fatalities from NWS storm event database. Total 53 locations were used to 
cross-validate the socio-economic vulnerability.

Case study
Study area. The performance of proposed methods for assessing the compound vulnerability of coastal 
system to natural hazards, the coastal counties of South Carolina (SC) have been selected (Fig. 3). All the fig-
ures which contain maps, including Fig. 3 and later vulnerability maps, have been generated originally for this 
research using ArcGIS v10.5 software (https:// www. esri. com/ en- us/ arcgis/ produ cts/ arcgis- deskt op/ overv iew). 
The six counties (226 census blocks), Jasper, Beaufort, Colleton, Charleston, Georgetown, and Horry together 
have a total area of about 15,113  km2 and the coastline length of about 475 km with North Atlantic Ocean. A 
buffer zone of 1 km along the shoreline is considered for the shoreline vulnerability analysis. The SC coastal plain 
is indeed a vulnerable region considering the frequent hurricanes, SLR, and compound tidal and inland floods. 

(8)d =
∣

∣float(F)
∣
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(9)FP < µ|d| − kf ∗ σ |d|.

Figure 3.  Location of study area in USA (inset map) and the land use types of the South Carolina coast.

https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview


13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11625  | https://doi.org/10.1038/s41598-022-15237-z

www.nature.com/scientificreports/

Back in 1980s, the average tidal flooding was about 4 events in a year for the City of Charleston. Due to SLR and 
numerous storms in recent years, the city is facing more frequent and more severe flooding events. During 2016 
and 2017, the tidal flood days was recorded 50 and 46, respectively, in  Charleston71. The tide along the coast 
ranges between 1.5 and 2.1 m, with semidiurnal tidal variation and tide cycle duration of about 11.5–12.5  h72. 
Observed SLR data from NOAA shows an increasing trend over the past century, about 3.8 ± 0.2 mm/year at 
Springmaid Pier and 30 ± 3 mm/year at  Charleston73. Rich cultural heritage, long history of Civil War, and beau-
tiful beaches transformed the coastal region of the State, in particular the City of Charleston and Myrtle Beach, 
to major destinations for tourists from all around the world. This historic core earns $8 billion annual revenue 
from visitors and contains 4th busiest container port in the East coast, USA. The City of Charleston alone brings 
about 4–7 million tourists annually to this  region74. However, after hurricanes and floods in past few years, the 
coastal region of SC is experiencing 10–17% reduction in total number of visitors (USACE 2020). According 
to US Census Bureau (2021), SC coastal counties have population densities ranging from 18 (Jasper) to 175 
(Charleston) people per square km, average poverty rates ranging from 11.9% (Charleston) to 20.1% (Colleton), 
percentages of population above 65 years ranging from 17% (Charleston) to 28.6% (Georgetown), percentages 
of disabled people under 65 ranging from 6.7% (Charleston) to 12.6% (Horry), median household income rang-
ing from $36 k (Colleton) to $72 k (Beaufort), and percentages of uninsured population ranging from 13.1% 
(Charleston) to 19.4% (Jasper). These numbers collectively indicate that concerns over SC’s coastal societies are 
inherently spatial in nature and its socio-demographic characteristics change greatly over the coastal counties. 
This fact puts disadvantaged coastal communities more in danger of receiving damage and natural hazards risk, 
calling for a more integrated coastal hazard assessment framework and future adaption policy. The SC coast is a 
sanctuary of six national wildlife refuges (NWR) covering an area of about 580  km2 and shelters 291 of different 
 species75. The hydrologic process in NWR mainly depends on tides and  marshes76. By 2100, SLR of approxi-
mately 0.53 m can submerge 51.4% Cape Romain NWR in SC, and in turn 52 ecological species will be in high 
risk, while 4 species are expected to be become  extinct77. Therefore, this is a crucial time to reevaluate the coastal 
hazard impact on the SC coast through a new lens, which take into the account vulnerable cultural heritages, 
ecological resources, and social vulnerability, and -economic losses.

Vulnerability indicators. Hydroclimate vulnerability indicators. The selected hydroclimate vulnerability 
factors are the number of coastal hazard events, hurricane track density, storm surge height, rainfall intensity, 
and SLR (Table 3). The statistics of total 4532 coastal hazard events during 1996–2019 in six coastal counties is 
utilized. Out of these hazard events most of them have been flood (69.9%), hurricane (22.34%), and then high 
tide events (4.25%). The average expected frequency of coastal hazard events in SC coast is 189 events per year, 
with 174 flood/hurricane events as the most anticipated hazard. Figure 4a shows spatial distribution of historic 
coastal hazard events in 226 census blocks. The property damage caused by historical hazard events in NWS 
records is estimated about US $23 million. Historically, Charleston County experiences the maximum numbers 
of annual coastal hazard incidents among coastal counties of SC, about 41 events per year, and followed by Jasper 
County with annual 23 coastal hazard events per year. The Georgetown County experiences the lowest number 
of coastal hazard events in the State with average of 21 events per year during 1996–2019. In this study, infor-
mation of 124 hurricane events during 1851–2017 is derived in order to develop the cyclone track density map 
(Fig. 4b), using Eq. (1) (Silverman 1986).

where Li is the length of the hurricane track (i), vi is the wind speed (km/h), and A is the radius of hurricane’s 
circle, which is assumed about 30 km in this study.

The total of fifty two historical hurricanes are classified into five hurricane category levels based on Saffir-
Simpson scale which resulted in six Category-4, two Category-3, thirteen Category-2, and thirty one Category-1 
 hurricanes78. Most hurricanes have occurred during the hurricane season in SC, May–October. Here, the storm 
surge vulnerability in SC coast we employed the result from the National Hurricane Center (NHC) Sea, Lake and 
Overland Surges from Hurricanes (SLOSH) model. The SLOSH model system in U.S. coast is primarily developed 
for real time prediction of storm surge height, with the forecast accuracy within ± 20%79. The locations of peak 
surge in SLOSH model simulation are used here to develop the map for historical peak surge height and their 
spatial distribution (Fig. 4c).

Hurricanes have paramount role in bringing heavy rainfall to the coast and mid-state. The 0.1° resolution 
IMERG-Daily satellite-based precipitation product, is used to estimate the aerial precipitation intensity. Spatial 
precipitations produced by IMERG-Daily (final run) are retrieved from the Global Precipitation Measurement 
archive (Table 2). The average rainfall intensity of 0.14–0.22 mm/day, estimated during April 2014–Jan 2020, 
is used to develop the rainfall maps for the SC coast (Fig. 4d). Northern parts of Charleston, Georgetown, and 
Horry counties have experienced the highest rainfall accumulation during this period (Fig. 4d).

Physical vulnerability indicators. The physical factors refer to the natural geographical and built-in environ-
ment characteristics of the coastal system. Thus, including factors such as landuse (Fig. 3), average soil moisture 
content, elevation (Fig. 5), and distance from coastline are important to find hotspots for natural hazards. For 
example, areas with low elevation are highly susceptible to flooding caused by SLR and storm surge height. The 
distance is another inversely related factor with coastal hazard propagation. The farthest point of the study area is 
109 km away from the shoreline, where the effect of coastal hazards are much reduced. Elevation maps as well as 
distance from coastline are used here to represent the physical risk of coastal flooding in land. Landuse is another 

(10)Track density =

∑i=n
i=1 Li × vi

A
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Figure 4.  Hydroclimate vulnerability indicators (a) No. of coastal hazard events, (b) Hurricane track density, 
(c) Storm surge height, (d) Rainfall intensity.

Figure 5.  Physical vulnerability indicators (a) Elevation, (b) Available water storage in soil.
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key factor, which represents the human interventions on land, and in turn on the impact of hazards. USDA 30 m 
landuse map is obtained to analyze the land cover of the study area. The land cover map has 14 classes, water, 
open space, developed (low, medium and high intensity), barren land, deciduous forest, evergreen forest, mixed 
forest, shrub, herbaceous, hay/pasture, cultivated crops, woody wetlands, and emergent herbaceous wetlands 
(Fig. 3). About 30.91% of the area is covered by woody wetlands, followed by 14.34% of emergent herbaceous 
wetlands. The developed area only covers about 3.8% of the study area. The soil moisture content, contribute to 
the formation of flood, especially flash floods. The gSSURGO soil moisture data (Table 2) for the study area is 
engaged to get the available water storage (AWS) information (Fig. 5b).

Socio‑economic vulnerability indicators. Selected socio-economic vulnerability indicators, as a basis to estimate 
the adaptive capacity of system, are Social Vulnerability Index (SoVI, Fig. 6a) developed by Cutter & Emrich, 
(2017), Number of Historical and Archeological Structures (NHAS), and historical cost of fatalities for natural 
hazard events (Table 2). The Social Vulnerability Index (SoVI) and cost of fatalities caused by flood events are 
used as measures of societal resistance against coastal hazard (Fig. 6).

The culturally rich SC coast has a total of about 8749 Historical and Archeological structures (NHAS). Most of 
NHAS are in Horry County (3374) and the lowest NHAS are found in Georgetown (152). Charleston County has 
2266 NHAS of which 80% of them are in the City of Charleston (Fig. 6b). The number of NHAS located within 
each of the census blocks is used as an indicator to measure the coastal hazard potential damage to historical 
and archeological sites and to tourism industry. Finally, the information related to the cost of fatalities is gained 
from NWS database for the historical storm events. This storm event database provides detailed description of 
natural hazard events with their geographic details, time, number of injuries and death directly and indirectly 
caused by the hazard, and estimated cost of property damage. The hazard events data in this study is represented 
at census tract level during 1996–2019 (Table 2). The cost of fatalities accounted here includes the property cost 
and the damage costs of crops (Fig. 6c).

Ecological vulnerability indicators. The coastal ecosystem remains at the frontline of the coastal hazard. The 
species richness, area of turtle habitat and shellfish harvesting are among the main indicators for ecological 
vulnerability assessment of coastal systems (Fig. 7). The species distribution map developed by SC GAP  project57 
is used to represent the spatial distribution of species richness (Fig. 7a). Other two factors for ecological vulner-
ability analysis are chosen based on their ecological and economic importance in this region. The loggerhead sea 
turtle community is found endangered because of growing human activities near beaches. In the South East of 
U.S., about 6.5% nests of loggerhead sea turtles located in the SC  coast80. Under 3 ft SLR projection, it is expected 
that these nests are completely  vanished77. Many of shellfish harvesting areas are located in Charleston, Colleton, 
and Jasper Counties (Fig. 7b). Presence of numerous estuaries in SC coast has promoted shellfish harvesting in 
this region (Fig. 3). The estuaries are the host to about 75% of the total harvested shellfish in U.S., that contributes 
nearly $4.3 billion per year to country’s  economy81.

Shoreline vulnerability indicators. The shorelines are located at a critical interface where dynamic interactions 
occur among ocean, atmosphere, and land. Five shoreline vulnerability indicators considered in this study, are 

Figure 6.  Socio-economic vulnerability indicators (a) Social Vulnerability index, (b) no. of Archeological and 
Historical structures (NHAS), (c) cost of fatalities.



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11625  | https://doi.org/10.1038/s41598-022-15237-z

www.nature.com/scientificreports/

the rate of shoreline change, significant wave height (SWH), tide range, coastal slope, and beachfront stabil-
ity (Fig. 8). Information about the historical changes in shoreline are obtained from various databases, mainly 
USGS, for the period of 1852–2000 (Table 2). A total of 4921 transects or shoreline cross sections perpendicular 
to the beach are spaced at 50 m lengths to estimate the rate of shoreline changes.

The shoreline erosion rate is expected to be higher for Charleston and Beaufort Counties (Fig. 8a). The SWH 
is estimated for the 100 year return period (Fig. 8b). The tide range over a small zone does not show a large 
spatial variation (Fig. 8c). The tide range of above 50% exceedance probability, estimated by NOAA for 55 years 
(1955–2020), is utilized in this study (Table 1). Mean tide range throughout the year varies between 1.3–2.4 m 
in SC coast. Maximum tide range of 3.6–3.7 m was found near the Jasper and Beaufort Counties coast, which 
gradually decreases toward the Horry and Georgetown County (2.5–3.2 m) (Fig. 8c). The SC coastal region has a 
mild coastal slope, which can escalate the storm surge propagation by triggering high wave towards the onshore 
areas (Fig. 8d). The steeper slope in the nearshore areas prevents the propagation of surges by dissipating the 
storm surge energy. The SC coast is relatively flat, where a major portion of region has slope of less than 0.57%. 
Finally, beachfront stability is another important factor which implies to the shoreline vulnerability (Fig. 8e). 
The beachfront stability data are obtained from SCDHEC GIS database. The information about shoreline stabil-
ity is classified into stable and instable beachfronts (Fig. 8e). The unstable beachfront can be found mainly in 
estuaries and tidal creeks (Fig. 8e).

Results and discussions
In this section, first the results for vulnerability assessment of SC coastal region using MCDM with objective 
weighting method are presented. The uncertainty analysis of the spatial MCDM and heterogeneous spatial 
weighting to evaluate the rationality of obtained CVI over various spatial scales and extents are also discussed. 
Then, we apply the PPCA approach to form a new vulnerability index and develop vulnerability maps of SC 
coastal counties and compare the results with MCDM method. Finally, historical coastal hazard inundation maps 
and damage estimates are compiled to validate the CVIs obtained from both methods.

Figure 7.  Ecological vulnerability indicators (a) Species richness, (b) Shellfish harvesting area, (c) Loggerhead 
sea turtle habitat.
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Entropy‑based weights for vulnerability factors. The weights are obtained from the entropy method 
within each vulnerability group (Table 4). The greater weight of the factor indicates a higher degree of influence 
on vulnerability. The cost of fatalities factor from socio-economic vulnerability group gained the highest weight 
among all the factors. Elevation, surge height, and turtle sites are dominant factors in each group of physical, 
hydroclimate and ecological vulnerability groups, respectively, based on entropic weighting. The rate of shore-
line change has slightly greater weight in shoreline vulnerability group (Table 4).

Hydroclimate vulnerability. A major portion (35%) of SC coast is prone to hydroclimate vulnerability. 
Based on the hydroclimate vulnerability map (Fig. 9a) 22%, 23%, 35%, 15% and 5% of SC coastal region has low, 
moderate low, moderate, moderate high and high vulnerability classes, respectively. The Charleston County is 
found as the most vulnerable region based on HVI. The Cape Romain NWR of Charleston County (shown on 
Fig. 9a) is located at high hydroclimate vulnerability, mainly due to intense hurricane activities in that region. 
The Charleston County has experienced 16 hurricanes (the highest number of hurricanes), followed by Beaufort 
County with 10 Historical hurricanes during 1996–2018. Historical surge height records had been recorded at 
three places of SC coast, estuaries of Beaufort County, Winyah Bay, and Charleston harbor with the surge height 
of about 5–8 m. Presence of numerous tidal rivers, such as Edisto River, Salkahatchie River, in Beaufort County 
expedites the surge propagation toward inland. Many coastal hazard events were occurred at ACE Basin NWR, 
which resulted in high hydroclimate vulnerability in this area (Fig. 9a). Southern part of Colleton and Jasper 

Figure 8.  Shoreline vulnerability indicators of SC coast (a) Rate of shoreline change, (b) Significant wave 
height, (c) Tide range, (d) Coastal slope, (e) Beachfront stability.

Table 4.  Weight of the factors from entropy method.

Factors Weight Factors Weight

Hydroclimate

No. of coastal hazard events 0.29

Ecological

Species richness 0.27

Hurricane track density 0.22 Shellfish harvesting 0.32

Surge height 0.31 Turtle sites 0.41

Rainfall intensity 0.18

Shoreline

Rate of shoreline change 0.23

Physical

Curve number 0.21 Tide range 0.18

Available soil water storage 0.24 Significant wave height 0.20

Elevation 0.32 Coastal slope 0.19

Distance from coast 0.23 Beachfront stability 0.21

Socio-Economic

SoVI 0.22

No. of historical and archeological structures (NHAS) 0.3

Cost of fatalities 0.48
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Counties and North Santee of the Georgetown County are moderately vulnerable (Fig. 9a). The Horry County 
has a low vulnerability, mainly due to its low number of historical hurricanes and coastal hazard events. The 
storm surge cannot penetrate further inland in Horry County as there are a smaller number of large estuaries in 
this county, compared to other counties.

Physical vulnerability. The coastal areas near the Atlantic coast are recognized as highly vulnerable 
regions, as those areas are highly susceptible to be inundated under projected SLR level of 0.1–0.3 m by 2050. 
The Beaufort is the most vulnerable county with spatial average of PVI of 0.58, followed by Charleston with PVI 
of 0.52. Colleton is the least vulnerable County (Fig. 9b). The PVI results show that 16%, 30%, 23%, 15%, and 
17% of SC coast has low, moderate low, moderate, moderate high, and high physical vulnerability, respectively. 
The shoreline length of a county shows a direct correlation with PVI. For instance, Jasper County has shoreline 
length of 9.64 km and spatial average of PVI of 0.29. This is also true for Colleton County with a small shoreline 
length (20 km) which has PVI of 0.32 (Fig. 9b). The percentage of developed land and impervious area at coastal 
urban centers, such as the city of Charleston, is another important factor that contributes to a higher degree of 
vulnerability.

The low-lying lands adjacent to the coast are more susceptible to natural hazards such as flood. Low eleva-
tion of the land, e.g. Charleston Peninsula with about 80% area has elevation below 4 m, is another key factor 
in vulnerability assessment. A major portion of the Charleston City is located 1–1.5 m higher above the regular 
high tide line. These pose serious challenges for urban development and planning and sustaining the cultural 
resources, public and private properties from potential flooding caused by storm surge and SLR. Moreover, the 
high tides cause backflows in coastal drainage system, such as those at the adjacent Ashley and Cooper Rivers, 
and in turn more frequent nuisance flooding in this region. In 2016 and 2017 the tidal flood days was recorded 
50 and 46 for City of the  Charleston71. U.S. Army Corps of Engineers proposed a $1.8 billion coastal management 
plan for Charleston peninsula to increase the adapting capacity of the City and alleviating the region’s physical 
vulnerability by developing new structural measures, such as storm surge barriers, breakwater or wave attenu-
ation structures, deployable floodwall, levees, and elevate the roads, bridges and building. A coastal ecosystem 
consists of various components including saltmarshes, emergent marshes, coastal forests, coral reefs, mangrove 
forests, aquatic vegetation in coastal wetlands, etc. These elements can act as shoreline measures to reduce the 
risk of coastal hazards. For instance, saltmarsh reduces the adverse effect of salt intrusion due to  SLR82, decreases 
the storm surge and wave height through increasing the flow resistance of water, and reduces the surge wave 
propagation  speed83. Given the growing interests in quantifying the ecological factors and their interaction with 
the socio-economic factors, a few number of studies tended to perform bi-variate coastal vulnerability analysis 
(e.g., Refs.43,53).

Socio‑economic vulnerability. The adaptive capacity of a system can be measured with respect to tech-
nological and structural measures, such as early warning systems, emergency services, and long-term control 
planning strategies. For example, lifting the structures elevation above 1% annual flood exceedance probability, 
relocating of the valuable and in-danger building out of the floodplain, and land use regulations can significantly 

Figure 9.  (a) Hydroclimate vulnerability, (b) physical vulnerability of SC coast.
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reduce the coastal hazard damage. In addition to the structural measures, the nonstructural measures, such as 
level of education, public health, income, etc., contribute to the adaptive capacity of a region.

A low to moderate socio-economic vulnerability has been discerned at most populated areas along SC coast, 
such as the cities of Charleston, Mount Pleasant, Myrtle Beach and Beaufort County (Fig. 10a). A great differ-
ence has been seen in adaptive capacity of coastal hazard between urban areas and countryside in SC (Fig. 10a). 
The north-western and south-eastern part of the Charleston County were found as moderately high and highly 
vulnerable regions. That is the part of the county where minority communities and scattered disadvantaged com-
munities are located. The result of SEVI estimation shows that 4%, 12%, 20%, 48%, and 16% of the study area is 
classified as low, moderate low, moderate, moderate high, and high socio-economic vulnerability. Colleton has 
the highest degree of socio-economic vulnerability (Fig. 10a).

Ecological vulnerability. Results from ecological vulnerability estimation show that 22%, 46%, 18%, 8%, 
and 6% of the SC coastal region have low, moderate low, moderate, moderate high, and high ecological vulner-
ability (Fig. 10b). Six NWR are located in coastal region of SC. Among them, only the largest one, Cape Romain 
NWR, holds a high ecological vulnerability (Fig. 10b), rest of them are located at low to moderate classes. Coastal 
recovery and management plans in the future should focus minimizing the high vulnerability of Cape Romain 
NWR. In addition to ecological vulnerability, the physical vulnerability of this NWR is showing that the Cape 
Romain NWR is located at high physical vulnerability region as well.

Natural protective measures for coastal area acts as a buffer against the coastal hazard by reducing wind 
erosion, wave attenuation and tidal inundation. Promoting the marsh wetlands can potentially slow down the 
storm surge speed. Subsequently, it is expected that preserving current coastal wetlands can protect the inland 
areas by reducing the SLR effects over time. Moreover, the erosion prone shorelines can be restored by planting 
vegetation. For instance, the oyster reef toe can hold the sediments to reduce the erosion.

Shoreline vulnerability. Shoreline vulnerability in SC is broadly classified under moderate low vulner-
ability class which makes up about 41% of the entire shoreline (Fig. 11). About 7.4% of the SC coastline is clas-
sified under high vulnerability, most of which are located in the Charleston and Beaufort Counties. Rest of the 
shoreline can be described as low vulnerable (about 10%), moderate vulnerable (about 22%), and moderate high 
(about 20%) (Fig. 11). The rate of shoreline change is the dominant factor among the shoreline vulnerability 
indicators since this factor carries the majority (0.31 out of 1) of weight for shoreline vulnerability estimation. 
Myrtle Beach has the lowest shoreline with relatively better coastal characteristics, such as stable beachfront, 
low tide range, moderate SWH. Charleston harbor and Kiawah Island (Fig. 11) are found highly vulnerable due 
to their flat coastal slope and unstable beachfront. It is expected that, the tourism industries take advantages of 
favorable shoreline coastal characteristics at Georgetown and Horry County in the future.

Several protection measures can withstand against shoreline erosion. Intertidal sandy shoals are resilient fea-
tures which perform well against shoreline erosion and SLR. Several observations and modeling (e.g., Refs.84,85) 
suggested that the sandy shoal can achieve stable morphodynamic form at coastal intertidal wetlands and creeks 
by balancing multiple coastal forcing including sediment supply, tidal action and wave erosion. Intertidal mud 

Figure 10.  (a) Socio-economic vulnerability and (b) Ecological Vulnerability of SC coast.
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and sandy shoals at the seaward shoal edge gradually propagates landwards with SLR and as a results shoreline 
can achieve a long-term  equilibrium84. Numerous mudflats in the intertidal creeks, wetlands and estuaries of 
SC coast should remain unaltered by human intervention to make the SC coast more SLR resilient. Deepening 
project in Charleston harbor can accumulate the dredged sediment to elevate the adjacent mudflats as a non-
structural and cost-effective solution against shoreline erosion.

Sensitivity analysis. After estimating different vulnerabilities, they need to be integrated to form the 
coastal vulnerability index. Here, a sensitivity analysis has been done on spatial weights of indices to evaluate the 
sensitivity of obtained coastal vulnerability across spatial scales and extents.

A parallel coordinate plot of the Charleston County, as an example, is shown in Fig. 12a. A total combination 
of 730 weights are simulated, noting that sum of the weights should be always equal to 1. Each line of the parallel 
coordinate plot represents a combination of weights of four vulnerability groups (a, b, c, d in Eq. 8), while the 
color of the line indicates the mean CVI over the county. The weight of each group varies in a range of 0 to1. 
For Charleston County, the final CVI is mostly sensitive to the changes in SEVI and PVI weights. The weights 
for hydroclimate and ecological vulnerability indices have less impact on the estimation of CVI, and as a result 
more attention should be taken for estimating the SEVI and PVI in this county.

The sensitivity analysis has been done separately for each county and the probability of changes in CVI is 
shown in Fig. 12b for all the counties. The histogram and bar plots are also shown within the violin plot (Fig. 12b). 
The Beaufort County has the highest rate of changes in CVI (0.21–0.58), and thus more sensitive to the selection 
of weights for different vulnerability indices among these counties (Fig. 12b). The Colleton and Georgetown 
are less sensitive to the changes of vulnerability group’s weights. Similarly, there is a little impact of changing 
the weights of vulnerability groups on final CVI for the Jasper County. Figure 12b shows that, regardless of the 
vulnerability indices weights, the Charleston County has the highest coastal vulnerability index (0.4–0.5). On 
the other hand, the Horry County is the less vulnerable than other counties. The 50th percentile weights of the 
vulnerability groups ranges between 0.2 and 0.3 for the these counties, except the Beaufort. For the 50th percentile 
weights, the HVI has the highest importance in Beaufort County), while Charleston County is more sensitive to 
SEVI; Colleton County is more sensitive to EVI; Horry County is sensitive to PVI (Table 5). The Georgetown and 
Horry are less sensitive to SEVI, while other counties are highly sensitive to the changes in SEVI weight (Table 5).

CVI‑50 and CVI‑90 vulnerability maps. The generated vulnerability maps based on CVI-50 and CVI-
90 weights from Table 5 are shown in Fig. 13a,b. The CVI-90 method focusses more on sensitive vulnerability 
index to assign CVI weights, whereas the CVI-50 resembles an average combination of all vulnerabilities. The 
northeastern part of the Charleston County is identified as the most vulnerable place in SC coast. This area has 
been identified as a hotspot in hydroclimate, physical, socio-economic and ecological vulnerability assessments. 
A major portion of Charleston County was marked as moderate to highly vulnerable. The high-level of adaptive 
capacity in City of Charleston and adjacent suburbs resulted in low and moderate level of vulnerability based on 
CVI-50 method. However, the level of vulnerability under CVI-90 is higher than the CVI-50 (Fig. 13a,b) as the 
Charleston County is more sensitive to both SEVI and PVI (Table 5). The Myrtle Beach (Fig. 13b) appears as a 
moderately high vulnerable area under CVI-90 map. This part of Horry County experiences severe storm surges 
and landfalling hurricane in recent years. The enduring storm surges from the adjacent North Carolina coasts 
also affect the Myrtle Beach. The southeastern part of Georgetown County appears as moderately high to highly 

Figure 11.  Shoreline vulnerability of SC coast.
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vulnerable class (Fig. 13b), mainly due to moderate high EVI and SEVI. Similarly, lower part of Colleton demon-
strates a high vulnerability with high EVI and moderate high SEVI (Fig. 13a,b). The lower portion of Colleton is 
found vulnerable to ecological factors (Fig. 13a,b). The shellfish harvesting area, turtle sites and species richness 
are abundant in this part of SC. The Beaufort County largely appears as a moderate low to moderate vulnerabil-
ity class based on CVI-50, however, some certain parts of the county turn into moderate high in CVI-90 map 
(Fig. 13a,b). The reason for this is the high PVI and moderate HVI of these locations. Jasper County appears as 
moderately vulnerable under both CVI-50 and CVI-90 maps. Socio-economic vulnerability of moderate high 
to high level has a noticeable effect on the vulnerability of Jasper County. The variability of CVIs, according to 
assignment of weights, in SC coast demands for adaptive and robust development strategies and climate change 
adaption plans with catering vulnerable hotspots associated with socio-economic and ecosystem to withstand 
the coastal hazards.

Figure 12.  (a) Parallel coordinate plot of the vulnerability group’s weight drawn for the Charleston County. (b) 
Violin plot showing the mean CVI of different county varies with changing weights of the vulnerability groups.

Table 5.  List of weights of the vulnerability groups for 50th and 90th percentile CVI. a 50th percentile of 
weight in sensitivity analysis. b 90th percentile of weight in sensitivity analysis.

Index

Jasper Beaufort Colleton Charleston Georgetown Horry
aQ50

bQ90 Q50 Q90 Q50 Q90 Q50 Q90 Q50 Q90 Q50 Q90

EVI 0.2 0.3 0.2 0.3 0.25 0.45 0.3 0.1 0.3 0.4 0.25 0.1

HVI 0.2 0.15 0.45 0.1 0.2 0.15 0.2 0.1 0.2 0.1 0.25 0.1

PVI 0.3 0.1 0.2 0.3 0.3 0.1 0.25 0.3 0.2 0.4 0.25 0.7

SEVI 0.3 0.45 0.15 0.3 0.25 0.3 0.25 0.5 0.3 0.1 0.25 0.1
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Vulnerability map based on PPCA. The correlation among the selected factors for PPCA is shown in 
Fig. 14a, where a strong correlation is found between elevation and distance with track density. Moreover, five 
PCs are selected for the PPCA analysis (Table 6). The results show that these 5 PCs in PPCA have about 80.2% 
of the cumulative variance from the original factors. The first component of PPCA (PC1) maintains the largest 
portion of the cumulative variance, 46.13%. Hurricane track density, distance and elevation have higher load-
ings and are positively correlated with PC1 (Table 6). Average soil water storage and elevation vulnerability are 
positively correlated with the second component (PC2) of PPCA, while the PC2 maintains 10.32% of the total 
variance. The third component (PC3) is positively corelated with socio economic and ecological vulnerability 
indicators (Table 6). It can be seen that (Table 6) the cost of fatalities increased with the no. of coastal hazard 
events, area of shellfish harvesting, species richness, NHAS and turtle sites in PC3. The fourth component, PC4 
with 8.15% of variance, has positive correlation with storm surge height and SoVI. The fifth component, PC5 
with 6.35% of variance, has only one positive correlation in it, elevation factor, and the rest of other factors dem-
onstrate negative correlations.

In PPCA method, the vulnerability of any specific place cannot be directly explained by original classification 
of the vulnerability groups and factors, instead this should be done by analyzing the PCs. The factor loading can 
be used to bridge between the PCs and original vulnerability indicators. The PC1 has the largest weight in PPCA 
method, with high factor loadings associated with physical and hydroclimate factors, in particular distance, 
track density, elevation and rainfall intensity. The place which is found highly vulnerable under the criteria of 

Figure 13.  Coastal vulnerability map estimated by (a) CVI-50, (b) CVI-90 and (c) PPCA method.
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distance and high track density is therefore expected to be identified as vulnerable in PPCA based vulnerability 
map as well. Larger hurricane activities and proximity to the coast make the northeastern part of Charleston 
highly vulnerable.

The spatial pattern of PPCA based CVI is very similar to CVI-90 with few exceptions. The elevation factor 
notably influences CVI as seen in previous sections. Here, elevation has positive correlation and high loadings for 
all PCs is found except PC4. Jasper County has dominance of moderate vulnerable pixels under CVI-90 method, 
but this county is changed to mainly moderate high vulnerability class by PPCA method. Similarly, Beaufort 
County seemed to be dominantly moderate low and moderate vulnerable pixels under CVI-90 method, but PPCA 
based CVI shows this county tends to be more moderately highly vulnerable. It is seen that Charleston County 
is identified as the most vulnerable County in SC coast regardless the method used for vulnerability assessment.

The Colleton County has the lowest CVI among other Counties. So, one may argue that the underlying reason 
is its positive correlation with factors associated environmental vulnerability Table 4 confirms that the Colleton 
is mostly sensitive to the environmental vulnerability. Also, final PPCA map is less influenced by PC3 factors, 
where mostly environmental vulnerability -related factors exist.

Figure 14.  (a) Spearman correlation matrix of the vulnerability indicators. (b) Variation of mean CVI in six 
coastal counties with different methods.
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Vulnerability of Beaufort County was found higher in PPCA method than CVI-50 and CVI-90 methods. This 
can be due to of the effect of higher importance of hurricane track density factor. Similarly, the City of Charleston 
was marked as moderately to highly vulnerable area due to its low elevation and high hurricane track density 
which have higher prioritization in PPCA method (Fig. 13c). Northern part of Horry shows notable increase in 
vulnerability compared to MCDM methods, because this region has higher SoVI influence and stronger correla-
tion from PC4 (Fig. 13). Although PPCA method recognizes this part as moderate vulnerable, CVI-90 disregards 
the effect of SoVI, since the Horry County is sensitive to physical vulnerability.

The estimated CVIs by all the three methods is shown in spider plot for each of six counties (Fig. 14b). The 
CVI was also estimated based on an additional scenario, using equal weights for all 14 vulnerability factors 
(excluding shoreline class) (Fig. 14b). The equal weight method is a conventional way of estimating CVI and has 
been used previously in several  studies31,32. CVI-50 and Equal weights method provide quite identical CVIs for all 
six counties. The prominent difference between the CVI-50 and CVI-90 is that the CVI-90 reflects the extreme 
vulnerability condition by increasing the weights of most sensitive vulnerability groups, while the CVI-50 tends 
to depict the normal conditions. PPCA method provides the highest CVI among all three methods except in 
case of Colleton County.

Validation of vulnerability maps. The satellite images have been used to derive historical flood maps 
and cost of fatalities to validate the CVIs. A binary classification has been used to classify the CVI results into 
vulnerable vs. non-vulnerable at a pixel level using the natural break classification method. The vulnerability 
prediction results in CVI maps were judged by true positive, representing observed vulnerable pixels correctly 
classified as vulnerable, and true negative, representing true non-vulnerable pixels correctly classified as non-
vulnerable. False positive and false negative samples are those incorrectly classified pixels as vulnerable (posi-
tive) and non-vulnerable (negative). The validation has been done by taking 368 random samples (pixels) from 
flood map and 53 places for estimating the damage costs. Table 7 shows the results of validation process for two 
separated overall categories of natural risk (represented by flood) and socio-economic damage (represented by 
cost of fatalities). A pixel-wise comparison of the CVI products showed that PPCA has a closer match with the 
post-hazard flood maps (Table 7). It can be concluded from Table 7 that the CVI-50 may result in underestima-
tion of actual degree of vulnerability, as less number of pixels are detected, less projected true positives compared 
to two other methods in both natural risk and socio-economic damage. PPCA has better accuracy to project the 
risk of natural hazards and less accuracy to explain the socio-economic damages. As seen from Table 6, PPCA is 

Table 6.  Results of factors loading after varimax rotation.

Factors PC1 PC2 PC3 PC4 PC5

No. of coastal hazard events 0.141

Storm surge height − 0.122 0.951 − 0.114

Track density 0.552 − 0.150

Rainfall intensity 0.145 − 0.264

Curve number − 0.346

Elevation 0.184 0.369 0.697 − 0.177 0.333

Average water storage of soil 0.902 − 0.241

Distance 0.749

SoVI − 0.107 0.131 − 0.702

Cost of fatalities 0.104

NHAS − 0.158 0.297

Species richness 0.299 − 0.312

Area of shellfish harvesting − 0.153 − 0.119 0.451 − 0.141

Turtle sites 0.2

Explained variance (%) 46.13 10.32 9.25 8.15 6.35

Cumulative variance (%) 46.13 56.45 65.7 73.85 80.2

Table 7.  CVI validation with flood and socio-economic data.

Validation data type Method True positive False positive True negative False negative

Flood

CVI-50 169 68 60 71

CVI-90 187 70 58 53

PPCA 195 81 47 45

Socio-economic Damage

CVI-50 6 15 31 1

CVI-90 7 22 24 0

PPCA 5 26 20 2
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less sensitive to socio-economic factors, lower weights for associated components of PC3 and PC4. CVI-90 and 
PPCA methods improve the performance of projecting the true positive samples in natural risks, but at the same 
time these methods slightly underestimate the true negative samples of socio-economic vulnerability.

Discussion
Traditional (top-down) coastal vulnerability studies focus mostly on biophysical factors and less on socio-envi-
ronmental factors (bottom up). This is an important gap as the combination of both will often result in more 
damage when a flooding event occurs making the coastal system more vulnerable. This study investigates the 
interrelationship of socio-environmental and biophysical factors tying together both top-down and bottom-up 
factors to develop an integrated index. For this purpose, a multi-variate approach is used to form an informed 
integral CVI. This index is composed of a wide range of physical, hydroclimate, socio-economic, ecological, and 
shoreline factors of SC.

The most important task in fine scale vulnerability mapping and assessment is to deal with big geospatial 
datasets. For example, a 30 m resolution CVI map has approximately 69 million pixels for each of the involved 
vulnerability factors, which requires considerable computational power and analysis time. Thus, the improved 
MCDM and PPCA for geospatial data analysis framework can provide better understanding on fine scale CVI 
development, and a complete perspective of vulnerability assessment. Here, GIS and remote sensing techniques 
along with data driven approaches are used to develop the CVI. In addition, some of the presented methods for 
estimating individual vulnerability factors will require up to date and more advanced quantification in future. 
For instance, this study uses LRR methods’ from USGS National Assessment of Shoreline Change  Project58 for 
obtaining the long term (1851–2000) rate of shoreline change. However, LRR is sensitive to data clustering over 
times and underestimates non-linear shoreline erosion processes that may affect the rate of shoreline change.

Conventional MCDMs, such as the Analytical Hierarchy Process, rely on expert or user experience-based 
judgements to identify importance of vulnerability factors. These techniques are prone to biases that arise from 
individuals’ judgements. Our study also found that using equal weights, i.e., similar level of importance, among 
the vulnerability groups creates discrepancies in CVI estimation as coastal vulnerability does not necessarily have 
similar sensitivity throughout the study area to all the factors. To address this issue, the sensitivity analysis of CVI 
has been performed with regards to the vulnerability factors. To represent the sensitivity of coastal vulnerability 
to the uncertainty associated with weighting the involved factors, two versions of CVI maps, CVI-50 and CVI-90, 
based on average and extreme values of the factors are developed. Moreover, Probabilistic Principal Component 
Analysis (PPCA) is used to better represent the hidden relationships and increase the interpretability of CVI 
factors. Overall, PPCA is a useful approach in approximating the missing values of spatial factors.

Finally, to validate the level of precision of our vulnerability maps, observed NWS cost of fatalities records 
and Sentinel-1 flood inventory maps are used. Comparing results shows that the MCDM-based CVI-90 and 
PPCA outperform the CVI-50, which represents the traditional vulnerability assessment. The proposed meth-
odology and findings of this study contribute to the state-of-the-art coastal vulnerability assessment and provide 
accessible, reproducible, and transferable methods and tools so that similar vulnerability assessments may be 
performed for other type of hazards and at different locations.

Conclusions
Over the past decades the coastal vulnerability analysis has been confined either biophysical or socio-economic 
dimensions. The need for an integrated vulnerability assessment is most compelling solution by combining 
biophysical, ecological, and socioeconomic vulnerability dimensions in broad sense. Additionally, the dominant 
factors in shoreline considering all oceanographic forces can reveal a complete picture of coastal vulnerability. 
Weighting of the vulnerability factors is an effective descriptor of the importance of a vulnerability indicator. 
However, the subjective weights elicited from expert judgment are prone to be biased by human perception. 
This leads to search for more appropriate and heterogeneous spatial weighting technique in MCDM. This study 
highlights important features which should be taken into serious consideration in future vulnerability assess-
ment studies:

1. Results of this study indicates the great performance of combining the Fuzzy normalization approach with 
an entropy-based weighting technique to effectively estimate the factors’ relevant importance and weights 
and to refine the spatial scale of vulnerability index.

2. Sensitivity analysis of the vulnerability groups’ weights can potentially reveal important information about the 
spatial dominance of vulnerability groups more effectively. Sensitivity analysis of CVIs shows that Charleston 
County is more sensitive to socio-economic factors, whereas the physical factors contribute to a higher degree 
of vulnerability in Horry County.

3. PPCA method is more robust as determining the weights of the spatial factors is not required. The PPCA as 
a data imputation technique is a potential solution to assess the vulnerability at a precise resolution because 
the probability model of PPCA can interpolate missing values.

4. Validation of the results using historical events shows that both CVI-90 and PPCA preserve the accuracy of 
vulnerability estimation based on simultaneous information from biophysical and socio-economic factors, 
while the CVI-50 method underestimates the biophysical vulnerability of coastal hazards.

In conclusion, while the performance of CVI-90 outperformed other models to identify the vulnerable hot-
spots and socio-economic vulnerability, the results of our study show each of suggested methods still cannot 
solely provide comprehensive and precise information about the future of various vulnerability aspects. If any of 
the factors lack the accurate projections, the results from vulnerability assessment will be highly uncertain and 
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may mislead decision makers when determining vulnerable places and suitable adaptation policies. This calls 
for the development of new holistic vulnerability assessment approaches in the future which focus on manag-
ing the deep uncertainty associated with socio-economic and hydroclimatic conditions. For example, advanced 
data driven algorithms for ranking vulnerability indictors and multi-variate copula based joint probability for 
developing stochastic CVI in future can provide room for keeping simultaneous information and more precise 
and case relevant factors for estimating vulnerability indices.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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